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Abstract: One of the main tasks in the problems of machine learning and curve fitting is to develop
suitable models for given data sets. It requires to generate a function to approximate the data arising
from some unknown function. The class of kernel regression estimators is one of main types of
nonparametric curve estimations. On the other hand, fractal theory provides new technologies for
making complicated irregular curves in many practical problems. In this paper, we are going to
investigate fractal curve-fitting problems with the help of kernel regression estimators. For a given
data set that arises from an unknown function m, one of the well-known kernel regression estimators,
the Nadaraya–Watson estimator m̂, is applied. We consider the case that m is Hölder-continuous of
exponent β with 0 < β ≤ 1, and the graph of m is irregular. An estimation for the expectation of
|m̂−m|2 is established. Then a fractal perturbation f[m̂] corresponding to m̂ is constructed to fit the
given data. The expectations of | f[m̂] − m̂|2 and | f[m̂] −m|2 are also estimated.
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1. Introduction

One of the main tasks in the problems of machine learning, curve fitting, signal
analysis, and many statistical applications is to develop suitable models for given data
sets. In many real-world applications, it requires to generate a function to interpolate or
to approximate the data arising from some unknown function. In data-fitting problems,
interpolation is usually applied when the data are noise-free, and regression is considered
if we have noisy observations.

The theory of nonparametric modeling of a regression has been developed by many
researchers. Several types of estimators and their statistical properties have been studied
in the literature. The class of kernel estimators is one of the main types of nonparametric
curve estimations, and the Nadaraya–Watson estimator, the Priestley–Chao estimator, and
the Gasser–Müller estimator are widely used in applications. See [1–6] and references given
in these books. In [7,8], the authors investigated the differences between several types of
kernel regression estimators, and there is no answer to which of these estimators is the best
since each of them has advantages and disadvantages.

Fractal theory provides another technology for making complicated curves and fitting
experimental data. A fractal interpolation function (FIF) is a continuous function interpo-
lating a given set of points, and the graph of a FIF is the attractor of an iterated function
system. The concept of FIFs was introduced by Barnsley ([9,10]), and it has been developed
to be the basis of an approximation theory for nondifferentiable functions. FIFs can also be
applied to model discrete sequences ([11–13]). Various types of FIFs and their approxima-
tion properties were discussed in [14–44], and the references given in the literature. See
also the book [45] for recent developments. In [46–50], the construction of FIFs for random
data sets is given, and some statistical properties of such FIFs were investigated. In [51], the
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authors made a topological–geometric contribution for the development and applications
of fractal models, which present periodic changes.

For a given data set that arises from an unknown function m, the purpose of this
paper is not to establish a fractal function that interpolates points in the data set, but we
aim to find a fractal function that has good approximation for these data points. In [52],
the authors trained SVM by the chosen training data and then applied the SVM model to
calculate the interpolation points used to construct a linear FIF. In this paper, we consider
the Nadaraya–Watson estimator m̂ for some sample data chosen from a given data set, and
establish an estimation for the expectation of |m̂−m|2. Then a FIF f[m̂] corresponding to m̂
is constructed to fit the given data set, and the expectations of | f[m̂] − m̂|2 and | f[m̂] −m|2
are also estimated.

Throughout this paper, let D = {(ti, yi) ∈ R×R : i = 0, 1, · · · , N} be a given data
set, where N is an integer greater than or equal to 2, and t0 < t1 < · · · < tN . We take t0 = 0
and tN = 1 for convenience. Let I = [0, 1] and Ii = [ti−1, ti] for i = 1, · · · , N. Let C[I]
denote the set of all real-valued continuous functions defined on I. The set of functions in
C[I] that interpolate all points in D is denoted by CD [I]. Define ‖ f ‖∞ = maxt∈I | f (t)| for
f ∈ C[I]. It is known that (C[I], ‖ · ‖∞) is a Banach space, and CD [I] is a complete metric
space, where the metric is induced by ‖ · ‖∞.

2. Construction of Fractal Interpolation Functions

In this section, we establish a fractal perturbation of a given function in C[I]. The
construction given here has been treated in the literature (see [47]). We show the details
here to make our paper more self-contained.

