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Abstract: Fractional q-calculus plays an extremely important role in mathematics and physics. In
this paper, we aim to investigate the existence of triple-positive solutions for nonlinear singular
fractional q-difference equation boundary value problems at resonance by means of the fixed-point
index theorem and the q-Laplace transform, where the nonlinearity f (t, u, v) permits singularities at
t = 0, 1 and u = v = 0. The obtained theorem is well illustrated with the aid of an example.
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1. Introduction

Quantum calculus (or q-calculus) is calculus without limits, which was initially defined
by Jackson [1], and has demonstrated applications in a variety of subjects such as quantum
mechanics, hypergeometric series, particle physics and complex analysis (see [2–4]). In
the development of q-calculus, fractional q-calculus was first proposed by Al-Salam and
Agarwal in the 1960s (see [5,6]). Fractional q-calculus is widely used in physics, mathematics
and other fields. It is well known that many practical problems can be reduced to fractional
q-difference equations. In recent years, the solvability of boundary value problems (BVPs)
for fractional q-difference equations has attracted much attention as a new research direction
(see [7–11] and the references therein).

As is well known, fractional calculus has the characteristics of time memory and long
distance spatial correlation. It is better than integer calculus at describing the properties
of a polymer. It can also reflect the properties of viscoelastic materials with elastic solids
and viscous fluids. In particular, it can describe the viscoelastic medium damping in the
forced vibration equation well. To the best of our knowledge, the discussion of resonant
problems is indispensable in the theoretical study of vibration equation, and many scholars
have explored the resonant fractional BVPs by using various methods and techniques
(see [12–16] and the references therein). Recently, in [17], Wang and Liu found the existence
and uniqueness of positive solutions for a class of non-local fractional 3-point BVPs at
resonance by means of the fixed-point index theory and iterative technique. In [18], Wang
and Wang studied the existence of three positive solutions to a class of resonant fractional
BVPs by using the fixed-point index theorem in a cone. In [19], Feng and Bai studied a class
of nonlinear Caputo fractional differential equation BVPs at resonance in Rn and gave the
sufficient conditions for the existence of solutions in different kernel spaces by using the
Mawhin coincidence degree theorem.

It is worth noting that although there have been many rich results on the solution of
the non-resonant fractional q-difference equation BVPs, limited work has been performed
on the nonlinear q-difference equations at resonance. To fill this gap, we establish the
existence of triple-positive solutions for a fractional q-difference equation BVP at resonance:
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
Dβ

q u(t) + f
(

t, u(t), Dα
q u(t)

)
= 0, t ∈ J,

u(0) = Dqu(0) = 0, Dα
q u(1) =

m

∑
i=1

σiDα
q u(ηi),

(1)

where J := (0, 1), q ∈ J, 2 ≤ β < 3, 0 < α < β− 2, σi > 0, 0 < η1 < · · · < ηm < 1 and

∑m
i=1 σiη

β−α−1
i = 1, Dβ

q is the fractional q-derivative of the Riemann–Liouville type and of
the order β. The nonlinearity f (t, u, v) permits singularities at t = 0, 1 and u = v = 0. It is
clear that λ = 0 and ctβ−1 solve the fractional q-difference equation Dβ

q u(t) + λu(t) = 0
with the boundary conditions in Equation (1), and thus, the fractional q-difference equation
BVP in Equation (1) is resonant.

Inspired by the work mentioned above, we are concerned in this paper with the
existence of triple-positive solutions for the nonlinear singular fractional q-difference
equation BVP at resonance in Equation (1) via the fixed-point index theorem and a q-Laplace
transform. This paper is organized as follows. In Section 2, we give some definitions and
lemmas which are used to prove the main theorem of this paper. In Section 3, the main
theorem is established and proved. In Section 4, an example is given to demonstrate the
validity of the results.

2. Preliminary Results

To begin with, we recall some necessary definitions and results of fractional q-calculus.

Definition 1 ([20]). The Mittag-Leffler function is defined by

eα,β(z; q) =
∞

∑
n=0

zn

Γq(nα + β)
(|z(1− q)α| < 1).

Definition 2 ([6]). Let α ≥ 0 and f be a function defined on [0, 1]. The fractional q-integral of the
Riemann–Liouville type is (I0

q f )(x) = f (x), and

(Iα
q f )(x) =

1
Γq(α)

∫ x

0
(x− qt)(α−1) f (t)dqt, α > 0, x ∈ [0, 1].

