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Abstract: A stochastic nonautonomous SIAM (Susceptible individual–Infected individual–Aware
individual–Media coverage) epidemic model with Markov chain and nonlinear noise perturbations
has been constructed, which is used to research the hybrid dynamic impacts of media coverage
and Lévy jumps on infectious disease transmission. The uniform upper bound and lower bound
of the positive solution are studied. Based on defining suitable random Lyapunov functions, we
researched the existence of a nontrival positive T-periodic solution. Sufficient conditions are derived
to discuss the exponential ergodicity based on verifying a Foster–Lyapunov condition. Furthermore,
the persistence in the average sense and extinction of infectious disease are investigated using
stochastic analysis techniques. Finally, numerical simulations are utilized to provide evidence for the
dynamical properties of the stochastic nonautonomous SIAM.

Keywords: media coverage; Lévy jumps; nontrival positive T-periodic solution; exponential ergodicity;
persistence in mean; extinction

1. Introduction

Recent studies have shown that public health alerts via social media exert a positive
influence on usefully informing people of the prevalence about infectious disease [1]. There-
fore, media coverage has effectively reduced the prevalence and shortened the duration
of disease [2]. The influence of media message reminders on local behavioral response
and public awareness response was studied in [3], and pharmaceutical interventions and
the response of infected people to information have also been successful in controlling of
the epidemic.

As the mass media has directed people’s attention, it is often focused on infectious dis-
ease; thus, relying on the mass media to publicize the law of infectious disease transmission
is extremely constructive for the effective treatment of the epidemic [4,5]. Assuming that
the implementation of a public health alert program is proportional to the infected popu-
lation, recent studies have shown that progress has been made in the social cost–benefit
analysis of media campaigns for vaccination against infectious disease [6–9].

There is also a series of studies that specifically discussed the increased vaccination
coverage of people due to social media advertising and television programs [10–12], which
includes the example of discussing the function of media alerts to reduce the number of
infected people. Particularly, in [12] a SIAM (Susceptible individual—Infected individual—
Aware individual—Media coverage) epidemic model with media coverage and public
health alerts was established as follows, and stability analysis around the endemic equilib-
rium was studied.
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dS(t)
dt = Λ− βS(t)I(t)− λS(t) M(t)

M(t)+p + νI(t) + λ0 A(t)− hS(t),
dI(t)

dt = βS(t)I(t)− (ν + α + h)I(t),
dA(t)

dt = λS(t) M(t)
M(t)+p − (λ0 + h)A(t),

dM(t)
dt = r

(
1− θ

A(t)
w+A(t)

)
I(t)− r0(M(t)−M0),

(1)

with the initial value for model (1) takes the following from:

S(0) ≥ 0, I(0) ≥ 0, A(0) ≥ 0, M(0) ≥ M0,

S(t), I(t), A(t) denotes the number of susceptible individuals, infected individuals and
aware individuals, respectively. M(t) is the cumulative number of TV programs and social
media. Λ denotes the increase in the number of people who are susceptible. β stands for the
rate of contact between susceptible individuals and infected individuals. ν, α and h denote
the rate of recovery, disease-induced death and natural death, respectively. Furthermore,
λ represents the rate of awareness among the susceptible, and λ0 is the transfer rate of
aware individuals to susceptible individuals. r is the growth rate in media coverage, and r0
represents the diminution rate of advertisements [12].

It is well-known that dynamical effects of a periodically varying situation are different
from those in a relatively stable situation [13]. Some parameters describing seasonal effects
are affected by disturbances in time and usually exhibit [14]. Therefore, it is more accurate
to assume periodicity of the surrounding situation and introduce time-varying periodic
function parameters into the epidemic models, which can be found in [15–17] and the
references therein.

Recently, there have been studies concentrated on discussing the spread dynamics of
infectious disease using a stochastic mathematical model with Brownian motion [14–17].
Recently, some scholars found that, compared with Gaussian white noise and Brownian
motion, Lévy jumps can more accurately describe the unexpected violent disturbances in
the real situation [18,19]. Furthermore, Markov chain [20] is usually used to describe the
vital transient transitions of important rates between two or more infectious states [21,22].

Taking the above mentioned content into account, media coverage, random pertur-
bations and time-varying periodic function parameters are important disciplines in the
modeling and dynamical analysis of infectious disease transmission. In this work, a random
nonautonomous SIAM infectious disease model with Markov chain and nonlinear noise
perturbations has been established as follows:

dS(t) =
[
Λ(t)− β(t)S(t)I(t)− λ(t)S(t) M(t)

M(t)+p(t) + ν(t)I(t) + λ0(t)A(t)− h(t)S(t)
]
dt

+[σ11(γ(t)) + σ12(γ(t))S(t)]S(t)dB1(t) +
∫
Y c1(u)S(t−)X̃(du, dt),

dI(t) = [β(t)S(t)I(t)− (ν(t) + α(t) + h(t))I(t)]dt
+[σ21(γ(t)) + σ22(γ(t))I(t)]I(t)dB2(t) +

∫
Y c2(u)I(t−)X̃(du, dt),

dA(t) =
[
λ(t)S(t) M(t)

M(t)+p(t) − (λ0(t) + h(t))A(t)
]
dt

+[σ31(γ(t)) + σ32(γ(t))A(t)]A(t)dB3(t) +
∫
Y c3(u)A(t−)X̃(du, dt),

dM(t) =
[

r(t)
(

1− θ(t) A(t)
w(t)+A(t)

)
I(t)− r0(t)(M(t)−M0(t))

]
dt

+[σ41(γ(t)) + σ42(γ(t))M(t)]M(t)dB4(t) +
∫
Y c4(u)M(t−)X̃(du, dt).

(2)

where Λ(t), β(t), λ(t), p(t), ν(t), λ0(t), h(t), α(t), r(t), θ(t), w(t), r0(t) are continuous
T-periodic functions. σ2

ij(·) > 0(i = 1, 2, 3, 4, j = 1, 2) represent white noises. γ(t) de-
notes a irreducible and continuous Markov chain, which is defined in N = {1, 2, 3, . . . , K}.
γ(t) is supposed to be generated by the following transition rate matrix Γ = (µnj)K×K,

P{γ(τ +4τ) = j|γ(τ) = n} =
{

µnj4τ + o(4τ), n 6= j,
1 + µnn4τ + o(4τ), n = j,
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where µnj > 0 is the transition rate from state n to state j, and µnn = −ΣK
n 6=j,n=1µnj holds

for n 6= j.
Due primary to γ(t) being an irreducible Markov procedure, it exists as a unique

stationary probability distribution φ = (φ1, φ2, · · · , φK) ∈ R1×K subject to ∑K
n=1 φn =

1 and φn > 0 hold for any n ∈ N. S(t−), I(t−), A(t−), M(t−) denotes left limit of
S(t), I(t), A(t), M(t), respectively. Y represents for a measurable subset of R+, X depicts
an independent Poisson counting measure with Lévy measure ρ on Y with ρ(Y) < ∞ such
that X̃(dt, du) = X(dt, du)− ρ(du)dt. It is supposed that ci(u) > −1, and there are four
constants κi > 0(i = 1, 2, 3, 4) are constructed as below,

max{
∫
Y
(ln(1 + ci(u))ρdu,

∫
Y
(ln(1 + ci(u))2ρdu} ≤ κi. (3)

Based on the properties of Markov chain, we can regard system (2) as the subsystems
defined as below:

dS(t) =
[
Λ(t)− β(t)S(t)I(t)− λ(t)S(t) M(t)

M(t)+p(t) + ν(t)I(t) + λ0(t)A(t)− h(t)S(t)
]
dt

+[σ11(n) + σ12(n)S(t)]S(t)dB1(t) +
∫
Y c1(u)S(t−)X̃(du, dt),

dI(t) = [β(t)S(t)I(t)− (ν(t) + α(t) + h(t))I(t)]dt
+[σ21(n) + σ22(n)I(t)]I(t)dB2(t) +

∫
Y c2(u)I(t−)X̃(du, dt),

dA(t) =
[
λ(t)S(t) M(t)

M(t)+p(t) − (λ0(t) + h(t))A(t)
]
dt

+[σ31(n) + σ32(n)A(t)]A(t)dB3(t) +
∫
Y c3(u)A(t−)X̃(du, dt),

dM(t) =
[

r(t)
(

1− θ(t) A(t)
w(t)+A(t)

)
I(t)− r0(t)(M(t)−M0(t))

]
dt

+[σ41(n) + σ42(n)M(t)]M(t)dB4(t) +
∫
Y c4(u)M(t−)X̃(du, dt).

(4)

Remark 1. In recent related work, stochastic perturbations are usually represented by linear form
perturbation of white noise, and the influences of linear noises perturbations on nonautonomous
epidemic models were studied in [13–17]. However, in order to accurately depict some stochastic
phenomena arising from infectious disease transmission in the real world, it is more constructive
to introduce nonlinear noise perturbations into a nonautonomous epidemic model. Furthermore,
some stochastic models have been established to discuss the prevalence mechanism of infectious
diseases [23–31] without Lévy jumps.