Let u ∈ C[I] andD = {(ti, yi) : yi = u(ti), i = 0, 1, · · · , N}, where 0 = t0 < t1 < · · · <
tN = 1. Assume that the data points inD are non-collinear. For i = 1, · · · , N, let Li : I → Ii
be a homeomorphism such that Li(0) = ti−1 and Li(1) = ti. Define Mi : I ×R→ R by

Mi(t, y) = siy + u(Li(t))− si p(t), (1)

where −1 < si < 1 and p is a continuous function on I such that p(0) = u(0) and
p(1) = u(1). Then Mi(0, u(0)) = yi−1, Mi(1, u(1)) = yi, and

|Mi(t, y)−Mi(t, y∗)| = |si||y− y∗| for all t ∈ I and y, y∗ ∈ R. (2)

Define Wi : I × R → Ii × R by Wi(t, y) = (Li(t), Mi(t, y)) for i = 1, · · · , N. For
h ∈ CD [I], let Gh = {(t, h(t)) : t ∈ I}. Then Wi(Gh) = {(Li(t), Mi(t, h(t))) : t ∈ I}. Since
Li : I → Ii is a homeomorphism, Wi(Gh) can be written as

Wi(Gh) = {(t, Mi(L−1
i (t), h(L−1

i (t)))) : t ∈ Ii}.

Hence Wi(Gh) is the graph of the continuous function hi : Ii → R defined by hi(t) =
Mi(L−1

i (t), h(L−1
i (t))). Define a mapping T : CD [I]→ CD [I] by

T(h)(t) = hi(t) = sih(L−1
i (t)) + u(t)− si p(L−1

i (t)), t ∈ Ii. (3)

By (3) we see that, for g, h ∈ CD [I] and t ∈ Ii,

|T(g)(t)− T(h)(t)| ≤ |si||g(L−1
i (t))− h(L−1

i (t))|.

Then

‖T(g)− T(h)‖∞ ≤ max
i=1,··· ,N

|si|
{

max
z∈I
|g(z)− h(z)|

}
≤ s‖g− h‖∞.

Here s = max{|s1|, · · · , |sN |}. Since 0 ≤ s < 1, we have the following theorem ([47],
Theorem 2.1).

Theorem 1. The operator T given by (3) is a contraction mapping on CD [I].



Fractal Fract. 2022, 6, 680 3 of 10

Definition 1. The fixed point f[u] of T in CD [I] is called a fractal interpolation function (FIF) on I
corresponding to the continuous function u.

The FIF f[u] given in Definition 1 satisfies the following equation for i = 1, · · · , N:

f[u](t) = si

{
f[u](L−1

i (t))− p(L−1
i (t))

}
+ u(t), t ∈ Ii. (4)

If si = 0 for all i, then f[u] = u. Therefore, f[u] can be treated as a fractal perturbation of u.

3. The Nadaraya–Watson Estimator

Let D = {(ti, yi) ∈ R×R : i = 0, 1, · · · , N} be a given data set, where 0 = t0 < t1 <
· · · < tN = 1. Suppose that

Yi = m(ti) + εi, for i = 0, 1, · · · , N, (5)

where m : [0, 1]→ R is an unknown function, and each yi is an observation of Yi. Here, all
εi are independent stochastic disturbance terms with zero expectation, E[εi] = 0, and finite
variance, Var[εi] ≤ σ2 < ∞. In this section, we consider the Nadaraya–Watson estimator m̂
for D and establish an estimation for the expectation of |m̂−m|2.

Consider the case that m is Hölder continuous of exponent β with 0 < β ≤ 1, and the
graph of m is irregular. Then, m satisfies the inequality with 0 < β ≤ 1 and λ > 0:

|m(t)−m(t′)| ≤ λ|t− t′|β, t, t′ ∈ I. (6)

The Nadaraya–Watson estimator m̂ of m is defined by

m̂(t) =
∑N

i=0 kd(t− ti)Yi

∑N
j=0 kd(t− tj)

, where kd(z) =
1
d

k
(

z
d

)
. (7)

Here d > 0 is a bandwidth, and k is an integrable function defined on R.
The function k is called a kernel and is usually assumed to be bounded and satisfies

some integrable conditions. Some widely used kernels are given in ([2], p. 41) and ([5], p. 3),
and the estimations using different kernels are usually numerically similar (see [6]). In this
paper, we assume that there are positive numbers C1, C2, η, and R such that the kernel k
satisfies the condition

C1χ[−η,η](z) ≤ k(z) ≤ C2χ[−R,R](z), z ∈ R. (8)

Condition (8) and its multidimensional form was considered in ([5], Theorem 1.7) and ([1],
Theorem 5.1).