Definition 3 ([6]). The fractional q-derivative of the Riemann–Liouville type of β ≥ 0 is defined by

(Dβ
q f )(s) = (Dl

q Il−β
q f )(s), β > 0, s ∈ [0, 1],

where l is the smallest integer greater than or equal to β.

Next, we introduce the q-Laplace transform of the Riemann–Liouville fractional q-
derivative and solve the fractional q-difference equation using the q-Laplace transform.

Lemma 1 ([20]). If n− 1 < α ≤ n and In−α
q f (x) ∈ C(n)

q [0, a], then the q-Laplace transform of
the fractional q-derivative is given by

qLsDα
q f (x) = pαF(s)−

n

∑
m=1

Dα−m
q f (0+)

pm−1

1− q
,

where p =
s

1− q
.

Lemma 2 ([20]). Let α, β, a ∈ R+ and k ∈ N. Then, the identity

qLs(tkα+β−1e(k)α,β(±atα; q)) =
pα−β

1− q
· k!
(pα ∓ a)k+1 , |p|α > a
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is valid in the disk {t ∈ C : a|t(1− q)|α < 1}.

Lemma 3. For n− 1 < α ≤ n, the general solution to Dα
q f (t)− a f (t) = h(t) is

f (t) =
∫ t

0
G(t− qτ, α, α)h(τ)dqτ +

n

∑
m=1

Dα−m
q f (0+)Dm−1

q G(t, α, α),

where

G(t, α, β) = tβ−1eα,β(atα; q), Dm−1
q G(t, α, β) = tβ−meα,β−m+1(atα; q).

Proof. By combining Lemma 1 and the q-Laplace transform of both sides of this equation,
we obtain

pαF(s)−
n

∑
m=1

Dα−m
q f (0+)

pm−1

1− q
− aF(s) = H(s).

Thus, we have

F(s) =
H(s)

pα − a
+

∑n
m=1 Dα−m

q f (0+)
pm−1

1− q
pα − a

.

Then, let

C(s) = qLsc(t) =
1

pα − a
, Z(s) = qLsz(t) =

∑n
m=1 Dα−m

q y(0+)
pm−1

1− q
pα − a

.

Hence, F(s) = C(s) · H(s) + Z(s).
From Lemma 2, we can obtain

c(t) = (1− q)G(t, α, α), z(t) =
n

∑
m=1

Dα−m
q f (0+)Dm−1

q G(t, α, α).

According to the convolution theorem (see [20]) and the inverse of the q-Laplace
transform, we obtain

qL−1
s (C(s) · H(s)) = c(t) ∗ h(t) =

1
1− q

∫ t

0
h(τ)c(t− qτ)dqτ.

Consequently, we obtain

f (t) =
1

1− q

∫ t

0
h(τ)c(t− qτ)dqτ + ∑n

m=1 Dα−m
q f (0+)Dm−1

q G(t, α, α)

=
∫ t

0
G(t− qτ, α, α)h(τ)dqτ + ∑n

m=1 Dα−m
q f (0+)Dm−1

q G(t, α, α).

The proof is completed.

Denote an increasing function

g(t) =
+∞

∑
j=0

tj[(j + 1)(β− α)− 2]q[(j + 1)(β− α)− 3]q
Γq((j + 1)(β− α))

, t > 0.



Fractal Fract. 2022, 6, 689 4 of 10

It is easy to know that g(t) is well-defined and continuous on [0,+∞). By a simple
calculation, we have Dqg(t) > 0 on (0,+∞), and

g(0) =
[α− β− 2]q[α− β− 3]q

Γq(α− β)
< 0, lim

t→+∞
g(t) = +∞.

Therefore, there exists a unique positive root a∗ > 0; that is, g(a∗) = 0. Thus, we
obtain the following lemma.

Lemma 4. Let u(t) = Iα
q v(t). Then, the fractional q-BVP in Equation (1) is equivalent to

−Dβ−α
q v(t) + av(t) = f (t, Iα

q v(t), v(t)) + av(t), t ∈ J,

Iα
q v(0) = D1−α

q v(0) = 0, v(1) =
m

∑
i=1

σiv(ηi),
(2)

where 2 < β− α < 3 and a ∈ (0, a∗) is a constant.

Proof. From Definition 3 and u(t) = Iα
q v(t), we obtain

Dβ
q u(t) = Dβ−α

q v(t), Dqu(t) = D1−α
q v(t), Dα

q u(t) = v(t).