A SIS infectious disease system with regime-switching driven by Lévy jumps was investigated
in [32], while the random dynamics for infectious disease system with hybrid dynamic impacts of Lévy
jumps and media coverage are rarely reported. Taking the media coverage and random disturbance into
dynamic impacts on threshold dynamics of random infectious disease model were investigated in [33–36],
while Lévy jumps and periodic function parameters were not considered in [33–36].

The dynamic behavior of infectious disease systems in [37–39] were investigated under non-
linear noise perturbations and Lévy jumps, while all parameters were assumed to be constant
values in [37–39], periodicity factors during transmission within the infectious disease regimes were
not considered.

Although the stochastic infectious disease model and its dynamic analysis have attracted wide
attention, as far as the authors know, the hybrid dynamic impacts of Lévy jumps and media coverage
on random dynamics of the nonautonomous SIAM epidemic model with Markov chain and nonlinear
noise perturbations have not been reported in previous related studies.

By incorporating Lévy jumps, nonlinear noise perturbations and periodic function
parameters into the the epidemic system, we aim to study the hybrid dynamic impacts
of media coverage on infectious disease transmission driven by Lévy jumps. For the
rest of this work, we will make some arrangements as below: In the next section, the
uniform upper bound and lower bound of the solution for stochastic nonautonomous
system will be investigated. Based on constructing certain appropriate stochastic Lyapunov
functions, sufficient conditions for existence of a nontrival positive T-periodic solution will
be discussed.
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Based on verifying a Foster–Lyapunov criterion, sufficient conditions for the expo-
nential ergodicity are discussed. Furthermore, some sufficient conditions are derived to
discuss the persistence in the mean and extinction of the infectious disease. In the third
section, numerical simulations are used to prove the accuracy of the theoretical derivation.
Lastly, section four is the conclusion of this paper.

2. Qualitative Analysis

For the sake of the narrative, we define the following mathematical symbols,

gu = sup
t∈R+

g(t), gl = inf
t∈R+

g(t), 〈g(t)〉 = 1
t

∫ t

0
g(t)dt.

Lemma 1. For any initial value (S(0), I(0), A(0), M(0), n) ∈ R4
+ × N, when the sufficient

condition (3) holds, then there exists a uniform upper bound and a uniform lower bound for the
solution of system (4).

Proof. Let y1(t) = Sη(t), η ∈ (0, 1). Utilizing the Itô’s formula to ety1(t) and, integrating
both sides from 0 to t, the following results can be obtained.

E(ety1(t))

= E
∫ t

0
es
[

1 + η

(
Λ(t)
S(t)

− β(t)I(t)− λ(t)M(t)
M(t) + p(t)

+
ν(t)I(t)

S(t)
+

λ0(t)A(t)
S(t)

− h(t)
)]

y1(t)ds

+y1(0) +E
∫ t

0
es
[∫

Y
((1 + c1(u))η − 1)X̃(du, dt)

]
y1(t)ds

−E
∫ t

0
es
[

η(1− η)

2
(σ11(n) + σ12(n)S(t))2

]
y1(t)ds

≤ E
∫ t

0
es
[

1 + η

(
Λ(t)
S(t)

− β(t)I(t)− λ(t)M(t)
M(t) + p(t)

+
ν(t)I(t)

S(t)
+

λ0(t)A(t)
S(t)

− h(t)
)]

y1(t)ds

+y1(0)−E
∫ t

0
es
[

η(1− η)

2
(σ11(n) + σ12(n)S(t))2

]
y1(t)ds

+E
∫ t

0
es
[∫

Y
((1 + c1(u))η − 1− ηc1(u))ρdu

]
y1(t)ds.

When S(t) ≥ 0 and 0 < η < 1, based on the inequality Sη(t) ≤ 1 + η(S(t)− 1), if
sufficient condition (3) holds, we can obtain the following results

y1(t)
[

1 + η

(
Λ(t)
S(t)

+
ν(t)I(t)

S(t)
+

λ0(t)A(t)
S(t)

− β(t)I(t)− λ(t)M(t)
M(t) + p(t)

− h(t)
)]

−y1(t)
[

η(1− η)

2
(σ11(n) + σ12(n)S(t))2 −

∫
Y
((1 + c1(u))η − 1− ηc1(u))ρdu

]
≤

[
1 + η

(
Λ(t)
S(t)

− β(t)I(t)− λ(t)M(t)
M(t) + p(t)

+
ν(t)I(t)

S(t)
+

λ0(t)A(t)
S(t)

− h(t)
)]

Sη(t)

≤ G1(η),

where G1(η) is a positive definite function associated with η.
Hence, we can reach the following conclusion

E(ety1(t)) ≤ y1(0) +E
∫ t

0
esG1(η)ds,

which reveals that lim supt→∞ E(S(t)η) ≤ G1(η).
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Basing on utilizing the similar arguments, one can find that
lim supt→∞ E(I(t)η) ≤ G2(η),
lim supt→∞ E(A(t)η) ≤ G3(η),
lim supt→∞ E(M(t)η) ≤ G4(η).

Let (χ(t), n) = (S(t), I(t), A(t), M(t), n) ∈ R4
+ ×N, it yields that

2(1−
η
2 )
∧

0 | χ(t) |η≤ Sη(t) + Iη(t) + Aη(t) + Mη(t),

which follows that

lim sup
t→∞

E | χ(t) |η ≤ 0.5(1−
η
2 )
∧

0 lim sup
t→∞

E[Sη(t) + Iη(t) + Aη(t) + Mη(t)]

≤ 0.5(1−
η
2 )
∧

0[G1(η) + G2(η) + G3(η) + G4(η)] := G(η).

For any η ∈ (0, 1), let G(ε) =
(

G(η)
ε

) 1
η , by applying the Chebyshev’s inequality, we

will obtain the following results
P[χ(t) < G(ε)] ≤ G(ε)ηP[χ(t)−η(t)],

lim inft→∞[χ(t) ≤ G(ε)] ≥ 1− ε.

Nextly, based on using Chebyshev’s inequality and similar arguments, one can find a
constant Q(ε) > 0 subject to

lim inf
t→∞

[χ(t) ≥ Q(ε)] ≥ 1− ε.

Taking the above mentioned discussions into consideration, one can draw a conclusion
that there exists a uniform upper bound and a uniform lower bound for the solution of
system (4) with any initial value (S(0), I(0), A(0), M(0), n).

Lemma 2. For every initial value (S(0), I(0), A(0), M(0), n) ∈ R4
+ ×N. When sufficient con-

dition (3) holds, then system (4) exists a unique positive solution (S(t), I(t), A(t), M(t), n) that
remains in R4

+ ×N with probability one.

Proof. First, based on some standard arguments and analysis, it is not difficult to show that
system (4) meets the local Lipschitz conditions. Thus, system (4) exists with a unique local
positive solution on t ∈ [0, τe) most likely for any initial value (S(0), I(0), A(0), M(0), n),
where τe represents the explosion time. For the sake of proving the positive solution is
global, next, we will show that τe = ∞.

Secondly, it is assumed that there exists a sufficiently large integer N∗0 ≥ 0 subject to

(S(0), I(0), A(0), M(0)) all on the interval
[

1
N∗0

, N∗0
]
. For any positive integer n ≥ N∗0 , we

can construct the stopping time as below,

τs = inf
{

t ∈ [0, τe)

∣∣∣∣ min{S(t), I(t), A(t), M(t)} ≤ 1
n , or

max{S(t), I(t), A(t), M(t)} ≥ n

}
.

According to the mathematical properties of τs, it is clear that τe increases as n →
∞. Let τ∞ = limn→∞ τs, and then we can obtain that τ∞ ≤ τe most likely. If τ∞ = ∞
holds most likely, it can be obtained that τe = ∞ most likely holds, which obtains that
(S(t), I(t), A(t), M(t), n) ∈ R4

+ ×N holds for all t ≥ 0.
If τ∞ = ∞ most likely does not hold, then we can find two positive constants Ñ∗0 > 0

and ε < 1 subject to P{τ∞ ≤ Ñ∗0 } ≥ ε. Therefore, we can find a positive integer N1 > Ñ∗0
subject to P{τs ≤ Ñ∗0 } ≥ ε holds for any n > N1.
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By utilizing a C4− function V : R4
+ → R+ ∪ {0} as below,

V(S(t), I(t), A(t), M(t)) = S(t)− a1 − a1 ln
S(t)
a1

+ I(t)− 1− ln I(t)

+A(t)− 1 + ln A(t) + a1(M(t)− 1− ln M(t)),

where a1 = αl+hl

ru+βu .
Based primary on utilizing Itô’s formula, we can find the following results

dV(S(t), I(t), A(t), M(t))

=

(
1− a1

S(t)

)[
Λ(t)− β(t)S(t)I(t)− λ(t)S(t)M(t)

M(t) + p(t)

]
dt

+

(
1− a1

S(t)