A new estimation for the bias of m̂ was obtained in [53]. Here, we give an estimation
for E[(m̂(t)−m(t))2] in the following Theorem 2. Similar results were studied in [1,2,5],
and other literature. The convergence rate of upper estimation obtained in Theorem 2 is
the same as the known results.

The Nadaraya–Watson estimator m̂ given in (7) can be written in the form

m̂(t) =
N

∑
i=0

Wi(t)Yi, where Wi(t) =
kd(t− ti)

∑N
j=0 kd(t− tj)

. (9)

Then ∑N
i=0 Wi(t) = 1 for all t and

E[m̂(t)] =
N

∑
i=0

Wi(t)E[Yi] =
N

∑
i=0

Wi(t)m(ti). (10)
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In the following lemma, we give a lower bound for ∑N
j=0 kd(t− tj). Define

aN = min
1≤k≤N

tk − tk−1, AN = max
1≤k≤N

tk − tk−1. (11)

Lemma 1. Let 0 = t0 < t1 < · · · < tN = 1. Suppose that k : R → R and there are positive
numbers C1 and η such that C1χ[−η,η](z) ≤ k(z) for z ∈ R. Let d > 0 and let AN and kd be
defined in (11) and (7), respectively. Assume that AN < 2dη and AN ≤ α

N for some α > 0. Then
for 0 ≤ t ≤ 1,

N

∑
j=0

kd(t− tj) ≥
C1ηN

α
. (12)

Proof. For 0 ≤ t ≤ 1, the condition C1χ[−η,η](z) ≤ k(z) implies that

N

∑
j=0

kd(t− tj) =
1
d

N

∑
j=0

k
( t− tj

d

)
≥ C1

d

N

∑
j=0

χ[−η,η]

( t− tj

d

)
=

C1

d
|Eη(t)|,

where Eη(t) = {tj : j = 0, 1, · · · , N, and | t−tj
d | ≤ η} and |Eη(t)| is the number of elements

of Eη(t). Since | t−tj
d | ≤ η if and only if tj ∈ [t− dη, t + dη] ∩ [0, 1], we have Eη(t) = {tj :

j = 0, 1, · · · , N, and tj ∈ [t− dη, t + dη] ∩ [0, 1]}.
For t ∈ [dη, 1− dη], we have [t− dη, t + dη] ⊆ [0, 1], and by the condition AN < 2dη,

we see that |Eη(t)| ≥ [ 2dη
AN

] ≥ 1 and this implies |Eη(t)| ≥ dη
AN

. For t ∈ [0, dη), we have

[t− dη, t + dη] ∩ [0, 1] = [0, t + dη] and t0 = 0 ∈ Eη(t). Hence |Eη(t)| ≥ [ t+dη
AN

] + 1 ≥ 1

and |Eη(t)| ≥ dη
AN

. For t ∈ (1− dη, 1], we have [t− dη, t + dη] ∩ [0, 1] = [t− dη, 1] and

tN = 1 ∈ Eη(t). Hence |Eη(t)| ≥ [ 1−t+dη
AN

] + 1 ≥ 1 and |Eη(t)| ≥ dη
AN

. Then the condition
AN ≤ α

N implies (12).

Theorem 2. Let D be a given data set and assume that m satisfies (6). Suppose that k satisfies (8)
and m̂ is defined by (7). Assume that AN < 2dη and AN ≤ α

N for some α > 0. Then we have

E[(m̂(t)−m(t))2] ≤ λ2R2βd2β +

(
αC2σ2

C1η

)
1

Nd
. (13)

Proof. We see that

E[(m̂(t)−m(t))2] = {E[m̂(t)]−m(t)}2 + E[m̂(t)2]− (E[m̂(t)])2. (14)

By (6) and (9)–(10), we have

|E[m̂(t)]−m(t)| =
∣∣∣∣ N

∑
i=0

Wi(t)(m(ti)−m(t))
∣∣∣∣ ≤ λ

N

∑
i=0

Wi(t)|ti − t|β.

Condition (8) implies that k( t−ti
d ) = 0 if | t−ti

d | > R. Therefore,

|E[m̂(t)]−m(t)| ≤ λdβ ∑N
i=0 k( t−ti

d )| t−ti
d |

β

∑N
j=0 k(

t−tj
d )

≤ λRβdβ. (15)

On the other hand, by (8) and (12), we also have

sup
i,t

Wi(t) = sup
i,t

k( t−ti
d )

∑N
j=0 k(

t−tj
d )
≤ αC2

C1ηNd
. (16)
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By (9), (10) and (5), we have

E[m̂(t)2]− (E[m̂(t)])2 = E[(m̂(t)− E[m̂(t)])2] = E
[( N

∑
i=0

Wi(t)εi

)2]
.