Then, Equation (1) is equivalent to
Dβ−α

q v(t) + f (t, Iα
q v(t), v(t)) = 0, t ∈ J,

Iα
q v(0) = D1−α

q v(0) = 0, v(1) =
m

∑
i=1

σiv(ηi).
(3)

Obviously, Equation (3) is equivalent to Equation (2). Therefore, Equation (1) is
equivalent to Equation (2).

Lemma 5. Let h ∈ L1
q[0, 1]. Then, the linear fractional q-BVP
−Dβ−α

q v(t) + av(t) = h(t), t ∈ J,

Iα
q v(0) = D1−α

q v(0) = 0, v(1) =
m

∑
i=1

σiv(ηi),
(4)

has a unique solution

v(t) =
∫ 1

0
W(t, qs)h(s)dqs,

where

W(t, qs) = U(t, qs) + ∑m
i=1 σiU(ηi, qs)G(t)

G(1)−∑m
i=1 σiG(ηi)

,

G(t) = G(t, β− α, β− α),

U(t, qs) =
1

G(1)

{
G(t)G(1− qs), 0 ≤ t ≤ qs ≤ 1,
G(t)G(1− qs)− G(1)G(t− qs), 0 ≤ qs ≤ t ≤ 1.

Proof. According to Lemma 3, we know that the solution to Equation (4) can be ex-
pressed by

v(t) = −
∫ t

0
G(t− qs)h(s)dqs + c1G(t) + c2DqG(t) + c3D2

q G(t),
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where c1, c2 and c3 are some constants to be determined. By Iα
q v(0) = D1−α

q v(0) = 0, there
is c3 = c2 = 0. Then, we obtain

v(t) = −
∫ t

0
G(t− qs)h(s)dqs + c1G(t).

By the boundary value condition v(1) =
m

∑
i=1

σiv(ηi), we obtain

c1 =

∫ 1
0 G(1− qs)h(s)dqs−∑m

i=1 σi

∫ ηi

0
G(ηi − qs)h(s)dqs

G(1)−∑m
i=1 σiG(ηi)

.

Therefore, the solution to Equation (4) is

v(t) = −
∫ t

0
G(t− qs)h(s)dqs +

∫ 1
0 G(1− qs)h(s)dqs−∑m

i=1 σi

∫ ηi

0
G(ηi − qs)h(s)dqs

G(1)−∑m
i=1 σiG(ηi)

G(t)

=

∫ 1
0 G(t)G(1− qs)h(s)dqs−

∫ t
0 G(1)G(t− qs)h(s)dqs

G(1)
−
∫ 1

0 G(1− qs)h(s)dqs
G(1)

G(t)

+

∫ 1
0 G(1− qs)h(s)dqs−∑m

i=1 σi

∫ ηi

0
G(ηi − qs)h(s)dqs

G(1)−∑m
i=1 σiG(ηi)

G(t)

=
∫ 1

0
U(t, qs)h(s)dqs +

∑m
i=1 σi

∫ 1

0
U(ηi, qs)h(s)dqs

G(1)−∑m
i=1 σiG(ηi)

G(t)

=
∫ 1

0
W(t, qs)h(s)dqs.

The proof is completed.

Lemma 6. The function U(t, qs) has the following properties:
(1) U(t, qs) ≥ τ1(qs)(1− qs)(β−α−1)(1− t)tβ−α−1, ∀t, qs ∈ J̄ = [0, 1];
(2) U(t, qs) ≤ τ2(qs)(1− qs)(β−α−1), ∀t, qs ∈ J̄,

where

τ1 =
1

G(1)[Γq(β− α)]2
, τ2 =

[DqG(1)]2

G(1)
.

Proof. The proof is similar to Theorem 3.1 in [21].

Lemma 7. The function W(t, qs) has the following properties:
(1) W(t, qs) ≥ ρ1(qs)(1− qs)(β−α−1)tβ−α−1, ∀t, qs ∈ J̄;
(2) W(t, qs) ≤ ρ2(qs)(1− qs)(β−α−1), ∀t, qs ∈ J̄,

where

ρ1 =
τ1(1−∑m

i=1 σiη
β−α
i )

Γq(β− α)[G(1)−∑m
i=1 σiG(ηi)]

, ρ2 = τ2[1 +
G(1)∑m

i=1 σi

G(1)−∑m
i=1 σiG(ηi)

].

