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Abstract: Deformable image registration is a very important topic in the field of image processing. It
is widely used in image fusion and shape analysis. Generally speaking, image registration models
can be divided into two categories: smooth registration and non-smooth registration. During the last
decades, many smooth registration models (i.e., diffeomorphic registration) were proposed. However,
image with strong noise may lead to discontinuous deformation, which cannot be modelled by
smooth registration. To simulate this kind of deformation, some non-smooth registration models
were also proposed. However, numerical algorithms for these models are easily trapped into a local
minimum because of the nonconvexity of the object functional. To overcome the local minimum of
the object functional, we propose a multiscale approach for a non-smooth registration model: the
bounded deformation (BD) model. The convergence of the approach is shown, and numerical tests
are also performed to show the good performance of the proposed multiscale approach.

Keywords: deformable image registration; bounded deformation function; multiscale approach

1. Introduction

Image registration refers to the matching of coordinates of different images, which are
obtained in different time periods or by different imaging techniques. As one of the most
challenging tasks in image processing, image registration has been widely used in remote
sensing data analysis, computer vision, medical imaging, and other fields [1–8]. Many
image registration models have been proposed during recent decades, for example, the
Demons model [9] , vectorial total variation model (VTV model) [10], and fractional-order
model [11]. For more details, one can refer to [12]. Mathematically, image registration is
stated in the following way. Suppose that Ω ⊂ R2 is an open bounded set and T, D : Ω→ R
are two real functions defined on Ω. In image registration, T and D are viewed as two
images, the source image and target image, respectively. The goal of registration is to find a
geometric deformation h : Ω→ Ω such that the deformed image T ◦ h(·) looks like D(·)
as much as possible. Concerning the problem of how to characterize the similarity between
T ◦ h(·) and D(·), many metrics are proposed, such as the normalized cross correlation
(NCC) [13,14], the normalized mutual information (NMI) [14], and the sum of squared
distance (SSD) [15]. We mainly focus on mono-modality image registration. Therefore, SSD
is used in this paper. That is, we aim to find the minimum of the SSD, which is defined by∫

Ω
[T(h(x))− D(x)]2dx. (1)

where x = (x1, x2) and in small deformable image registration, h(x) is approximately
divided into trivial identity part x and displacement part u(x) = (u1(x), u2(x)), i.e.,
h(x) , x + u(x). With these notations, the variational framework of image registration is
formulated as:

u = arg min
u∈K

S(u), (2)

where, in here and in what follows, S(u) =
∫

Ω[T(x + u(x))− D(x)]2dx, K is an admissible
solution set.
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Equation (2) is ill-posed [16,17]. A common way to overcome the ill-posedness is to
add some regularization R(u) [11–13,15–22]. Based on this idea, the image registration
model is reformulated as follows:

u = arg min
u∈K

S(u) + λR(u), (3)

where λ > 0 is a constant to balance R(u) and S(u).
For different applications, different regularizations are introduced. For instance, in

order to induce a diffusion type model, R(u) = ‖Ou‖2
L2(Ω) is adopted in [23]. In addition,