Since all εi are independent and satisfy E[εi] = 0 and Var[εi] ≤ σ2 < ∞, the condition
∑N

i=0 Wi(t) = 1 and estimation (16) imply that

E[m̂(t)2]− (E[m̂(t)])2 =
N

∑
i=0

Wi(t)2E[ε2
i ] ≤ σ2

(
sup

i,t
Wi(t)

) N

∑
i=0

Wi(t) ≤
(

αC2σ2

C1η

)
1

Nd
.

Then by (14) and (15), we have (13).

For a given kernel k which satisfies (8), estimation (13) shows that C1 and η should
be chosen so that C1η is as large as possible. The minimizer d∗ with respect to d of the
right-hand side of (13) can be obtained by setting E(d) = λ2R2βd2β + ( αC2σ2

C1ηN )d−1, and then
solve the equation

E′(d) = (2β)λ2R2βd2β−1 −
(

αC2σ2

C1ηN

)
d−2 = 0.

We have

d∗ =
(

αC2σ2

2βC1ηλ2R2β

) 1
2β+1

N
−1

2β+1 (17)

and the upper estimate given in (13) can be reduced to C∗N−2β/(2β+1), where C∗ depends
on α, β, λ, σ2, η, R, C1, and C2.

4. Fractal Perturbation of the Nadaraya–Watson Estimator

In this section, we consider FIFs f[m̂] corresponding to the function m̂ and we establish
estimations for the expectation of | f[m̂] − m̂|2 and | f[m̂] −m|2. Suppose that k is continuous
and we replace each Yi in (7) by yi. Then m̂ ∈ C[I]. By the construction given in Section 2
with u = m̂, we have a FIF f[m̂] on I that satisfies the equation for i = 1, · · · , N:

f[m̂](t) = si

{
f[m̂](L−1

i (t))− p(L−1
i (t))

}
+ m̂(t), t ∈ Ii. (18)

Here, p is chosen to be the linear polynomial such that p(0) = m̂(0) and p(1) = m̂(1). Then
we replace yi by Yi for each i and consider f[m̂](t) a random variable for every t ∈ I. We are
interested in estimations for ‖E[| f[m̂] −m|2]‖∞.

Theorem 3. Suppose that k is continuous and k satisfies (8) with R = 1 and C2 = 1. Suppose
that m satisfies (6) and m̂ is defined by (7). Let M = max{|m(ti)| : i = 0, 1, · · · , N}. Assume
that AN < 2dη, AN ≤ α

N , and aN ≥ τ
N for some α > 0 and τ > 0, where AN and aN are defined

in (11). Suppose that 0 < s = max{|s1|, · · · , |sN |} < 2−1/2 and ‖E[| f[m̂] − m̂|2]‖∞ < ∞. Then
we have

‖E[| f[m̂] − m̂|2]‖∞ ≤
(

72s2α2(M2 + σ2)

(1− 2s2)C2
1η2τ2

)
(Nd + τ)2

(Nd)2 , (19)

‖E[| f[m̂] −m|2]‖∞ ≤
(

144s2α2(M2 + σ2)

(1− 2s2)C2
1η2τ2

)
(Nd + τ)2

(Nd)2 + 2λ2d2β +

(
2ασ2

C1η

)
1

Nd
. (20)
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Proof. For t ∈ Ii, (18) implies

| f[m̂](t)− m̂(t)|2 ≤ 2s2
i

{
| f[m̂](L−1

i (t))− m̂(L−1
i (t))|2 + |m̂(L−1

i (t))− p(L−1
i (t))|2

}
,

and we have

sup
t∈Ii

E[| f[m̂](t)− m̂(t)|2] ≤ 2s2
i

(
sup
z∈I

E[| f[m̂](z)− m̂(z)|2] + sup
z∈I

E[|m̂(z)− p(z)|2]
)

.