Proof. The proof is similar to Lemma 2.3 in [18].

Finally, we give the fixed-point index theorems, which are the key tools for our main
results.

Lemma 8 ([22]). Let P be a cone in a Banach space E, Ω be a bounded open set in E and θ be the
zero element of Ω. A : Ω ∩ P→ P is a completely continuous operator:
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(1) If ∃x0 ∈ P \ {θ} such that x − Ax 6= λx0, ∀λ ≥ 0, x ∈ ∂Ω ∩ P, then i(A, Ω ∩
P, P) = 0;

(2) If Ax 6= λx, ∀λ ≥ 1, x ∈ ∂Ω ∩ P, then i(A, Ω ∩ P, P) = 1.

Lemma 9 ([23]). Let A : Pk3 → P be a completely continuous operator. If there exist a concave
positive functional ω with ω(x) ≤ ‖x‖ (x ∈ P) and numbers k3 ≥ k2 > k1 > 0 satisfying the
following conditions:

(1)
◦
P (ω, k1, k2) 6= ∅, and ω(Ax) > k1 if x ∈ P(ω, k1, k2);

(2) Ax ∈ Pk3 if x ∈ P(ω, k1, k3);
(3) ω(Ax) > k1 for all x ∈ P(ω, k1, k3) with ‖Ax‖ > k2.

Then, i(A,
◦
P (ω, k1, k3), Pk3) = 1.

3. Existence Theorem of Positive Solutions

Let the Banach space E = C( J̄) with the norm ‖u‖ = max0≤t≤1|u(t)|. Define a cone

P = {u ∈ E : u(t) ≥ Λ2(t)‖u‖, t ∈ J̄}.

Set b ∈ J, denote Λ∗ = mint∈[b,1] Λ2(t) and ω(u) = mint∈[b,1] u(t), u ∈ P. ∀k∗ ≥ k > 0,

and let P(ω, k, k∗) = {u ∈ P : k ≤ ω(u), ‖u‖ ≤ k∗},
◦
P (ω, k, k∗) = {u ∈ P : k <

ω(u), ‖u‖ ≤ k∗} and Pk = {u ∈ P : ‖u‖ < k}. Define the height functions such that

ψ0(t, k, k∗) = max
{

f (t, u, v) + av : kΛ1(t) ≤ u ≤ k∗tα

Γq(α + 1)
, kΛ2(t) ≤ v ≤ k∗

}
,

ψ1(t, k) = min
{

f (t, u, v) : kΛ1(t) ≤ u ≤ ktα

Γq(α + 1)
, kΛ2(t) ≤ v ≤ k

}
,

ψ2(t, k, k∗) = min
{

f (t, u, v) + av :
ktα

Γq(α + 1)
≤ u ≤ k∗tα

Γq(α + 1)
, k ≤ v ≤ k∗

}
,

where Λ1(t) =
ρ1Γq(β−α)

ρ2Γq(β)
tβ−1 and Λ2(t) =

ρ1
ρ2

tβ−α−1.

Theorem 1. Suppose that there exist numbers k1, k2, k3, k4 and k5 with 0 < k1 < k2 < k3 <
k4 ≤ k5 and k3 ≤ k4Λ∗ such that the following are true:

(H1) f is continuous, and (0, 1)× (0, k5
Γq(α+1) )× (0, k5) with f (t, u, v) + av ≥ 0.

(H2) ψ0(t, k1, k5) ∈ L1
q[0, 1].

(H3) ψ1(t, k1) ≥ 0.
(H4)

∫ 1
0 ψ0(s, k2, k2)(qs)(1− qs)(β−α−1)dqs < k2ρ−1

2 .
(H5)

∫ 1
b ψ2(s, k3, k4)(qs)(1− qs)(β−α−1)dqs > k3[Λ∗ρ2]

−1.
(H6)

∫ 1
0 ψ0(s, k3, k5)(qs)(1− qs)(β−α−1)dqs ≤ k5ρ−1

2 .
Then, the resonant fractional q-difference equation BVP in Equation (1) has at least three

positive solutions.

Proof. Set

Tv(t) =
∫ 1

0
W(t, qs)v(s)dqs, Av(t) =

∫ 1

0
W(t, qs)

[
f
(

s, Iα
q v(s), v(s)

)
+ av(s)

]
dqs.