)
[ν(t)I(t) + λ0(t)A(t)− h(t)S(t)]dt

+

(
1− 1

I(t)

)
[(β(t)S(t)I(t)− (ν(t) + α(t) + h(t))I(t))]dt

+

(
1− 1

A(t)

)[
λ(t)S(t)

M(t)
M(t) + p(t)

− (λ0(t) + h(t))A(t)
]

dt

+

(
a1 −

a1

M(t)

)[
r(t)

(
1− θ

A(t)
w(t) + A(t)

)
I(t)− r0(t)(M(t)−M0)

]
dt

+

[
a1

2
(σ11(n)S(t) + σ12(n))2 +

1
2
(σ21(n)I(t) + σ22(n))2

]
dt

+

[
1
2
(σ31(n)A(t) + σ32(n))2 +

a1

2
(σ41(n)M(t) + σ42(n))2

]
dt

+

[
a1

∫
Y
(c1(u)− ln(1 + c1(u)))ρdu +

∫
Y
(c2(u)− ln(1 + c2(u)))ρdu

]
dt

+

[∫
Y
(c3(u)− ln(1 + c3(u)))ρdu + a1

∫
Y
(c4(u)− ln(1 + c4(u)))ρdu

]
dt

+(σ11(n)S(t) + σ12(n))(S(t)− a1)dB1(t) + (σ21(n)I(t) + σ22(n))(I(t)− 1)dB2(t)

+(σ31(n)A(t) + σ32(n))(A(t)− 1)dB3(t) + a1(σ41(n)M(t) + σ42(n))(M(t)− 1)dB4(t)

+a1

∫
Y
[c1(u)S(t)− ln(1 + c1(u))]X̃(du, dt) +

∫
Y
[c2(u)I(t)− ln(1 + c2(u))]X̃(du, dt)

+
∫
Y
[c3(u)A(t)− ln(1 + c3(u))]X̃(du, dt) + a1

∫
Y
[c4(u)M(t)− ln(1 + c4(u))]X̃(du, dt)

Furthermore, it follows from simple computations that

dV(S(t), I(t), A(t), M(t))

= LVdt + (σ11(n)S(t) + σ12(n))(S(t)− a1)dB1(t) + (σ21(n)I(t) + σ22(n))(I(t)− 1)dB2(t)

+(σ31(n)A(t) + σ32(n))(A(t)− 1)dB3(t) + a1(σ41(n)S(t) + σ42(n))(M(t)− 1)dB4(t)

+a1

∫
Y
[c1(u)S(t)− ln(1 + c1(u))]X̃(du, dt) +

∫
Y
[c2(u)I(t)− ln(1 + c2(u))]X̃(du, dt)

+
∫
Y
[c3(u)A(t)− ln(1 + c3(u))]X̃(du, dt) + a1

∫
Y
[c4(u)M(t)− ln(1 + c4(u))]X̃(du, dt),

where LV is defined as follows,
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LV = Λ(t)− h(t)S(t)− (α(t) + h(t))I(t)− h(t)A(t) + a1r(t)
(

1− θ(t)
A(t)

ω(t) + A(t)

)
I(t)

+a1

[
r0(t)(M0(t)−M(t))− Λ(t)

S(t)
+ β(t)I(t)

]
+ (a1 − S(t))

λ(t)M(t)
M(t) + p(t)

−a1

[
ν(t)I(t)

S(t)
+ a1

λ0(t)A(t)
S(t)

− a1h(t)
]
− β(t)S(t) + ν(t) + α(t) + h(t)

−a1

[
r(t)I(t)

M(t)
− θ(t)r(t)I(t)

M(t)
A(t)

ω(t) + A(t)
− r0(t) + r0(t)

M0(t)
M(t)

]
+

a1

2
(σ11(n)S(t) + σ12(n))2 +

1
2
(σ21(n)I(t) + σ22(n))2

+
1
2
(σ31(n)A(t) + σ32(n))2 +

a1

2
(σ41(n)M(t) + σ42(n))2

+
∫
Y
(c1(u)− ln(1 + c1(u)))ρdu + a1

∫
Y
(c2(u)− ln(1 + c2(u)))ρdu

+
∫
Y
(c3(u)− ln(1 + c3(u)))ρdu + a1

∫
Y
(c4(u)− ln(1 + c4(u)))ρdu.

When the condition (3) are met, we can obtain the following results based on simple
computations

LV ≤ Λ(t) + [a1(r(t) + β(t))− (α(t) + h(t))]I(t) + a1r0(t)M0(t) + a1λ(t)

+a1(h(t) + r0(t)) + ν(t) + α(t) + 2h(t) + λ0(t) + a1
r(t)θ(t)I(t)A(t)

M(t)(ω(t) + A(t))

+
a1

2
(σ11(n)S(t) + σ12(n))2 +

1
2
(σ21(n)I(t) + σ22(n))2 +

1
2
(σ31(n)A(t) + σ32(n))2

+
a1

2
(σ41(n)M(t) + σ42(n))2 + a1(κ1 + κ4) + κ2 + κ3.

Based on the properties of parametric function and Lemma 1 of this paper, one can
find that

LV ≤ Λu + [a1(ru + βu)− (αl + hl)]I(t) + a1(ru
0 Mu

0 + λu + hu) + νu + αu + hu

+(λ0 + h)u + a1ru
0 + a1

ruθuG2(ε)

Q(ε)(ωl + Q(ε))
+

a1

2
(σ11G(ε) + σ12)

2 +
1
2
(σ21G(ε) + σ22)

2

+
1
2
(σ31G(ε) + σ32)

2 +
a1

2
(σ41G(ε) + σ42)

2 + a1(κ1 + κ4) + κ2 + κ3,

where a1 = αl+hl

ru+βu .
The rest of the discussions resemble those in [16,20]; thus, we omitted them. One can

find that τ∞ = ∞, which means that the solution of (4) will not explosion in a finite time
most likely.

Lemma 3. If a sufficient condition (3) holds, the following properties holds for the positive solution
of (4) with every initial value (S(0), I(0), A(0), M(0), n) ∈ R4

+ ×N,{
lim supt→∞〈S(t)〉 ≤

Λu

hl , lim supt→∞〈I(t)〉 ≤
Λu

αl+hl ,
lim supt→∞〈A(t)〉 ≤ Λu

hl , lim supt→∞〈M(t)〉 ≤ ruΛu

rl
0αl + Mu

0 .
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Proof. Based on the first three formulas of system (4), we can find the results as below

S(t)− S(0)
t

+
I(t)− I(0)

t
+

A(t)− A(0)
t

≤ Λu − hl〈S(t)〉 − (αl + hl)〈I(t)〉 − hl〈A(t)〉

+
1
t

3

∑
i=1

[∫ t

0
(σi1(n) + σi2(n)χi(t))χi(t)dBi(t) +

∫ t

0

∫
Y

ci(u)χi(t−)X̃(du, ds)
]

,

which reveals that

hl〈S(t)〉 ≤ Λu +
S(0) + I(0) + A(0)− S(t)− I(t)− A(t)

t

+
1
t

3

∑
i=1

[∫ t

0
(σi1(n) + σi2(n)χi(t))χi(t)dBi(t) +

∫ t

0

∫
Y

ci(u)χi(t−)X̃(du, ds)
]

.

Hence, it is not difficult to show that

〈S(t)〉 ≤ Λu

hl +
S(0) + I(0) + A(0)− S(t)− I(t)− A(t)

hlt

+
1

hlt

3

∑
i=1

[∫ t

0
(σi1(n) + σi2(n)χi(t))χi(t)dBi(t) +

∫ t

0

∫
Y

ci(u)χi(t−)X̃(du, ds)
]

,

which follows that

〈S(t)〉 ≤ Λu

hl +
S(0) + I(0) + A(0)

hlt
+

3

∑
i=1

(
ψ1i

hlt
+

ψ2i

hlt

)
,

where ψ1i and ψ2i (i = 1, 2, 3) will be defined as follows,{
ψ1i =

∫ t
0 (σi1(n) + σi2(n)χi(t))χi(t)dBi(t),

ψ2i =
∫ t

0

∫
Y ci(u)χi(t−)X̃(du, ds).