Then
‖E[| f[m̂] − m̂|2]‖∞ ≤ 2s2{‖E[| f[m̂] − m̂|2]‖∞ + ‖E[|m̂− p|2]‖∞}

and therefore

‖E[| f[m̂] − m̂|2]‖∞ ≤
2s2

1− 2s2 ‖E[|m̂− p|2]‖∞. (21)

Since p is the linear polynomial with p(0) = m̂(0) and p(1) = m̂(1), we have

p(t) = m̂(0) + (m̂(1)− m̂(0))t, t ∈ I, (22)

and then
|m̂(t)− p(t)| = |(m̂(t)− m̂(0))(1− t) + (m̂(t)− m̂(1))t|.

The convexity of the square function x 7→ x2 implies that

|m̂(t)− p(t)|2 ≤ (1− t)|m̂(t)− m̂(0)|2 + t|m̂(t)− m̂(1)|2

and therefore

E[|m̂(t)− p(t)|2] ≤ (1− t)E[|m̂(t)− m̂(0)|2] + tE[|m̂(t)− m̂(1)|2], t ∈ I. (23)

By (9), m̂(t) − m̂(1) = ∑N
r=0(Wr(t) −Wr(1))Yr. By (8) with R = 1, we see that

if tr < 1 − d, then 1−tr
d > 1 and k( 1−tr

d ) = 0. This implies Wr(1) = 0. For t ∈ I, if
tr /∈ [t− d, t + d], then | t−tr

d | > 1 and k( t−tr
d ) = 0. This implies Wr(t) = 0. Then

m̂(t)− m̂(1) = ∑
r∈Bt

(Wr(t)−Wr(1))Yr, (24)

where Bt = {r : tr ∈ [t− d, t + d] or tr ∈ [1− d, 1]}. Let ξ = [ d
aN

]. Then the number of
elements in Bt is less than 3(ξ + 1).

By (12) and (8) with C2 = 1, we have

|Wr(t)−Wr(1)| ≤
kd(t− tr)

∑N
j=0 kd(t− tj)

+
kd(1− tr)

∑N
j=0 kd(1− tj)

≤ 2α

C1ηNd
. (25)

By (5) we also have E[Y2
r ] = m(tr)2 + σ2 for r = 0, 1, · · · , N. Condition (6) shows that m

is continuous and therefore m is bounded on I. Then for t ∈ I,

E[|m̂(t)− m̂(1)|2] ≤
{

∑
r∈Bt

(Wr(t)−Wr(1))2
}{

∑
r∈Bt

E[Y2
r ]

}

≤
(

2α

C1ηNd

)2

(M2 + σ2)(3ξ + 3)2.

We also have the same estimate for E[|m̂(t)− m̂(0)|2].
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By the condition aN ≥ τ
N , we have ξ ≤ d

aN
≤ Nd

τ , and then (23) can be reduced to

E[|m̂(t)− p(t)|2] ≤
(

36α2(M2 + σ2)

C2
1η2τ2

)
(Nd + τ)2

(Nd)2 , t ∈ I. (26)

Thus, (19) can be obtained by (21) and (26). Moreover, we have (20) by (13), (19), and
the inequality

‖E[| f[m̂] −m|2]‖∞ ≤ 2‖E[| f[m̂] − m̂|2]‖∞ + 2‖E[|m̂−m|2]‖∞.

For a given kernel k, which satisfies condition (8), estimation (20) shows that C1 and
η should be chosen so that C1η is as large as possible. If we choose d = d∗, where d∗ is
given by (17) with C2 = 1 and R = 1, then (20) can be reduced to

‖E[| f[m̂] −m|2]‖∞ ≤ A(1 + DN
−2β

2β+1 )2 + C∗N
−2β

2β+1 , (27)

where A = 144s2α2(M2+σ2)

(1−2s2)C2
1 η2τ2 and D depends on λ, α, β, C1, η, τ, σ2, and C∗ depends on λ, α,

β, C1, η, σ2. Moreover, the constant M can be estimated by M̃ = max{|y0|, |y1|, · · · , |yN |}.
The right-hand side of (27) tends to A when N → ∞. In fact, if d is chosen so that

d → 0 and Nd → ∞ as N → ∞, then the right-hand side of (20) tends to A as N → ∞.
Moreover, A→ 0 as s→ 0.