for the purpose of fitting the fractional-order smoothness of image texture, some fractional-
order regularizations [24] are also introduced. For all these models, the diffeomorphic
image registration models have become the focus of several groups [11,15,19,20,24–29].
In diffeomorphic registration, one is expected to produce a deformation h : Ω → Ω,
which is a continuous bijection (1-to-1 and onto). By constraining the deformation into
this kind of mapping, the topology of the object tissue is preserved. This is an advantage
of diffeomorphic image registration. However, in some applications, i.e., the image pairs
T and D with strong noises or pathological tissues, the registration deformation may be
discontinuous. For example, in respiratory movement, the diaphragm is severely deformed
but the chest remains almost rigid [30], which leads to discontinuous deformation. This
discontinuous deformation cannot be well simulated by diffeomorphic image registration
models. To simulate discontinuous deformation, some other image registration models
were also proposed [11,24]. In [30], a registration model was introduced by letting R(u) =
‖Ou‖L1(Ω). This is called total variation (TV) registration. As we all know, TV preserves
the edge of tissue well. However, serious staircase effect occurs in the TV model. To
overcome the staircase effect of the TV model, some image registration models were also
proposed for improvement, for instance, the bounded deformation (BD) model [12]. In [12],
by viewing the image process as an elastic deformation, the authors propose a bounded
deformation model, which addresses the discontinuous deformation well. However, the
algorithm in [12] is easily trapped into a local minimum of object functional S(u) + λR(u)
because it is non-convex on u. In fact, most of the published registration algorithms are
all easily trapped into local minimum, which is caused by the non-convexity of the object
functional. To overcome this problem, Han, Wang, and Zhang [25] proposed a multiscale
image registration approach for 2D diffeomorphic image registration. Theoretical results
and numerical tests are also presented in [25] to validate the fact that the multiscale
approach can effectively overcome the local minimum of the object functional for image
registration. Note that the multiscale approach in [25] is only suitable for diffeomorphic
image registration. As an extension, we propose a multiscale approach for BD model, which
can overcome the local minimum of the object functional and simulate the discontinuous
deformation well. The proposed multiscale approach is essentially an iterative process. The
convergence of the iterative process is shown, and several numerical tests are performed to
show the good performance of the proposed multiscale approach.

The rest of the paper is organized as follows. In Section 2, we propose a multiscale
image registration approach and show the convergence of the proposed approach. In
Section 3, an image registration algorithm of the proposed multiscale approach is presented.
In Section 4, several numerical tests are performed to show the good performance of the
proposed multiscale approach.
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2. Proposed Model

In [12], authors proposed a BD image registration model, which is formulated
as follows:

u = arg min
u∈K

ΘS(u) + λR(u), (4)

where Θ, λ > 0, R(u) =
∫

Ω

∥∥Ou +OTu
∥∥dx, K = {u = (u1, u2) ∈ BD(Ω)| u|∂Ω = 0}, Ω =

(a1, b1) × (a1, b1) and BD(Ω) =
{

u ∈ L1(Ω;R2)||ε(u)|(Ω) < ∞
}

, |ε(u)|(Ω) =∫
Ω

∥∥Ou +OTu
∥∥dx, there L1(Ω;R2) =

{
u : Ω→ R2|

∫
Ω|u(x)|dx < ∞

}
. Here, the L1 norm is

defined as follows: ‖Ou‖1 =
∫

Ω|Ou|dx =
∫

Ω

√
∑2

i=1|Oui|2dx.
The existence of the solution of (4) is proved in [12]. Moreover, an explicit scheme

for (4) is also presented. However, the proposed algorithm in [12] is easily trapped into
a local minimum of the object functional (4), because the object functional in (4) is non-
convex on u. To overcome the local minimum of the object functional, we extend the
diffeomorphism-based multiscale approach in [25] into the BD model (4) by setting an
increasing parameter sequence {Θn} in each iteration. The proposed multiscale approach
for BD model is listed as follows:
Step 1: Solving the following variational problem to got an initial value:

u0 = arg min
u∈K

Θ0

∫
Ω
|T ◦ h(x)− D(x)|2dx + λR(u), (5)

where, h(x) = x + u(x) and Θ0 > 0. Based on (5), we defined ĥ0(x) = x + u0(x).
Step 2: Based on the deformation ĥ0(x) in Step 1, we updated the source image by T ◦ ĥ0(·)
and solved the following variational problem to get a new displacement filed u1:

u1 = arg min
u∈K

Θ1

∫
Ω

∣∣∣T ◦ ĥ0(x + u(x))− D(x)
∣∣∣2dx + λR(u), (6)

where Θ1 > 0. Based on the result of (6), we defined h1(x) = x + u1(x) and ĥ1(x) =
ĥ0 ◦ h1(x).

...

Step n: We updated the source image by T ◦ ĥn−1(·) and solved the following variational
problem:

un = arg min
u∈K

Θn

∫
Ω

∣∣∣T ◦ ĥn−1(x + u(x))− D(x)
∣∣∣2dx + λR(u), (7)

where Θn > 0. Based on (7), we defined hn(x) = x + un(x) and ĥn(x) = ĥn−1 ◦ hn(x). We
repeated this process until it reached the desired accuracy.