By using Lemma 1, Lemma 2 and exponential martingale inequalities, it can be
obtained that

〈ψ1i, ψ1i〉 =
∫ t

0
(σi1(n) + σi2(n)χi(t))2χ2

i (t)ds,

and

lim sup
t→∞

〈ψ1i, ψ1i〉
t

= lim sup
t→∞

1
t

∫ t

0
(σi1(n) + σi2(n)χi(t))2χ2

i (t)ds

≤ (σu
i1 + σu

i2G(ε))2G2(ε)

< ∞,

which follows that

lim sup
t→∞

ψ1i
t

= 0, (5)

holds for i = 1, 2, 3.
Further computations show that

P
{

sup
0≤i≤j

[
ψ2i −

1
2
〈ψ2i, ψ2i〉

]
> 2 ln j

}
≤ 1

j2
. (6)
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It is easy to show that we can find a random integer j0 = j0(ω) holds with almost all
ω ∈ Ω. Hence, it can be concluded that

sup
0≤i≤j

[
ψ2i −

1
2
〈ψ2i, ψ2i〉

]
≤ 2 ln j0 (7)

holds for ω ∈ Ω most likely, which reveals that

ψ2i ≤ 2 ln j0 +
1
2
〈ψ2i, ψ2i〉 (8)

holds for i = 1, 2, 3 and all 0 ≤ t ≤ j0.
Consequently, we have

〈S(t)〉 ≤ Λu

hl +
S(0) + I(0) + A(0)

hlt
+

2 ln j0
hlt

+
3

∑
i=1

ψ1i

hlt

≤ Λu

hl +
S(0) + I(0) + A(0)

hlt
+

2 ln j0
hl(j0 − 1)

+
3

∑
i=1

ψ1i

hlt
.

By taking the superior limit of 〈S(t)〉, for all 0 ≤ t ≤ j0, it yields

lim sup
t→∞

〈S(t)〉 ≤ lim sup
t→∞

Λu

hl + lim sup
t→∞

S(0) + I(0) + A(0)
hlt

+ lim sup
t→∞

2 ln j0
hlt

+ lim sup
t→∞

3

∑
i=1

ψ1i

hlt

≤ lim sup
t→∞

Λu

hl + lim sup
t→∞

S(0) + I(0) + A(0)
hlt

+ lim sup
t→∞

2 ln j0
hl(j0 − 1)

+ lim sup
t→∞

3

∑
i=1

ψ1i

hlt

≤ Λu

hl .

Based on using the similar arguments and discussions mentioned above, one can find

lim sup
t→∞

〈I(t)〉 < Λu

αl + hl , lim sup
t→∞

〈A(t)〉 < Λu

hl , lim sup
t→∞

〈M(t)〉 < ruΛu

rl
0αl

+ Mu
0 ,

and the proofs are omitted here. Hence, we can draw the next conclusions{
lim supt→∞〈S(t)〉 ≤

Λu

hl , lim supt→∞〈I(t)〉 ≤
Λu

αl+hl ,
lim supt→∞〈A(t)〉 ≤ Λu

hl , lim supt→∞〈M(t)〉 ≤ ruΛu

rl
0αl + Mu

0 .

This proof is ending.

Theorem 1. When R1 > 0 and R2 > 0 holds, there exists a nontrival positive T-periodic solution
of system (4), where Ri (i = 1, 2) will be constructed as below: R1 =

〈
β(t)Λ(t)

ν(t)+α(t)+h(t)+ζ2(u)+ 1
2 ∑K

n=1 φnσ2
21(n)
− 2(λ(t)+h(t)+l2(t)Λ(t)+ζ1(u))+∑K

n=1 φnσ2
11(n)

2

〉
,

R2 = h(t)− (σ2
12(n) ∨ σ2

22(n) ∨ σ2
32(n)).

(9)
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and ζi(u), li(t) (i = 1, 2) will be constructed as below,
ζi(u) =

∫
Y(ci(u)− ln(1 + ci(u)))ρdu,

l1(t) =
β(t)Λ(t)

[ν(t)+α(t)+h(t)+ζ1(u)+ 1
2 ∑K

n=1 φnσ2
21(n)]

2 ,

l2(t) =
max{σ11(n)σ12(n),l1(t)σ21(n)σ22(n)}

h(t) .

(10)

Furthermore, ~ω(n) is assumed to be a twice continuously differentiable function that charac-
terizes a Markov process and its Itô’s derivative is defined as follows:

L~ω(n) =
K

∑
n=1,j=1

µnj~ω(n). (11)

Proof. First, we define U1(t) as follows

U1(t) = − ln S(t)− l1(t) ln I(t) + l2(t)(S(t) + I(t) + A(t)) + ~ω(n).

Based primary on utilizing Itô’s formula, we can find the results as below

LU1(t) = −Λ(t) + ν(t)I(t) + λ0(t)A(t)
S(t)

+ β(t)I(t) +
λ(t)M(t)

M(t) + p(t)
+h(t) + l1(t)[−β(t)S(t) + ν(t) + α(t) + h(t)]

+
1
2
[σ11(n) + σ12(n)S(t)]2 +

l1(t)
2

[σ21(n) + σ22(n)I(t)]2

+
∫
Y
(c1(u)− ln(1 + c1(u))ρdu + l1(t)

∫
Y
(c2(u)− ln(1 + c2(u)))ρdu

+
K

∑
n=1,j=1

µnj~ω(n) + l2(t)Λ(t)− l2(t)[h(t)(S(t) + I(t) + A(t))− α(t)I(t)]

≤ −2
√

l1(t)β(t)Λ(t) + l1(t)
(

ν(t) + α(t) + h(t) +
1
2

σ2
21(n) + ζ2(u)

)
+λ(t) + h(t) +

1
2

σ2
11(n) + ζ1(u) + l2(t)[Λ(t)− h(t)(S(t) + I(t))]

+max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n)}(S(t) + I(t)) +
K

∑
n=1,j=1

µnj~ω(n)

+β(t)I(t) + max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t)). (12)

According to irreducibility property of n, for (σ2
11(1), σ2

11(2), . . . , σ2
11(K)), there exists a

functional vector ~ω(n) = (ω(1), ω(2), . . . , ω(K)), and ~ω(n) has been mentioned in (11),

1
2

σ2
11(n) +

K

∑
n=1,j=1

µnj~ω(n) =
1
2

K

∑
n=1

φnσ2
11(n).

By using similar arguments, for (σ2
21(1), σ2

21(2), . . . , σ2
21(K)), we have

1
2

σ2
21(n) +

K

∑
n=1,j=1

µnj~ω(n) =
1
2

K

∑
n=1

φnσ2
21(n),

where n ∈ N and µnj > 0 depicts the rate that switch from state n to state j.
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Based on the above analysis, Rs(t) is constructed as below,

Rs(t) :=
β(t)Λ(t)

ν(t) + α(t) + h(t) + ζ2(u) + 1
2 ∑K

n=1 φnσ2
21(n)

−λ(t)− h(t)− ζ1(u)− l2(t)Λ(t)− 1
2

K

∑
n=1

φnσ2
11(n),

one can obtain the following results

LU1(t) ≤ −Rs(t) + max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))

+max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t)). (13)

In the following part, we construct a T-periodic function as follows,

Φ(t) = −
∫ t

0
(R1 − Rs(τ))dτ,

where R1 = 〈Rs〉T is construct as below

R1 = 〈Rs〉T =

〈
β(t)Λ(t)

ν(t) + α(t) + h(t) + ζ2(u) + 1
2 ∑K

n=1 φnσ2
21(n)

−λ(t)− h(t)− ζ1(u)− l2(t)Λ(t)− 1
2

K

∑
n=1

φnσ2
11(n)

〉
.

Based on some simple computations, we can find the following results

L(U1(t) + Φ(t)) ≤ −R1 + max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))

+max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t)). (14)

Secondly, we define U2(t) as follows

U2(t) = S(t) + I(t) + A(t) +
1

S(t) + I(t) + A(t)
.

By using Itô formula, it yields that

LU2(t) = Λ(t)− h(t)U1(t)− αI(t)− Λ(t)− h(t)(S(t) + I(t) + A(t))− αI(t)
(S(t) + I(t) + A(t))2

+
S2(t)(σ11(n) + σ12(n)S(t))2 + I2(t)(σ21(n) + σ22(n)I(t))2

(S(t) + I(t) + A(t))3

+
A2(t)(σ31(n) + σ32(n)A(t))2

(S(t) + I(t) + A(t))3 +

∫
Y

(
1

cmin(u)
− 1 + cmax(u)

)
ρdu

S(t) + I(t) + A(t)

≤ −
[

h(t)− (σ2
12(n) ∨ σ2

22(n) ∨ σ2
32(n))

][
S(t) + I(t) + A(t) +

1
S(t) + I(t) + A(t)

]

+Λ(t)− Λ(t)
(S(t) + I(t) + A(t))2 +

2h(t) + α(t) +
∫
Y

(
1

cmin(u)
− 1 + cmax(u)

)
ρdu

S(t) + I(t) + A(t)

+(σ2
11(n) ∨ σ2

21(n) ∨ σ2
31(n))

1
S(t) + I(t) + A(t)

+2[σ11(n)σ12(n) ∨ σ21(n)σ22(n) ∨ σ31(n)σ32(n)].
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Hence, one can find the following results

LU2(t) ≤ −R2

[
S(t) + I(t) + A(t) +

1
S(t) + I(t) + A(t)

]
+ W1(t), (15)

where R2 is defined in (9) and{
cmin(u) = min{c1(u), c2(u), c3(u)},
cmax(u) = max{c1(u), c2(u), c3(u)},

(16)

and

W1(t) = Λ(t) +

[
2h(t) + α(t) +

∫
Y

(
1

cmin(u)
− 1 + cmax(u)

)
ρdu

]2

2Λ(t)
+2(σ11(n)σ12(n) ∨ σ21(n)σ22(n) ∨ σ31(n)σ32(n))

+

[
(σ2

11(n) ∨ σ2
21(n) ∨ σ2

31(n))− (σ2
12(n) ∨ σ2

22(n) ∨ σ2
32(n))

]2
2Λ(t)

.