Example 1. The data set we used in this example is the Crude Oil WTI Futures daily highest
price from 2021/7/19 to 2022/8/17. These data are opened and they can be obtained from the
website https://www.investing.com/commodities/crude-oil-historical-data. There are 287 raw data
and we chose 11 data as our sample subset S . These data points are shown in Figure 1. We set
S = {(ti, wi) : i = 0, 1, · · · , 10}, where ti =

i
10 and wi are the Crude Oil WTI Futures daily

highest prices in 2021/7/19, 8/26, 10/6, 11/16, 12/28, 2022/2/2, 3/9, 4/19, 5/30, 7/5, and 8/17.
Let m̂ be defined by (7), with each Yi being replaced by wi,

m̂(t) =
∑10

i=0 k( t−0.1×i
d )wi

∑10
j=0 k( t−0.1×j

d )
, (28)

and choose k to be the Epanechnikov kernel k(t) = 0.75(1− t2)χ{|t|≤1}. Let N = 10 and choose
R = 1, C2 = 1, η = 1√

3
, C1 = 0.5 in (8). We estimate M by max{w0, w1, · · · , w10}, and set

α = 1 and τ = 1 in Theorem 3. Assume that β = 0.5 in this example. The values of σ2 and λ are

estimated by the sample variance and max
{
|wi−wj |√
|ti−tj |

: i, j = 0, 1, · · · , 10, i 6= j
}

, respectively. By

(17), we set d = 0.092.

We construct a FIF f[m̂] by the method given in Section 2 with linear functions Li and
the linear polynomial p such that Li(0) = i−1

10 , Li(1) = i
10 , and p(0) = m̂(0), p(1) = m̂(1).

The chosen values s1, . . . , s10 are given in Table 1.
The graphs of raw data and m̂ are shown in Figure 2. The graphs of m̂ and f[m̂] are

shown in Figure 3. The graphs of raw data and f[m̂] are shown in Figure 4.

https://www.investing.com/commodities/crude-oil-historical-data
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Figure 1. Raw data and sample data.

Figure 2. Raw data and m̂.

Figure 3. m̂ and f[m̂].

Figure 4. Raw data and f[m̂].

Table 1. The values of sk.

k 1 2 3 4 5 6 7 8 9 10

sk 0.02 −0.03 0.08 −0.16 0.05 −0.26 −0.36 −0.06 −0.14 0.06

5. Conclusions

The purpose of this paper is to construct a fractal interpolation function (FIF) that has
good approximation for a given data set. We consider the Nadaraya–Watson estimator m̂
for some sample data chosen from a given data set, and then apply m̂ to construct a FIF f[m̂]

to fit the given set of data points. The Nadaraya–Watson estimator is widely used in data-
fitting problems, and its fractal perturbation is considered in our paper. The expectations
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of mean squared errors of such approximation are also estimated. By the figures given in
Example 1, we may see the quality of curve fitting by a FIF, which is constructed from m̂
with 11 sample points to fit the 287 raw data points. We see that the error of approximation
can be decreased by choosing more sample data.

In this paper, we construct a FIF to fit a given data set with the help of the Nadaraya–
Watson estimator. In fact, the Priestley–Chao estimator, the Gasser–Müller estimator, and
other types of kernel regression estimators can also be used in our approach. Nonparametric
regression has been studied for a long time. Several types of models with their theoretical
results and applications are widely developed by many researchers. Fractal perturbations
of these models are worth investigating in the field of fractal curve fitting.

Author Contributions: Conceptualization, D.-C.L.; methodology, D.-C.L.; software, C.-W.L.; valida-
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Funding: This research was funded by Ministry of Science and Technology, R.O.C. grant number
MOST 110-2115-M-214-002.

Data Availability Statement: The data set used in this paper can be obtained in the webpage
https://www.investing.com/commodities/crude-oil-historical-data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Györfi, L.; Kohler, M.; Krzyzak, A.; Walk, H. A Distribution-Free Theory of Nonparametric Regression; Springer: New York, NY,

USA, 2002.
2. Härdle, W.; Müller, M.; Sperlich, S.; Werwatz, A. Nonparametric and Semiparametric Models; Springer: New York, NY, USA, 2004.
3. Hart, J.D. Nonparametric Smoothing and Lack-of-Fit Tests; Springer: New York, NY, USA, 1997.
4. Li, Q.; Racine, J.S. Nonparametric Econometrics; Princeton University Press: Mercer County, NJ, USA, 2007.
5. Tsybakov, A.B. Introduction to Nonparametric Estimation; Springer: New York, NY, USA, 2009.
6. Wasserman, L. All of Nonparametric Statistics; Springer: New York, NY, USA, 2006.
7. Chu, C.-K.; Marron, J.S. Choosing a kernel regression estimator. Stat. Sci. 1991, 6, 404–436. [CrossRef]
8. Jones, M.C.; Davies, S.J.; Park, B.U. Versions of kernel-type regression estimators. J. Amer. Statist. Assoc. 1994, 89, 825–832.