Remark 1. (5)–(7) is a process of function composition, which we can write uniformly as follows:

un = arg min
u∈K

En(u) ∀n ∈ N. (8)

where Tn(x) = T ◦ ĥn−1(x), En(u) = Sn(u)+λR(u), Sn(u) = Θn
∫

Ω|Tn(x+ u(x))− D(x)|2dx.

Note that we set Θn to be an increasing sequence in (8) for the following two reasons:

1. It increases the ratio of the similarity term Sn(u) in the object functional. Benefiting from this
setting, Sn(u) plays a dominant role in object functional as n is large enough. This improves
the accuracy of image registration.

2. An increasing Θn helps the algorithm get out of the local minimum of the object functional in
former iterative steps.

For the selection of {Θn}KM
n=1 in the actual calculation, we set it as an exponential function,

i.e., Θn = an ×Θ0(n ∈ N+), where KM is the maximum scale number. The registration result is
optimized by adjusting the values of parameters a and Θ0.
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Theorem 1. Define K̄ = {h = h0 ◦ h1 · · · ◦ hn · · · | hi(x) = x + ui(x) and ui ∈ K} and set
{Θn} to be an upper bounded sequence with Θn � λ as n is large enough, then the deformation
ĥn(·) induced by (5)–(7) converges to the global minimizer of S(u) on K̄.

Proof. By the fact 0 ∈ K, we know that En(un) ≤ En(0) for any n ∈ N+.
That is,

En(un) = Θn

∥∥∥T ◦ ĥn(·)− D(·)
∥∥∥2

L2(Ω)
+ λR(un)

≤ Θn

∥∥∥T ◦ ĥn−1(·)− D(·)
∥∥∥2

L2(Ω)
= En(0).

(9)

Therefore,∥∥∥T ◦ ĥn(·)− D(·)
∥∥∥2

L2(Ω)
≤
∥∥∥T ◦ ĥn−1(·)− D(·)

∥∥∥2

L2(Ω)
∀n ∈ N+. (10)

This implies,
{∥∥∥T ◦ ĥn(·)− D(·)

∥∥∥2

L2(Ω)

}
is a decreasing sequence with lower bound.

By the monotone bounded convergence theorem [31], we know that the sequence{∥∥∥T ◦ ĥn(·)− D(·)
∥∥∥2

L2(Ω)

}
is convergent.

Define

lim
n→∞

∥∥∥T ◦ ĥn(·)− D(·)
∥∥∥2

L2(Ω)
= δ ∈ R. (11)

On the other hand, by (9) we obtain that∥∥∥T ◦ ĥn(·)− D(·)
∥∥∥2

L2(Ω)
+

λ

Θn
R(un) ≤

∥∥∥T ◦ ĥn−1(·)− D(·)
∥∥∥2

L2(Ω)
. (12)

By (11) and (12), we get that R(un)
n→ 0.

That is, ĥn(·) converges to the global minimizer of En(u) on K̄. Moreover, we know
that ĥ(·) is an approximate minimizer of S(u) on K̄ because

min
u∈K̄

1
Θn

En(u) ≈ min
u∈K̄

S(u). (13)

Note that here we use the condition Θn � λ as n is large enough.

Remark 2. One can also see that the similarity sequence
{∥∥T ◦ ĥn(·)− D(·)

∥∥2
L2(Ω)

}
is indepen-

dent of these parameters in (5)–(7). This implies that the final registration result does not rely on
parameters. This ensures the robustness of the proposed multiscale approach.

3. Numerical Implementation of the Proposed Multiscale Approach

In this section, we discuss the numerical implementation of the proposed multiscale
approach (5)–(7). In the discussion in Section 2, one can notice that the iterative process
in (5)–(7) is uniformly rewritten as the variational problem (8). That is, it is expected to
solve the variational problem (8) for each n in the proposed iterative process. Now, we
focus on the numerical implementation of the variational problem (8).