Based on the boundedness of the parametric functions, the following results can be
obtained that

W1(t) ≤W1 = Λu + 2(σu
11σu

12 ∨ σu
21σu

22 ∨ σu
31σu

32)

+

[
2hu + αu +

∫
Y

(
1

cl
min(u)

− 1 + cu
max(u)

)
ρdu

]2

2Λl

+

[
((σ2

11)
u ∨ (σ2

21)
u ∨ (σ2

31)
u)− ((σ2

12)
l ∨ (σ2

22)
l ∨ (σ2

32)
l)
]2

2Λl , (17)

where W1 represents the supreme of W1(t).
Thirdly, for any constant ξ ∈ (0, 1), U3(t) is defined as below,

U3(t) = Σ4
i=1(1 + χi(t))ξ + l3(t)(Σ3

i=1χi(t)),

For the convenience of proof, Fi(t) (i = 1, · · · , 4) are constructed as below,

Fi(t) = −
ξ(1− ξ)(1 + χi(t))ξ χ2

i (t)
2

(σi1(n) ∧ σi2(n))2 −
∫
Y
(1 + χi(t))ξ ρdu.

where χ(t) = (χ1(t), χ2(t), χ3(t), χ4(t)) = (S(t), I(t), A(t), M(t)).
Based on utilizing the simple computations, one can be yield the results as below

LU3(t) ≤ [max{ξνu, ξλu
0 + ξλu, ξru} − l3(t)h(t)](Σ3

i=1χi(t))

+W2(t) + Σ4
i=1Fi(t), (18)

where l3(t) and W2(t) are defined as follows,

l3(t) =
max{ξνu, ξλu

0 + ξλu, ξru}
h(t)

,
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W2(t) = ξΛu + l3(t)Λu − ξ(1 + S(t))ξ−1
[

βlS(t)I(t) + λl S(t)M(t)
M(t) + pu + hlS(t)

]
.

−ξ(1 + I(t))ξ−1(νl + αl + hl)I(t)− ξ(1 + A(t))ξ−1(λl
0 + hl)A(t)

+ξβuS(t)I(t)− ξ(1 + M(t))ξ−1rl
0M(t) + ξru

0 Mu
0

+
4

∑
i=1

∫
Y

[
(1 + ci(u)χi(t) + χi(t))ξ − ξ(1 + χi(t))ξ−1ci(u)χi(t)

]
ρdu.

It is not difficult to show W2(t) is continuous in (0,+∞) and it follows from Lemma 1 that

W2(t) ≤W2 = (ξ + lu
3 )Λ

u − ξ(1 + G(ε))ξ−1
[

βlQ(ε) + λl Q(ε)

G(ε) + pu + hlQ(ε)

]
−ξ(1 + G(ε))ξ−1(νl + αl + λl

0 + rl
0 + 2hl)Q(ε) + ξ(βuG(ε) + ru

0 Mu
0 ) (19)

+
4

∑
i=1

∫
Y

[
(1 + ci(u)G(ε) + G(ε))ξ − ξ(1 + Q(ε))ξ−1ci(u)Q(ε)

]
ρdu,

where W2 represents the supreme of W2(t).
Finally, we define U(t) as follows,

U(t) = Θ(U1(t) + Φ(t)) + U2(t) + U3(t),

where Θ is a sufficient large positive constant such that for χi(t)→ 0+ (i = 1, · · · , 4)

−ΘR1 + W1 + W2 + sup
4

∑
i=1

Fi(t) < −2. (20)

A continuous function U(t) will be defined as below, and there exists a minimum
U(S0, I0, A0, M0, n0) around (S0, I0, A0, M0, n0) when U(t) tends to ∞.

Hence, we formulate a non-negative function as follows,

Ũ(t) = U(S(t), I(t), A(t), M(t), n)−U0(S0, I0, A0, M0, n0).

By using (14), (15) and (18), one can be yielded that

LŨ(t) = LU(S(t), I(t), A(t), M(t), n)−LU(S0, I0, A0, M0, n0)

≤ −ΘR1 + Θ max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))

+Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t))

−
R2[1 + (Σ3

i=1χi(t))2]

Σ3
i=1χi(t)

+ W1 + W2 + Σ4
i=1Fi(t),

where W1 and W2 have been defined in (17) and (19).
When χi(t)→ 0 or χi(t)→ ∞, if R2 > 0, one can find that

−
R2[1 + (Σ3

i=1χi(t))2]

Σ3
i=1χi(t)

→ −∞. (21)

Based on Lemma 1, when χi(t)→ 0, it yields that

Θ max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))

+Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t))

≤ 2Θ max{σ2
12(n), l1(t)σ2

22(n)}G2(ε)

+2Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}G(ε). (22)
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By using (20)–(22), if R1 > 0 hold, when χi(t)→ 0, it gives that

LŨ(t) ≤ −
R2[1 + (Σ3

i=1χi(t))2]

Σ3
i=1χi(t)

−ΘR1 + W1 + W2

+Θ max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t)) + sup Σ4
i=1Fi(t)

+Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t))

≤ −1. (23)

When χi(t)→ ∞ (i = 1, · · · , 4), it is easy to show that

Θ̃→ −∞, (24)

where Θ̃ is constructed as follows,

Θ̃ = Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t))

+Θ max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))−
∫
Y
(1 + χi(t))ξρdu

−
ξ(1− ξ)(1 + χi(t))ξ χ2

i (t)
2

(σi1(n) ∧ σi2(n))2. (25)

Furthermore, if R1 > 0 and R2 > 0 hold, it follows from (21) and (24), it yields that

LŨ(t) ≤ −
R2[1 + (Σ3

i=1χi(t))2]

Σ3
i=1χi(t)

−ΘR1 + W1 + W2

−
ξ(1− ξ)(1 + χi(t))ξχ2

i (t)
2

(σi1(n) ∧ σi2(n))2 −
∫
Y
(1 + χi(t))ξ ρdu

+Θ max{σ11(n)σ12(n), l1(t)σ21(n)σ22(n) + β(t)}(S(t) + I(t))

+Θ max{σ2
12(n), l1(t)σ2

22(n)}(S2(t) + I2(t))

≤ −∞−ΘR1 + W1 + W2 −∞

< −1, (26)

where W1 and W2 have been defined in (17) and (19).
According to Lemma 1 and (26), we can find following results

(i) system (4) exists a unique global solution;
(ii) we can find a T-periodic function Ũ(t) ∈ C1 ×N and LŨ(t) < −1 on the outside of

some compact set.

Hence, sufficient condition (i) and condition (ii) in Theorem 3.8 [40] all hold, which
means that system (4) exists a nontrival positive T-periodic solution.

The proof is ending.

Theorem 2. When R̃s > 0 holds, the solution of system (4) is f -exponentially ergodic, where
R̃s = ∑K

n=1 φnR̃n, and R̃n (n = 1, 2, · · · , K) are defined as follows,

R̃n = βlQ(ε)− (νu + αu + hu)−
(ϑ + 1)(σu

21(n) + σu
22(n)G(ε))2

2

−
∫
Y

[
(1 + c2(u))−ϑ − 1

ϑ
− c2(u)

]
ρdu, (0 < ϑ < 1). (27)

Proof. For the diffusion matrix form of system (4), we have{
Dmin ‖ χ(t) ‖2≤ ∑4

i=1
[
σi1(n)χi(t) + σi2(n)χ2

i (t)
]2

χ2
i (t),

∑4
i=1
[
σi1(n)χi(t) + σi2(n)χ2

i (t)
]2

χ2
i (t) ≤ Dmax ‖ χ(t) ‖2,

(28)
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where Dmin and Dmax are defined as follows, Dmin = min
{

∑4
i=1
[
σi1(n)χi(t) + σi2(n)χ2

i (t)
]2

χ2
i (t)

}
,

Dmax = max
{

∑4
i=1
[
σi1(n)χi(t) + σi2(n)χ2

i (t)
]2

χ2
i (t)

}
.

and χ(t) = (χ1(t), · · · , χ4(t)) = (S(t), I(t), A(t), M(t)).
It follows from (28) that uniform elliptic conditions hold for the diffusion matrix of

system (4). Furthermore, the diffusion of initial value (S(t), I(0), A(0), M(0), n) transition
probability exists a positive smooth density on R4 ×R4 ×R4 ×R4 ×N.

Furthermore, according to Lemma 2 in [41], for the following linear equation,

(R̃1, · · · , R̃K)
T − Γχ(t) = (R̃s, · · · , R̃s)T , (29)

where R̃s = ∑K
n=1 φnR̃n. It follows from simple computations, we can find a unique positive

solution (v1, · · · , vK)
T of Equation (29).