[CrossRef]
9. Barnsley, M.F. Fractal functions and interpolation. Constr. Approx. 1986, 2, 303–329. [CrossRef]
10. Barnsley, M.F. Fractals Everywhere; Academic Press: Orlando, FL, USA, 1988.
11. Marvasti, M.A.; Strahle, W.C. Fractal geometry analysis of turbulent data. Signal Process. 1995, 41, 191–201. [CrossRef]
12. Mazel, D.S. Representation of discrete sequences with three-dimensional iterated function systems. IEEE Trans. Signal Process.

1994, 42, 3269–3271. [CrossRef]
13. Mazel, D.S.; Hayes, M.H. Using iterated function systems to model discrete sequences. IEEE Trans. Signal Process. 1992,

40, 1724–1734. [CrossRef]
14. Balasubramani, N. Shape preserving rational cubic fractal interpolation function. J. Comput. Appl. Math. 2017, 319, 277–295.

[CrossRef]
15. Balasubramani, N.; Guru Prem Prasad, M.; Natesan, S. Shape preserving α-fractal rational cubic splines. Calcolo 2020, 57, 21.

[CrossRef]
16. Barnsley, M.F.; Elton, J.; Hardin, D.; Massopust, P. Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 1989,

20, 1218–1242. [CrossRef]
17. Barnsley, M.F.; Massopust, P.R. Bilinear fractal interpolation and box dimension. J. Approx. Theory 2015, 192, 362–378. [CrossRef]
18. Chand, A.K.B.; Kapoor, G.P. Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 2006, 44, 655–676.

[CrossRef]
19. Chand, A.K.B.; Navascués, M.A. Natural bicubic spline fractal interpolation. Nonlinear Anal. 2008, 69, 3679–3691. [CrossRef]
20. Chand, A.K.B.; Navascués, M.A. Generalized Hermite fractal interpolation. Rev. Real Acad. Cienc. Zaragoza 2009, 64, 107–120.
21. Chand, A.K.B.; Tyada, K.R. Constrained shape preserving rational cubic fractal interpolation functions. Rocky Mt. J. Math. 2018,

48, 75–105. [CrossRef]
22. Chand, A.K.B.; Vijender, N.; Viswanathan, P.; Tetenov, A.V. Affine zipper fractal interpolation functions. BIT Numer. Math. 2020,

60, 319–344. [CrossRef]

https://www.investing.com/commodities/crude-oil-historical-data
http://doi.org/10.1214/ss/1177011586
http://dx.doi.org/10.1080/01621459.1994.10476816
http://dx.doi.org/10.1007/BF01893434
http://dx.doi.org/10.1016/0165-1684(94)00100-E
http://dx.doi.org/10.1109/78.330394
http://dx.doi.org/10.1109/78.143444
http://dx.doi.org/10.1016/j.cam.2017.01.014
http://dx.doi.org/10.1007/s10092-020-00372-8
http://dx.doi.org/10.1137/0520080
http://dx.doi.org/10.1016/j.jat.2014.10.014
http://dx.doi.org/10.1137/040611070
http://dx.doi.org/10.1016/j.na.2007.10.011
http://dx.doi.org/10.1216/RMJ-2018-48-1-75
http://dx.doi.org/10.1007/s10543-019-00774-3


Fractal Fract. 2022, 6, 680 10 of 10

23. Chand, A.K.B.; Viswanathan, P. A constructive approach to cubic Hermite fractal interpolation function and its constrained
aspects. BIT Numer. Math. 2013, 53, 841–865. [CrossRef]

24. Chandra, S.; Abbas, S.; Verma, S. Bernstein super fractal interpolation function for countable data systems. Numer. Algorithms 2022.
[CrossRef]

25. Dai, Z.; Wang, H.-Y. Construction of a class of weighted bivariate fractal interpolation functions. Fractals 2022, 30, 2250034.
[CrossRef]

26. Katiyar, S.K.; Chand, A.K.B. Shape preserving rational quartic fractal functions. Fractals 2019, 27, 1950141. [CrossRef]
27. Katiyar, S.K.; Chand, A.K.B.; Kumar, G.S. A new class of rational cubic spline fractal interpolation function and its constrained

aspects. Appl. Math. Comput. 2019, 346, 319–335. [CrossRef]
28. Luor, D.-C. Fractal interpolation functions with partial self similarity. J. Math. Anal. Appl. 2018, 464, 911–923. [CrossRef]
29. Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets; Academic Press: San Diego, CA, USA, 1994.
30. Massopust, P.R. Interpolation and Approximation with Splines and Fractals; Oxford University Press: New York, NY, USA, 2010.
31. Miculescu, R.; Mihail, A.; Pacurar, C.M. A fractal interpolation scheme for a possible sizeable set of data. J. Fractal Geom. 2022.