Firstly, we hope to transform the variational problem (8) into some partial differential
equations (PDE). For this purpose, we choose a perturbation η ∈ C∞

0 (Ω;R2) along the
minimizer un. This induces a new function ū = un + tη ∈ K. Then, we obtain that

E(un + tη) = Θn

∫
Ω
|Tn(x + un(x) + tη)− D(x)|2dx

+ λ
∫

Ω

∥∥∥O(un + tη) +OT(un + tη)
∥∥∥dx. (14)
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By fixing un and η, E(un + tη) is then a function on t, which is denoted by ϕ(t) =
E(un + tη).

Note that un is a minimizer of (8); therefore, one can obtain that E(un) ≤ E(ū). That is
ϕ(0) ≤ ϕ(t) for arbitrary t ∈ R, then dϕ(t)

dt

∣∣
t=0 = 0. Based on this notation, we know that

dE(un + tη)
dt

∣∣∣
t=0

= 2Θn

∫
Ω
(Tn(x + un(x))− D(x))OTn(x + un(x))ηdx

+ λ
∫

Ω

Oun +OTun

‖Oun +OTun‖

(
Oη+OTη

)
dx

= 2Θn

∫
Ω
(Tn(x + un(x))− D(x))OTn(x + un(x))ηdx

− 2λ
∫

Ω
div
(

Oun +OTun

‖Oun +OTun‖

)
ηdx

=
∫

Ω

[
2Θn(Tn(x + un(x))− D(x))OTn(x + un(x))− 2λdiv

(
Oun +OTun

‖Oun +OTun‖

)]
ηdx

= 0. (15)

Due to η ∈ C∞
0 (Ω;R2) being arbitrary, and the variational principle in [32], we can

obtain the Euler-Lagrange equation:

0 = Θn(Tn(x + un(x))− D(x))OTn(x + un(x))− λdiv
(

Oun +OTun

‖Oun +OTun‖

)
. (16)

Equation (16) is a nonlinear elliptic PDE. It is difficult to solve (16) directly. Motivated
by [18], here, we use the gradient descent flow method to solve (16). By introducing a new
variable t > 0, the gradient descent flow equation for (16) is formulated as follows:

∂un

∂t
= −Θn(Tn(x + un(x))− D(x))OTn(x + un(x)) + λdiv

(
Oun +OTun

‖Oun +OTun‖

)
. (17)

Using the similar method of [18], one can prove that (16) is the steady state of (17).
That is, (16) and (17) are equivalent as t is large enough.

For numerical implementation, we discretize the region Ω as follows: Ω is assumed to
be a square, i.e., Ω , (a1, b1)× (a1, b1), for N ∈ N+, so we define h = b1−a1

N , xi,j = (x1,i, x2,j),
xi , x1,i = ih, xj , x2,j = jh for i, j = 0, 1, 2, . . . , N.

By using the finite difference method, Oun and ∂un

∂t can be approximated by the
following formulas:

(Oun)i,j =

 ∂un
1

∂x1

∂un
1

∂x2
∂un

2
∂x1

∂un
2

∂x2


i,j

≈ 1
h

[
(un

1 )i+1,j − (un
1 )i,j (un

1 )i,j+1 − (un
1 )i,j

(un
2 )i+1,j − (un

2 )i,j (un
2 )i,j+1 − (un

2 )i,j

]
, (18)

∂un

∂t ≈
(un)t+1−(un)t

δt , where δt is the time step.
In a similar way, we obtain that

(Oun +OTun)i,j ≈

 2 ∂un
1

∂x1

∂un
1

∂x2
+

∂un
2

∂x1
∂un

2
∂x1

+
∂un

1
∂x2

2 ∂un
2

∂x2


i,j

, (19)

mi,j ,
(∥∥∥Oun +OTun

∥∥∥)
i,j
=

√√√√4
(

∂un
1

∂x1

)2

i,j
+ 2
(

∂un
1

∂x2
+

∂un
2

∂x1

)2

i,j
+ 4
(

∂un
2

∂x2

)2

i,j
, (20)
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(
Oun +OTun

‖Oun +OTun‖

)
i,j
=


(Oun+OTun)i,j

(‖Oun+OTun‖)i,j
, i f Oun +OTun 6= 0

0, i f Oun +OTun = 0
, (21)