Clearly, T : P → P is a completely continuous linear operator. By Lemma 2.3 in [24],
we know the first eigenvalue of T is λ1 = a, and ϕ(t) = tβ−α−1 is a corresponding
eigenfunction; that is, aTϕ = ϕ. For any v ∈ Pk5\Pk1 , we have k1Λ2(t) ≤ v(t) ≤ k5

and k1Λ1(t) ≤ Iα
q v(t) ≤ k5tα

Γq(α+1) . Combining (H1) and (H2), we have A : Pk5\Pk1 → P
being completely continuous. (The proof is similar to Lemma 2.6 in [25]). By applying the
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extension theorem of a completely continuous operator, A can be extended to a completely
continuous operator Ã : P→ P. For simplicity, write Ã as A.

Next, we will prove A has two fixed points on
◦
P (ω, k3, k5) and Pk5\(

◦
P (ω, k3, k5) ∪ Pk2).

(1) It is easy to show that
◦
P (ω, k3, k4) 6= ∅. For any v ∈ P(ω, k3, k4), we have

k3 ≤ v(t) ≤ k4 and k3tα

Γq(α+1) ≤ Iα
q v(t) ≤ k4tα

Γq(α+1) for t ∈ [b, 1]. By Lemma 7 and (H5),
we have

ω(Av) = min
t∈[b,1]

Av(t)

≥ min
t∈[b,1]

ρ1tβ−α−1
∫ 1

0
(qs)(1− qs)(β−α−1)[ f

(
s, Iα

q v(s), v(s)
)
+ av(s)]dqs

≥ Λ∗ρ2

∫ 1

a
(qs)(1− qs)(β−α−1)ψ2(s, k3, k4)dqs > k3.

(2) For any v ∈ P(ω, k3, k5), we have k3Λ2(t) ≤ v(t) ≤ k5 and k3Λ1(t) ≤ Iα
q v(t) ≤

k5tα

Γq(α+1) for t ∈ J̄. By Lemma 7 and (H6), we have

Av ≤ ρ2

∫ 1

0
(qs)(1− qs)(β−α−1)ψ0(s, k3, k5)dqs ≤ k5.

Therefore, Av ∈ Pk5 .
(3) For any v ∈ P(ω, k3, k5) with ‖Av‖ > k4, we have

ω(Av) = min
t∈[b,1]

(Av)(t) ≥ min
t∈[b,1]

Λ2(t)‖Av‖ = Λ∗‖Av‖ > Λ∗k4 ≥ k3.

It follows from Lemma 9 that

i(A,
◦
P (ω, k3, k5), Pk5) = 1. (5)

For v ∈ ∂Pk2 , we have k2Λ2(t) ≤ v(t) ≤ k2 and k2Λ1(t) ≤ Iα
q v(t) ≤ k2tα

Γq(α+1) . By

Lemma 7 and (H4), we have

Av(t) ≤ ρ2

∫ 1

0
(qs)(1− qs)(β−α−1)ψ0(s, k2, k2)dqs < k2,

which implies that Av 6= λv, ∀λ ≥ 1. Then, it follows from Lemma 8 that

i(A, Pk2 , P) = 1. (6)

Similarly, for v ∈ ∂Pk5 , by Lemma 7 and (H6), we obtain

Av(t) ≤ ρ2

∫ 1

0
(qs)(1− qs)(β−α−1)ψ0(s, k3, k5)dqs < k5.

Then, we obtain
i(A, Pk5 , P) = 1. (7)

It follows from Equations (5)–(7) that

i(A, Pk5\(
◦
P (ω, k3, k5)) ∪ Pk2 , Pk5) = −1. (8)

Equations (5) and (8) yield that A has two fixed points v1 ∈
◦
P (ω, k3, k5) and v2 ∈

Pk5\(
◦
P (ω, k3, k5) ∪ Pk2).
Finally, we need to show that A has another positive fixed point on Pk2\Pk1 .
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Suppose there exist λ2 > 0 and v1 ∈ ∂Pk1 such that

v1 − Av1 = λ2 ϕ.

Then, v1 ≥ λ2 ϕ. By having λ∗ = sup{λ : v1 ≥ λϕ}, we can obtain v1 ≥ λ∗ϕ.
According to (H3), we have

Av1(t) =
∫ 1

0
W(t, qs)

[
f
(

s, Iα
q v1(s), v1(s)

)
+ av1(s)

]
dqs ≥ a

∫ 1

0
W(t, qs)v1(s)dqs = aTv1.

Therefore, we obtain

v1 = Av1 + λ2 ϕ ≥ aTv1 + λ2 ϕ ≥ aT(λ∗ϕ) + λ2 ϕ = (λ∗ + λ2)ϕ.