If R̃n > 0 (n = 1, 2, · · · , K) hold, it is easy to show that R̃s = ∑K
n=1 φnR̃n > 0, where

∑K
n=1 φn = 1 and φn > 0 hold for any n ∈ N.

Based on the above analysis, we define U4(t) and U5(t) as follows,{
U4(t) = Σ3

i=1χi(t) + αl

ru M(t),
U5(t) = (1 + ϑvn)I(t)−ϑ.

Based primary on utilizing the Itô formula to system (4), it yields that

LU4(t) = Λu − hl(Σ3
i=1χi(t))− αl I(t)

+
αl

ru

[
ru I(t)

(
1− θl A(t)

ωu + A(t)

)
− rl

0M(t) + ru
0 Mu

0

]
. (30)

and

LU5(t) = ϑ(1 + ϑvn)I(t)−ϑ[ν(t) + α(t) + h(t)− β(t)S(t)]

+
ϑ(1 + ϑvn)I(t)−ϑ(ϑ + 1)(σ21(n) + σ22(n)I(t))2

2

+I(t)−ϑ

{
ϑ ∑

n=1,j=1
µnjvn + (1 + ϑvn)

∫
Y
[(1 + c2(u))−ϑ − 1 + ϑc2(u)]ρdu

}
= ϑI(t)−ϑ(1 + ϑvn)[−β(t)S(t) + ν(t) + α(t) + h(t)]

+ϑI(t)−ϑ(1 + ϑvn)
(ϑ + 1)(σ21(n) + σ22(n)I(t))2

2

+ϑI(t)−ϑ ∑
n=1,j=1

µnjvn +
∫
Y

[
(1 + c2(u))−ϑ − 1

ϑ
+ c2(u)

]
ρdu

= ϑI(t)−ϑ ∑
n=1,j=1

µnjvn − (1 + ϑvn)[β(t)S(t)− (ν(t) + α(t) + h(t)]

−ϑI(t)−ϑ

{
ϑ + 1

2
[σ21(n) + σ22(n)I(t)]2 +

∫
Y

[
(1 + c2(u))−ϑ − 1

ϑ
+ c2(u)

]
ρdu

}
.

If (29) holds, then it is easy to show that ∑n=1,j=1 µnjvn = R̃n − R̃s, which yields that
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LU5(t) = ϑI(t)−ϑ

{
∑

n=1,j=1
µnjvn − (1 + ϑvn)[β(t)S(t)− (ν(t) + α(t) + h(t))]

}

−ϑI(t)−ϑ

{
ϑ + 1

2
[σ21(n) + σ22(n)I(t)]2 +

∫
Y

[
(1 + c2(u))−ϑ − 1

ϑ
+ c2(u)

]
ρdu

}
≤ ϑI(t)−ϑ

{
R̃n − R̃s − (1 + ϑvn)

[
βlQ(ε)− (νu + αu + hu)

]}
+
(ϑ + 1)ϑI(t)−ϑ(1 + ϑvn)

2
[σ21(n) + σ22(n)G(ε)]2

+ϑI(t)−ϑ(1 + ϑvn)
∫
Y

[
(1 + c2(u))−ϑ − 1

ϑ
+ c2(u)

]
ρdu

≤ ϑI(t)−ϑ
[

R̃n − R̃s − (1 + ϑvn)R̃n

]
= ϑI(t)−ϑ[−ϑvnR̃n − R̃s]. (31)

By using (30) and (31), it can be obtained that

L[U4(t) + U5(t)] = L
[

Σ3
i=1χi(t) +

αl

ru M(t) + (1 + ϑvn)I(t)−ϑ

]

≤ −M̃

[
Σ3

i=1χi(t) +
αl

ru M(t) + (1 + ϑvn)I(t)−ϑ

]
+ Λu +

ru
0 αl

ru

= −M̃[U4(t) + U5(t)] + Λu +
ru

0 αl

ru ,

where M̃ = min
{

hl , rl
0, K(Kvn R̃n+R̃s)

1+Kvn

}
(n = 1, 2, · · · , K).

According to Theorem 6.1 in [42] and Theorem 6.3 in [43], all the sufficient conditions
for existence of exponential ergodicity hold.

Hence, based on the above analysis, if R̃s > 0 , the positive solution of system (4) is
f -exponentially ergodic.

The proof is ending.

Remark 2. Let P(t, (χ(t), n), ·) depict the transition probability of (χ(t), n). According to Theo-
rem 2 of this paper, for some positive constant δ ∈ (0, 1), it can be found that (χ(t), n) is considered
to be f -exponentially ergodic if there exists a probability measure π(·) and a finite-valued function
υ(χ(t), n) such that

‖P(t, (χ(t), n), ·)− π(·)‖ ≤ υ(χ(t), n)δt,

holds for all t ≥ 0 and (χ(t), n) ∈ R4
+ ×N.

In the next part, we will concentrate on hybrid dynamic impacts of random perturba-
tions and media coverage on the variations of epidemic transmission.

Theorem 3. For the infected individual I(t) of system (4),

(i) if RI < 1 and RI is defined in (32),

RI =
βuΛu

hl(νl + αl + hl + ζ l
2)

+
σu

2 Λu

(αl + hl)(νl + αl + hl + ζ l
2)

, (32)

then the number of infected individual I(t) of system (4) satisfies

lim
t→∞

I(t) = 0,
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which means infected individual tends to zero exponentially;
(ii) if RE > 0 and RE is defined in (33),

RE =
Λu(βl + hl)

λu + hu + ζu
1 + 1

2 ∑K
n=1 φn(σu

11 + σu
12G(ε))2

−
[

ru
0 Mu

0 + νu + αu + hu +
1
2
(σu

21 + σu
22G(ε))2 + ζu

2

]
, (33)

then the number of infected individual I(t) of system (4) meets

lim inf
t→∞

1
t

∫ t

0
I(s)ds > 0,

which means infected individual will be persistent in the average sense.

Proof. (i) Based on applying Itô’s formula to system (4), we can obtain the results as below

d ln I(t) = [β(t)S(t)− (ν(t) + α(t) + h(t))]dt− (σ21(n) + σ22(n)I(t))2

2
dt

+

[∫
Y
[ln(1 + c2(u))− c2(u)]ρdu

]
dt + (σ21(n) + σ22(n)I(t))dB2(t)

+
∫
Y

ln(1 + c2(u))X̃(dt, du).

Based primary on integrating from 0 to t among both sides of the above equation, the
following results can be yielded

ln I(t)− ln I(0)

=
∫ t

0
[β(s)S(s)− (ν(s) + α(s) + h(s))]ds

−
∫ t

0

(σ21(n) + σ22(n)I(s))2

2
ds +

∫ t

0

[∫
Y
(ln(1 + c2(u))− c2(u))ρdu

]
ds

+
∫ t

0
(σ21(n) + σ22(n)I(s))dB2(t) +

∫ t

0

∫
Y

ln(1 + c2(u))X̃(du, ds).

Further computations show

ln I(t)− ln I(0)
t

≤ βu〈S(t)〉 − (νl + αl + hl)− σ21(n)σ22(n)〈I(t)〉 − ζ l
2

+

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t)

t
+

∫ t
0

∫
Y ln(1 + c2(u))X̃(du, ds)

t

≤ βu Λu

hl + σ̃∗
Λu

(αl + hl)
− (νl + αl + hl)− ζ l

2

+

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t)

t
+

∫ t
0

∫
Y ln(1 + c2(u))X̃(du, ds)

t
, (34)

where σ̃∗ = max{−σ21(n)σ22(n)}.
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By using the mathematical properties of white noise, it is not difficult to show that
σ̃∗ ≥ 0. For

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t), based on Lemma 1 (the boundedness of I(t))

and exponential martingale inequality from Lemma 3 that

lim sup
t→∞

〈∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t),

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t)

〉
t

= lim sup
t→∞

1
t

∫ t

0
[(σ21(n) + σ22(n)I(t))I(t)]2ds

< (σu
21 + σu

22G(ε))2G(ε)2

< ∞. (35)

Hence, it can be concluded that

lim
t→∞

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t)

t
= 0. (36)

Let ψ3(t) =
∫ t

0

∫
Y ln(1 + c2(u))X̃(du, ds), by applying the exponential martingales

inequality, it follows from similar arguments in Lemma 3 that

P
{

sup
0≤i≤j

[
ψ3 −

1
2
〈ψ3, ψ3〉

]
> 2 ln j

}
≤ 1

j2
. (37)

We can easily to find a random integer j∗0 = j∗0 (ω) holds for the almost whole ω ∈ Ω,
and it can be obtained that

sup
0≤i≤j∗0

[
ψ3 −

1
2
〈ψ3, ψ3〉

]
≤ 2 ln j∗0 (38)

holds for ω ∈ Ω most likely.
Hence, it can be obtained that

ψ3 ≤ 2 ln j∗0 +
1
2
〈ψ3, ψ3〉 (39)

holds for all 0 ≤ t ≤ j∗0 .
By taking the superior limit for (34), if RI < 1 holds, then it yields that

lim sup
t→∞

ln I(t)− ln I(0)
t

≤ βu Λu

hl + σ̃∗
Λu

(αl + hl)
− (νl + αl + hl + ζ l

2)