(
div
(

Oun +OTun

‖Oun +OTun‖

))
i,j
= ((div1)i,j, (div2)i,j)

T , (22)

where (div1)i,j =
(

∂φ11
∂x1

)
i,j
+
(

∂φ12
∂x2

)
i,j
≈ (φ11)i+1,j−(φ11)i,j

h +
(φ12)i,j+1−(φ12)i,j

h , (div2)i,j =(
∂φ21
∂x1

)
i,j

+
(

∂φ22
∂x2

)
i,j
≈ (φ21)i+1,j−(φ21)i,j

h +
(φ22)i,j+1−(φ22)i,j

h ; (φ11)i,j ≈ 2
mi,j

(
∂un

1
∂x1

)
i,j

, (φ12)i,j = (φ21)i,j ≈

(
∂un

1
∂x2

)i,j+(
∂un

2
∂x1

)i,j

mi,j
, (φ22)i,j ≈ 2

mi,j

(
∂un

2
∂x2

)
i,j

.

With these approximations, (17) is approximated by the following equations:

(un)
(t+1)
i,j = (un)

(t)
i,j + δ(un)

(t)
i,j , (23)

where

δ(un)
(t)
i,j = δt

[
λdiv

(
∇un +∇Tun∥∥Oun +∇Tun

∥∥
)(t)

i,j

−Θn

(
Tn(x + un(x))(t)i,j −Di,j

)
OTn(x + un(x))(t)i,j

]
, (24)

and (
OT(t)

)
i,j
=
(

T(t)
x , T(t)

y

)T

i,j
=
(
(T(t))i+1,j − (T(t))i,j, (T(t))i,j+1 − (T(t))i,j

)T
. (25)

For simplicity, we set h = 1 in (23). The numerical implementation for variational
problems (8) is summarized as Algorithm 1.

Algorithm 1 Gradient descent algorithm
Initialization: the source image T, target image D, Θn, λ, δt, and maximum iteration times
N;
While t ≤ N do
1. Calculate O(un)(t), δ(un)(t) and OT(t) by (18), (24), (25) ;
2. Update the displacement filed as: (un)(t+1) = (un)(t) + δ(un)(t) by (23) ;
3. Calculate T(x + (un)(t)(x)) using interpolation ;
4. Set t = t + 1 and repeat 2–4 until the maximum iteration times is reached .
Output: T

(
x + (un)(t)(x)

)
for some t ≤ N.

Based on Algorithm 1, the numerical implementation for (5)–(8) is stated as Algorithm 2.

Algorithm 2 Multiscale gradient descent algorithm of bounded deformation function
Initialization: Given maximum scale number KM and λ;
For n= 0 : KM do
1. Let u = 0 and update Θn ;
2.Use Algorithm 1 to obtain (un)i,j for i, j = 1, 2, · · · , N − 1 ;
3. Compute Tn(·) = T ◦ ĥn(·), where ĥn = ĥn−1 ◦ hn and (hn)i,j = xi,j + (un)i,j.
Output: T ◦ ĥKM (·).
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4. Numerical Tests

In this section, we use several numerical tests to demonstrate the good performance
of the proposed multiscale approach. All the numerical tests were implemented under
Windows 10 and Matlab R2019a with 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40 GHz
and 16.0 GB memory. For this purpose, we compared the proposed multiscale approach
with the BD model in [12], LDDMM-demons algorithm in [33], and TV model in [30] to
validate the efficiency of the multiscale approach. In particular, the BD model can be
viewed as a single scale approach without iteration (scale = 1). The used data sets included
synthetic images, medical images, and underwater distorted images. The comparison
between the BD model and the proposed multiscale approach helps to validate the fact that
the proposed approach has advantages in getting out of the local minimum of the object
functional. The size of all images used for registration is 129× 129. In order to evaluate the
similarity between the deformed source image and target image, we used the relative sum
of squared difference to quantitatively evaluate the registration results. The relative sum of
squared difference is defined as follows:

Re− SSD(T, D, u) =
SSD(T(x + u), D)

SSD(T, D)
, (26)

where SSD(T, D) = 1
2 ∑i,j(Ti,j − Di,j)

2.
Test 1 (Test for synthetic images) In this test, we presented two numerical tests by

comparing these four algorithms: proposed multiscale approach (Algorithm 2), BD model
algorithm in [12], the LDDMM-demons algorithm in [33], and TV model in [30]. These two
tests were performed on synthetic image pairs, Rectangle and C-E, respectively. By using
these four different algorithms to register the above two image pairs, respectively, we list
the registration results in Figures 1–4 and Table 1. Moreover, sensitivity tests for parameter
Θn are also listed in Figure 1. One can notice that from Figure 1f, the final registration
result is not sensitive to the parameter, while Θn and Θn only affects the convergence speed.
This coincides with the result in [25]. In Figures 2 and 4, we can see that Sn(u) gradually
decreases with respect to the scale number n. In addition, the final Re− SSD achieves 1.3%
and 0.27%, respectively. This indicates T ◦ ĥKM (·) ≈ D(·), which implies that the proposed
multiscale approach leads to an accurate result. With the quantitative comparison results
in Table 1, we obtain the following two conclusions: (I) The proposed multiscale approach
has advantages in overcoming the local minimum of the object functional. In fact, in the
comparison between the BD model and the proposed algorithm, we see that the proposed
Algorithm 2 obviously improves the registration result. Moreover, one can notice that the
final Re − SSD for the BD model on the Rectangle image pair is 71%. This shows that
the algorithm in [12] is trapped into a local minimum. Compared with Re− SSD = 71%
led by the local minimum, the proposed Algorithm 2 achieves a very good result with
1.3%. This validates the fact that the proposed Algorithm 2 has advantages on overcoming
the local minimum of the object functional. This is also the main motivation for this
work. In addition, the final Re− SSD of image pair C-E(Re− SSD = 0.27%) shows that
the proposed Algorithm 2 can also address the smooth registration well (note that C-E
induces a continuous deformation). At last, with Figures 1e and 3e, we can conclude
the sequence Sn(u) converges as n → ∞. This validates that the proposed Algorithm 2
induces a convergence similarity sequence. This coincides with the conclusion at the end
of Section 2. (II) The proposed Algorithm 2 addresses the discontinuous registration well.
One can notice that the image pair Rectangle induces a discontinuous deformation (this
is the main reason why this image pair is selected for numerical comparison). It follows
from Table 1 that the three discontinuous methods (Algorithm 2, BD model, TV model)
obviously perform much better than the diffeomorphic model (LDDMM). Moreover, one
can also see that the proposed Algorithm 2 achieves the smallest Re− SSD. This shows that
the proposed Algorithm 2 is competitive to some state-of-the-art registration algorithms.
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Figure 1. Registration result of Algorithm 2 on image pairs Rectangle. (a) T(·). (b) D(·). (c) |T − D|.
(d) T ◦ ĥKM (·). (e) Re− SSD change (Rectangle) with scale number. (f) Θn/Re− SSD/scale.
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Figure 2. Registration result for different scales on image pairs Rectangle. (a) T(·). (b) Re− SSD =

73.29%. (c) Re− SSD = 43.84%. (d) Re− SSD = 14.75%. (e) Re− SSD = 1.65%. (f) Re− SSD =

1.3%.
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Figure 3. Registration result of Algorithm 2 on image pairs C-E. (a) T(·). (b) D(·). (c) |T − D|.
(d) T ◦ ĥKM (·). (e) Re− SSD change (C-E) with scale number.
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Figure 4. Registration result for different scales on image pairs C-E. (a) T(·). (b) Re− SSD = 37.35%.
(c) Re− SSD = 1.83%. (d) Re− SSD = 0.97%. (e) Re− SSD = 0.46%. (f) Re− SSD = 0.27%.