This is a contradiction to the definition of λ∗. Therefore, condition (1) of Lemma 8 is
satisfied, and we have

i(A, Pk1 , P) = 0. (9)

Therefore, by Equations (6) and (9), we find that A has a fixed point v3 ∈ Pk2\Pk1 .
Clearly, Iα

q vi(t), i = 1, 2, 3 are three positive solutions to Equation (1). The proof is
completed.

4. Application

Consider the resonant fractional q-difference equation BVP{
D2.6

q u(t) + f (t, u(t), D0.1
q u(t)) = 0, t ∈ J,

u(0) = Dqu(0) = 0, D0.1
q u(1) = 0.8−1.5D0.1

q u(0.8),
(10)

where q = 0.5, β = 2.6, α = 0.1 and

f (t, u, v) =



t6u−0.5

300
+

v−0.5

380
+

(1− t)6v−0.5

300
− v

5
, (t, u, v) ∈ J × (0,+∞)× (0, 1],

(1− t)6

300
+

t6u−0.5

300
+

v6

380
− v

5
, (t, u, v) ∈ J × (0,+∞)× (1, 5],

(1− t)6

300
+

t6u−0.5

300
+

v0.5 + 56 −
√

5
380

− v
5

, (t, u, v) ∈ J × (0,+∞)× (5,+∞).

From

g(t) =
+∞

∑
j=0

tj[2.5(j + 1)− 2]q[2.5(j + 1)− 3]q
Γq(2.5(j + 1))

,

with the help of a MATLAB calculation, we find the function image of g(t) (see Figure 1).
As shown in Figure 1, we obtain a∗ ∈ (0.2, 0.3). Let a = 0.2 and b = 0.8.

By simple calculations, we get G(1) = 0.8821, DqG(1) = 1.1652, τ1 = 0.7997, τ2 =
1.5392, ρ1 = 7.2864, ρ2 = 104.4550, Λ1(t) = 0.0669t1.6, Λ2(t) = 0.0698t1.5, Λ∗ = 0.05 and
Λ∗ρ2 = 5.2175.

Choose k1 = 0.05, k2 = 1, k3 = 5, k4 = 100 and k5 = 717. It is easy to find that (H1),
(H2) and (H3) hold. By direct calculations, we have

ρ2

∫ 1

0
ψ0(s, k2, k2)(qs)(1− qs)(1.5)dqs ≈ 0.4322,

Λ∗ρ2

∫ 1

0.8
ψ2(s, k3, k4)(qs)(1− qs)(1.5)dqs > Λ∗ρ2

∫ 1

0.8

k6
3

380
(qs)(1− qs)(1.5)dqs ≈ 8.7001,

and
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ρ2

∫ 1

0
ψ0(s, k3, k5)(qs)(1− qs)(1.5)dqs

<ρ2

∫ 1

0
[k3Λ2(s)]

−0.5
[

1
380

+
(1− s)6

300
√

s

]
(qs)(1− qs)(1.5)dqs

+ ρ2

∫ 1

0

[
s6(k3Λ1(s))

−0.5

300
+

(1− s)6

300
√

s
+

k0.5
5 + 56 −

√
5

380

]
(qs)(1− qs)(1.5)dqs

≈716.7175.

As shown above, (H4), (H5) and (H6) hold. Therefore, according to Theorem 1, we
have at least three positive solutions to the resonant fractional q-difference equation BVP in
Equation (10).

Figure 1. Graph of equation g(t).

5. Conclusions

Resonance problems play an important role in the study of vibration theory. However,
there is little research on q-difference equation BVPs at resonance. In this article, we ob-
tained the existence results of triple-positive solutions for a class of fractional q-difference
equation BVPs at resonance by applying the fixed-point index theorem in a cone and a
q-Laplace transform, which enriched the theories for q-difference equation resonance prob-
lems. Obviously, when the limit q→ 1−, the equation in our paper reduced to the equation
in the literature [18]. In the future, we will study the integral resonance problems and the
impulse resonance problems on the infinite interval, develop the numerical simulation of
the fractional q-difference equation resonance problems and explore the application of the
fractional q-difference equation resonance problems.
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