+ lim sup
t→∞

∫ t
0

∫
Y ln(1 + c2(u))X̃(du, ds)

t

+ lim sup
t→∞

∫ t
0 (σ21(n) + σ22(n)I(t))dB2(t)

t
(40)

≤ βu Λu

hl + σ̃∗
Λu

(αl + hl)
− (νl + αl + hl + ζ l

2) + lim sup
t→∞

2 ln j∗0
j∗0 − 1

+ lim sup
t→∞

∫ t
0 (σ21 + σ22(n)I(t))dB2(t)

t
.

holds for all t ≤ j∗0 . By utilizing the above equation, we can find the following results

lim sup
t→∞

ln I(t)− ln I(0)
t

< 0,
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which derives that limt→∞ I(t) = 0.
The proof of (i) of Theorem 3 is ending.
(ii) First, we construct U6(t) as follows,

U6(t) = S(t)− l4 − l4 ln
S(t)

l4
+ I(t)− 1− ln I(t) + A(t) + M(t) + ~ω(n),

where l4 is defined as follows: l4 =
Λu(βl+dl)[

λu+hu+ζu
1+∑K

n=1
φn
2 (σu

11+σu
12G(ε))

2]2 .

Based primary on utilizing Itô’s formula and simple computations, one can find that

LU6(t) ≤ Λu − hlS(t) + ru I(t) + ru
0 Mu

0 − l4

[
Λl

S(t)
− βu − λu − hu

]

−βlS(t) +
1
2

[
l4(σu

11 + σu
21S(t))2 + (σu

21 + σu
22 I(t))2

]
+νu + αu + hu + l4ζu

1 + ζu
2 +

K

∑
n=1,j=1

µnj~ω(n)

≤ −2
√

l4Λu(βl + dl) + l4

[
λu + hu +

1
2
(σu

11 + σu
12G(ε))2 + ζu

1

]
+ru

0 Mu
0 + νu + αu + hu +

1
2
[σu

21 + σu
22G(ε)]2

+(l4βu + ru)I(t) + ζu
2 +

K

∑
n=1,j=1

µnj~ω(n),

which derives that

dU6(t) ≤ − Λu(βl + dl)

λu + hu + ζu
1 + 1

2 ∑K
n=1 φn[σu

11 + σu
12G(ε)]2

+ru
0 Mu

0 + (νu + αu + hu) +
1
2
(σu

21 + σu
22G(ε))2 + ζu

2 + (l1βu + ru)I(t)

+
4

∑
i=1

[
(σi1(n) + σi2(n)χi(t))χi(t)dBi(t) +

∫
Y

ci(u)χi(t−)X̃(du, dt)
]

+l4[σ11(n) + σ12(n)S(t)]dB1(t) + [σ21(n) + σ22(n)I(t)]dB2(t)

+l4
∫
Y

ln(1 + c1(u))X̃(du, dt) +
∫
Y

ln(1 + c2(u))X̃(du, dt),

holds for i = 1, 2, 3, 4.
By integrating both sides of above equation from 0 to t and dividing by t, one can

yields that

U6(t)−U6(0)
t

≤ −RE +
l4βu + ru

t

∫ t

0
I(s)ds

+
4

∑
i=1

[
1
t

∫ t

0
(σi1(n) + σi2(n)χi(t))χi(t)dBi +

1
t

∫ t

0

∫
Y

ci(u)χi(t−)X̃(du, ds)
]

+
l4
t

∫ t

0
(σ11(n) + σ12(n)S(t))dB1 +

1
t

∫ t

0
(σ21(n) + σ22(n)I(t))dB2

+
l4
t

∫ t

0

∫
Y

ln(1 + c1(u))X̃(du, ds) +
1
t

∫ t

0

∫
Y

ln(1 + c2(u))X̃(du, ds), (41)

where RE has been defined in (33).
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Based on similar arguments utilized in Lemma 3 of this paper, it gives that

limt→∞
1
t
∫ t

0 (σi1(n) + σi2(n)χi(t))χi(t)dBi(t) = 0,
limt→∞

1
t
∫ t

0

∫
Y ci(u)χi(t−)X̃(du, ds) = 0,

limt→∞
l4
t
∫ t

0

∫
Y ln(1 + c1(u))X̃(du, ds) = 0,

limt→∞
l4
t
∫ t

0 (σ11(n) + σ12(n)S(t))dB1(t) = 0,
limt→∞

1
t
∫ t

0 (σ21(n) + σ22(n)I(t))dB2(t) = 0,
limt→∞

1
t
∫ t

0

∫
Y ln(1 + c2(u))X̃(du, ds) = 0,

holds for i = 1, 2, 3, 4.
Based on taking the inferior limit on the both sides of (41), if RE > 0 holds, then one

can be obtained that

lim inf
t→∞

1
t

∫ t

0
I(s)ds ≥ RE

l4βu + ru > 0,

which means infected individual is persistent in mean.
This proof of (ii) of Theorem 3 is ending.

3. Numerical Simulations

In this chapter, we will prove the results obtained above through numerical simulation,
which are utilized to show hybrid dynamic impacts of media coverage and nonlinear
perturbations on random dynamics of system (4). The parameter functions utilized in this
section are as follows,

Λ(t) = 5 + 0.5 sin t, β(t) = 3 + 0.3 sin t
λ(t) = 0.12 + 0.05 sin t, λ0(t) = 0.08 + 0.01 sin t,
ν(t) = 0.02 + 0.01 sin t, α(t) = 1× 10−3 + 5× 10−4 sin t,
h(t) = 4× 10−3 + 8× 10−4 sin t, r(t) = 0.006 + 0.003 sin t,
r0(t) = 0.05 + 0.01 sin t, θ(t) = 5× 10−3 + 1× 10−3 sin t,
ω(t) = 0.06 + 0.01 sin t, p(t) = 1.2 + 0.6 sin t,
M0(t) = 5 + 0.02× sin t.

It is assumed that n ∈ N = {1, 2, 3, 4}, Y = {1, 2, 3, 4, 5} and the transition matrix is
given as follows:

Γ =


−1 1 0 0
2 −2 0 0
0 0 −3 3
0 0 4 −4

.

Hence, it follows from simple algebraic computations that (φ1, φ2, φ3, φ4) =
1√
30
(2, 1, 4, 3).

3.1. Numerical Simulation I

It is assumed that σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1 + 0.05 sin n (i = 1, 2, 3, 4),
if c1(u) = 0.5, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05, ϑ = 0.5, then it is easy to
show that R̃1 = 0.0349, R̃2 = −0.0252, R̃3 = 0.0445, R̃4 = −0.0273, which follows that
R̃s = 0.0257 > 0. Based on Theorem 2, one can be concluded that (S(t), I(t), A(t), M(t), n)
of system (4) is f -exponentially ergodic. The dynamical responses S(t), I(t), A(t), M(t) of
system (4) with initial value (0.4, 0.1, 0.05, 5) are plotted in Figure 1a, Figure 1b, Figure 1c,
Figure 1d, respectively, which indicates an exponential convergence.
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Figure 1. If σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1 + 0.05 sin n (i = 1, 2, 3, 4), c1(u) =

0.5, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05, ϑ = 0.5, then it is easy to show that R̃1 =

0.0349, R̃2 = −0.0252, R̃3 = 0.0445, R̃4 = −0.0273, which follows that R̃s = 0.0257 > 0. The
dynamical responses S(t), I(t), A(t), M(t) of system (4) with initial value (0.4, 0.1, 0.05, 5) are
plotted in (a–d), respectively, which indicates an exponential convergence.

If c1(u) = 0.4, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05, ϑ = 0.5, then it is easy to
show that R̃1 = 0.0426, R̃2 = −0.0849, R̃3 = 0.0551, R̃4 = −0.0415, which follows that
R̃s = 0.0176 > 0. Based on Theorem 2, one can be concluded that (S(t), I(t), A(t), M(t), n)
of system (4) is f -exponentially ergodic. The dynamical responses S(t), I(t), A(t), M(t) of
system (4) with initial value (0.35, 0.15, 0.04, 5) are plotted in Figure 2a, Figure 2b, Figure 2c,
Figure 2d, respectively, which indicates an exponential convergence.