Table 1. Quantitative comparison of registration results of four different algorithms (test for synthetic
image pairs).

Data Algorithm Re-SSD (%) CPU/s

Rectangle

Proposed 1.3 213
BD 71 16.8

LDDMM 18.74 143
TV 31.56 249.3

C-E

Proposed 0.27 83.7
BD 0.78 20.7

LDDMM 3.15 101.8
TV 4.29 210.2
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Test 2 (Test for medical images) Similar to Test 1, we used Algorithm 2, the BD model
algorithm in [12], the LDDMM-demons algorithm in [33], and the TV model in [30] to
register three different kinds of medical image pairs: lung, hand, and liver. The final
registration results are listed in Figures 5–10 and Table 2. With Figures 5e, 7e and 9e, we
conclude that the proposed multiscale approach plays an important role in overcoming
the local minimum. On the other hand, in Figures 5d, 7d and 9d, we see that the final
registration result T ◦ ĥKM (·) looks nearly the same with the target image D(·). This shows
the high accuracy of the proposed Algorithm 2 in view of computer vision. Concerning
the quantitative comparison between the BD model and the proposed multiscale approach,
it follows from Table 2 that the proposed multiscale approach obviously improves the
result of the BD model, though it costs much more CPU time. Note that here we care
more about the registration result rather than the CPU time. Particularly, the final result
(Re− SSD = 16.85%) of the BD model demonstrates that the BD model gets into a local
minimum of the object functional. This is mainly caused by the nonconvexity of the object
functional. A sharp contrast to this result, the final registration result (Re− SSD = 5.88%)
for the proposed Algorithm 2 shows that the proposed approach can effectively improve the
final registration results. Concerning the process for the details of improvement, one can see
Figures 6, 8 and 10. In addition, through the quantitative comparison results in Table 2, we
see that the proposed Algorithm 2 is competitive to the other three registration algorithms.
Moreover, one can see that the BD model achieves the worst result among these four
algorithms, while the BD-based multiscale approach achieves the best image registration
result. This further validates the fact that the proposed approach has advantages in
overcoming the local minimum of the object functional.
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Figure 5. Registration result of Algorithm 2 on image pairs Lung. (a) T(·). (b) D(·). (c) |T − D|.
(d) T ◦ ĥKM (·). (e) Re− SSD change (Lung) with scale number.
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Figure 6. Registration result for different scales on image pairs Lung. (a) T(·). (b) Re− SSD = 6%.
(c) Re− SSD = 3.08%. (d) Re− SSD = 2.98%. (e) Re− SSD = 2.91%. (f) Re− SSD = 2.88%.
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Figure 7. Registration result of Algorithm 2 on image pairs Hand. (a) T(·). (b) D(·). (c) |T − D|.
(d) T ◦ ĥKM (·). (e) Re− SSD change (Hand) with scale number.
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Figure 8. Registration result for different scales on image pairs Hand. (a) T(·). (b) Re− SSD = 12%.
(c) Re− SSD = 6.18%. (d) Re− SSD = 4.96%. (e) Re− SSD = 4.4%. (f) Re− SSD = 4.04%.
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Figure 9. Registration result of Algorithm 2 on image pairs Liver. (a) T(·). (b) D(·). (c) |T − D|.
(d) T ◦ ĥKM (·). (e) Re− SSD change (Liver) with scale number.
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20 40 60 80 100 120

20

40

60

80

100

120

(e) T ◦ ĥ9(·)
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Figure 10. Registration result for different scales on image pairs Liver. (a) T(·). (b) Re− SSD = 25.59%.
(c) Re− SSD = 10.53%. (d) Re− SSD = 6.63%. (e) Re− SSD = 5.99%. (f) Re− SSD = 5.88%.

Table 2. Quantitative comparison of registration results of four different algorithms (test for medical
image pairs).