Figure 2. If σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1+ 0.05 sin n (i = 1, 2, 3, 4), c1(u) = 0.4, c2(u) =

0.03, c3(u) = 0.02, c4(u) = 0.05, ϑ = 0.5, then it is easy to show that R̃1 = 0.0426, R̃2 = −0.0849, R̃3 =

0.0551, R̃4 = −0.0415, which follows that R̃s = 0.0176 > 0. The dynamical responses S(t), I(t), A(t), M(t)
of system (4) with initial value (0.35, 0.15, 0.04, 5) are plotted in (a–d), respectively, which indicates an
exponential convergence.
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In order to show the dynamic effects of Lévy jumps, values of R̃s are given in Table 1
under four different ci(u) (i = 1, 2, 3, 4), and the detailed values can be found in Table 1.
Furthermore, total variation norms ‖P(t, (χ(t), n), ·)− π(·)‖ are plotted in Figure 3 due to
variations of ci (i = 1, 2, 3, 4) under four different cases.
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Figure 3. Total variation norms ‖P(t, (χ(t), n), ·) − π(·)‖ are plotted due to variations of ci(u)
(i = 1, 2, 3, 4) under four different cases corresponding to Table 1.

Table 1. When σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1 + 0.05 sin n (i = 1, 2, 3, 4), values of R̃s are
given under four different values of ci (i = 1, 2, 3, 4).

Values of ci(u) (i = 1, 2, 3, 4) R̃s

Case I c1(u) = 0.5, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05 0.0257
Case II c1(u) = 0.4, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05 0.0176
Case III c1(u) = 0.3, c2(u) = 0.02, c3(u) = 0.01, c4(u) = 0.03 0.0159
Case IV c1(u) = 0.2, c2(u) = 0.02, c3(u) = 0.01, c4(u) = 0.02 0.0113

3.2. Numerical Simulation II

It is assumed that σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1 + 0.05 sin n (i = 1, 2, 3, 4).
If c1(u) = 0.5, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05 and initial value (0.4, 0.1, 0.05, 5),
then it can be obtained that RI = 0.7143 < 1, which follows from Theorem 3-(i) that
the infected individual I(t) of system (4) tends to zero exponentially. On the other hand,
if c1(u) = 0.5, c2(u) = 0.02, c3(u) = 0.01, c4(u) = 0.03, then it can be obtained that
RE = 0.2683 > 0, which follows from Theorem 3-(ii) that the number of infected individual
I(t) of system (4) is persistent in average sense. Dynamical responses of the number of
infected individual I(t) are shown in Figure 4a and Figure 4b, respectively.

It is assumed that σi1(n) = 0.09 + 0.04 sin n, σi2(n) =
√

0.2 + 0.09 sin n (i = 1, 2, 3, 4).
If c1(u) = 0.04, c2(u) = 0.3, c3(u) = 0.06, c4(u) = 0.03 and initial value (0.35, 0.15, 0.04, 5),
then it can be obtained that RI = 0.8926 < 1, which follows from Theorem 3-(i) that
the number of infected individual I(t) of system (4) tends to zero exponentially. On the
other hand, if c1(u) = 0.4, c2(u) = 0.03, c3(u) = 0.02, c4(u) = 0.05, then it can be obtained
that RE = 0.1972 > 0, which follows from Theorem 3-(ii) that the number of infected
individual I(t) of system (4) is persistent in average sense. Dynamical responses of the
infected individual I(t) are shown in Figure 5a and Figure 5b, respectively.
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Figure 4. If σi1(n) = 0.04 + 0.01 sin n, σi2(n) =
√

0.1 + 0.05 sin n (i = 1, 2, 3, 4), c1(u) = 0.5, c2(u) =
0.03, c3(u) = 0.02, c4(u) = 0.05 and initial value (0.4, 0.1, 0.05, 5), dynamical responses of the infected
individual I(t) are shown in (a,b), respectively. It can be obtained that RI = 0.7143 < 1, which
follows that infectious disease becomes extinct exponentially. In other words, if c1(u) = 0.5, c2(u) =
0.02, c3(u) = 0.01, c4(u) = 0.03, then it can be obtained that RE = 0.2683 > 0, which follows that
infectious disease persists in mean.
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Figure 5. If σi1(n) = 0.09 + 0.04 sin n, σi2(n) =
√

0.2 + 0.09 sin n (i = 1, 2, 3, 4), c1(u) = 0.04, c2(u) =
0.3, c3(u) = 0.06, c4(u) = 0.03 and initial value (0.35, 0.15, 0.04, 5), dynamical responses of the infected
individual I(t) are shown in (a,b), respectively. It can be obtained that RI = 0.8926 < 1, which
follows that infectious disease becomes extinct exponentially. In other words, if c1(u) = 0.4, c2(u) =
0.03, c3(u) = 0.02, c4(u) = 0.05, then it can be obtained that RE = 0.1972 > 0, which follows that
infectious disease persists in mean.

Remark 3. From the above two numerical experiments under two different values of σi1(n), σi2(n)
(i = 1, 2, 3, 4), it reveals that the Gaussian white noises performing on I(t) play sufficiently effective
roles in reducing the spread of infectious disease. For finite state spaces, although the infectious
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disease only persists within one certain state, there still exists opportunity for infectious disease
to persist eventually. Furthermore, Lévy jumps may act double roles in directly controlling the
infectious disease based on the values of ci(u) (i = 1, 2, 3, 4).

Based on the numerical simulations in Figures 1 and 2, the dynamical responses fluctuate with
larger amplitudes under comparatively strong disturbances depicting by Lévy jumps. In the real
world, the strong disturbances usually lead to oscillations in the real world, which highly relevant to
the vivid phenonomena, i.e., contemporary controlled state—recurrence—re-controlled state within
transmission of epidemics.

When the amplitudes of white noises maintain some certain levels, the dynamic changes of
total variation norm due to variations of Lévy jumps are discussed, which are indicated in Table 1
and Figure 3. It reveals that the transmission of infectious disease becomes severe with large
stochastic fluctuations from surrounding environment in the real world. However, it follows from
Figures 4 and 5 that infectious disease may tend to extinction when the stochastic fluctuations from
surrounding environment decrease, and the transmission will be controlled within certain duration.

4. Conclusions

Media coverage, random disturbances and time-varying periodic function parameters
are important disciplines in the modeling and dynamical analysis of infectious disease
transmission. One of the key themes in epidemiology is the study of the stochastic dynamics
of infectious disease system. Current field observations of the public health alerts and
stochastic perturbations in stochastic nonautonomous infectious disease dynamics has
highlighted the necessity of improving related systems that do not consider the joint
dynamic impacts of Lévy jumps and media coverage.

In the last few years, scholars have introduced a media coverage feedback mechanism
in mathematical model formulation to account for the constructive effects of public health
alerts. Stochastic perturbations are usually represented by linear form perturbation of white
noise, and the influences of linear noises perturbations on nonautonomous epidemic models
were studied in [13–17]. However, in order to accurately depict some stochastic phenomena
arising from infectious disease transmission in the real world, it is more constructive to
introduce nonlinear noise perturbations into nonautonomous epidemic model.

Furthermore, stochastic models have been established to discuss the prevalence mech-
anism of infectious disease [23–31] without Lévy jumps. A SIS infectious disease model
with regime-switching and driven by Lévy jumps was investigated in [32], while combined
dynamic impacts of media coverage and Lévy jumps on random dynamics of infectious
disease system are rarely reported.

Hybrid dynamic effects of media coverage and stochastic perturbations in the thresh-
old dynamics of random epidemic system have been investigated in [33–36], while Lévy
jumps and periodic function parameters were not considered in [33–36]. The dynamic
behavior of infectious disease systems in [37–39] were investigated under nonlinear noise
perturbations and Lévy jumps, while all parameters were assumed to be constant values
in [37–39], periodicity factors during transmission within the infectious disease regimes
were not considered.

Although the stochastic infectious disease model and its dynamic analysis have at-
tracted wide attention, as far as the authors know, the hybrid dynamic impacts of Lévy
jumps and media coverage on random dynamics of the nonautonomous SIAM epidemic
model with Markov chain and nonlinear noise perturbations have not been reported in
previous related studies.

In order to depict the impact of public health alerts and stochastic dynamics of nonau-
tonomous SIAM epidemic model, we extend the work done in [12] by incorporating Lévy
jumps, nonlinear noise perturbations and periodic function parameters into the epidemic
model. The existence of a stochastically ultimate upper bound and a uniform lower bound
of a positive solution of the proposed SIAM epidemic model was studied in Lemma 1.

The existence and uniqueness of globally positive solution to the proposed SIAM
epidemic model was studied in Lemma 2. Based on defining certain fitted stochastic
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Lyapunov functions, sufficient conditions for existence of a nontrival positive T-periodic
solution were discussed in Theorem 1. By verifying a Foster–Lyapunov condition, some
sufficient conditions for the exponential ergodicity were investigated in Theorem 2. Fur-
thermore, several conditions were derived in Theorem 3, which were utilized to discuss the
persistence in an average sense and the extinction of the epidemic system.

Finally, numerical simulations were provided to support the theoretical findings. The
main analytical findings are theoretically beneficial to reveal the transmission mechanism of
infectious disease under a stochastic surrounding environment. Furthermore, by utilizing
the findings associated with the elimination mechanism of infectious disease, it is also
constructive for agencies to formulate policies and measures to control the spread of
infectious disease.
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