Data Algorithm Re-SSD (%) CPU/s

Lung

Proposed 2.88 102.8
BD 6.73 15.9

LDDMM 5.55 123.2
TV 4.63 98.3

Hand

Proposed 4.04 195.7
BD 8.3 19.8

LDDMM 5.99 114.9
TV 8.83 112.2

Liver

Proposed 5.88 119.75
BD 16.85 8.6

LDDMM 15.14 118.5
TV 19.6 630.3

Test 3 (Test for underwater images) At the end of this section, we test the proposed
Algorithm 2 on very special natural image pairs: underwater images. In underwater
images, serious distortion occurs, which makes it difficult for image registration. In this
test, we selected two image pairs (Square and Coin) as experimental data. We used
Algorithm 2, the BD model algorithm in [12], the LDDMM-demons algorithm in [33], and
the TV model in [30] to register these two image pairs, and the final registration results
are listed in Figures 11–14 and Table 3. In Figures 11e and 13e, we see that the Sn(u)
induced by proposed the multiscale approach converges to the global minimum of S(u) on
K. Additionally, with Figures 11d and 13d, we know that the deformed image T ◦ ĥKM (·)
induced by the proposed Algorithm 2 looks the same with target image D(·). At last, one
can see from Table 3 that the proposed multiscale approach achieves the best result among
the four comparison results. This shows the high accuracy of the proposed algorithm.
Moreover, via comparison through data Coin, we see that the LDDMM and TV model are
trapped in the local minimum for some default parameters, while the local minimum does
not occur in all the numerical tests performed by the proposed Algorithm 2. This validates
the fact that the proposed Algorithm 2 is robust and independent of parameters.
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Figure 11. Registration result of Algorithm 2 on image pairs Underwater square. (a) T(·). (b) D(·).
(c) |T − D|. (d) T ◦ ĥKM (·). (e) Re− SSD change (Underwater square) with scale number.
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Figure 12. Registration result for different scales on image pairs of Underwater square. (a) T(·).
(b) Re − SSD = 19.32%. (c) Re − SSD = 3.79%. (d) Re − SSD = 2.16%. (e) Re − SSD = 1.69%.
(f) Re− SSD = 1.43%.

Analysing the registration results of these three tests, we conclude that the proposed
Algorithm 2 has the advantage of improving the registration results for different kinds of
image pairs (i.e., natural iamge and medical image). Moreover, via the relationship between
Re− SSD and scale number listed in these three tests, we also conclude that the proposed
Algorithm 2 can help to overcome the local minimum of the object functional and make the
registration more accurate.
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Figure 13. Registration result of Algorithm 2 on image pairs of Underwater coin. (a) T(·). (b) D(·).
(c) |T − D|. (d) T ◦ ĥKM (·). (e) Re− SSD change (Underwater coin) with scale number.
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Figure 14. Registration result for different scales on image pairs of Underwater coin. (a) T(·).
(b) Re − SSD = 12.48%. (c) Re − SSD = 2.95%. (d) Re − SSD = 1.85%. (e) Re − SSD = 1.55%.
(f) Re− SSD = 1.42%.

Table 3. Quantitative comparison of registration results of four different algorithms (test for under-
water distorted image pairs).

Data Algorithm Re-SSD (%) CPU/s

Square

Proposed 1.43 242.4
BD 8.28 8.5

LDDMM 8.86 20.6
TV 2.99 244.7

Coin

Proposed 1.42 272.65
BD 6.95 22.2

LDDMM 58.99 248
TV 97.83 213.14
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5. Conclusions and Discussion

In this paper, we propose a multiscale approach for the BD model, which addresses
the discontinuous registration well. By setting an increasing sequence Θn in the multiscale
approach, we show that the similarity sequence {Sn(u)} converges to the global minimum
of the original similarity. A numerical algorithm is also presented to simulate the multi-
scale approach. Based on the proposed algorithm, several numerical tests are performed
to validate the main motivation for this paper: (I) Overcoming the local minimum of
the similarity; (II) Addressing the discontinuous registration caused by strong noise or
pathological tissue.

For future research, one could try to extend the 2D image registration into 3D multi-
scale image registration. The study of 3D image registration is a very important topic. This
makes it possible for clinical application and diagnosis.
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