[CrossRef]
32. Navascués, M.A. Fractal approximation. Complex Anal. Oper. Theory 2010, 4, 953–974. [CrossRef]
33. Navascués, M.A. Fractal bases of Lp spaces. Fractals 2012, 20, 141–148. [CrossRef]
34. Navascués, M.A.; Chand, A.K.B. Fundamental sets of fractal functions. Acta Appl. Math. 2008, 100, 247–261. [CrossRef]
35. Navascués, M.A.; Pacurar, C.; Drakopoulos, V. Scale-free fractal interpolation. Fractal Fract. 2022, 6, 602. [CrossRef]
36. Prasad, S.A. Super coalescence hidden-variable fractal interpolation functions. Fractals 2021, 29, 2150051. [CrossRef]
37. Ri, S.; Drakopoulos, V. Generalized fractal interpolation curved lines and surfaces. Nonlinear Stud. 2021, 28, 427–488.
38. Tyada, K.R.; Chand, A.K.B.; Sajid, M. Shape preserving rational cubic trigonometric fractal interpolation functions. Math. Comput.

Simul. 2021, 190, 866–891. [CrossRef]
39. Vijender, N. Fractal perturbation of shaped functions: convergence independent of scaling. Mediterr. J. Math. 2018, 15, 211.

[CrossRef]
40. Viswanathan, P. A revisit to smoothness preserving fractal perturbation of a bivariate function: Self-Referential counterpart to

bicubic splines. Chaos Solitons Fractals 2022, 157, 111885. [CrossRef]
41. Viswanathan, P.; Chand, A.K.B. Fractal rational functions and their approximation properties. J. Approx. Theory 2014, 185, 31–50.

[CrossRef]
42. Viswanathan, P.; Chand, A.K.B. α-fractal rational splines for constrained interpolation. Electron. Trans. Numer. Anal. 2014,

41, 420–442.
43. Viswanathan, P.; Navascués, M.A.; Chand, A.K.B. Associate fractal functions in Lp-spaces and in one-sided uniform approxima-

tion. J. Math. Anal. Appl. 2016, 433, 862–876. [CrossRef]
44. Wang, H.-Y.; Yu, J.-S. Fractal interpolation functions with variable parameters and their analytical properties. J. Approx. Theory

2013, 175, 1–18. [CrossRef]
45. Banerjee, S.; Gowrisankar, A. Frontiers of Fractal Analysis Recent Advances and Challenges; CRC Press: Boca Raton, FL, USA, 2022.
46. Kumar, M.; Upadhye, N.S.; Chand, A.K.B. Linear fractal interpolation function for data set with random noise. Fractals

2022, accepted. [CrossRef]
47. Luor, D.-C. Fractal interpolation functions for random data sets. Chaos Solitons Fractals 2018, 114, 256–263. [CrossRef]
48. Luor, D.-C. Statistical properties of linear fractal interpolation functions for random data sets. Fractals 2018, 26, 1850009. [CrossRef]
49. Luor, D.-C. Autocovariance and increments of deviation of fractal interpolation functions for random datasets. Fractals 2018,

26, 1850075. [CrossRef]
50. Luor, D.-C. On the distributions of fractal functions that interpolate data points with Gaussian noise. Chaos Solitons Fractals 2020,

135, 109743. [CrossRef]
51. Caldarola, F.; Maiolo, M. On the topological convergence of multi-rule sequences of sets and fractal patterns. Soft Comput. 2020,

24, 17737–17749. [CrossRef]
52. Wang, H.-Y.; Li, H.; Shen, J.-Y. A novel hybrid fractal interpolation-SVM model for forecasting stock price indexes. Fractals 2019,

27, 1950055. [CrossRef]
53. Tosatto, S.; Akrour, R.; Peters, J. An upper bound of the bias of Nadaraya-Watson kernel regression under Lipschitz assumptions.

Stats 2021, 4, 1–17. [CrossRef]

http://dx.doi.org/10.1007/s10543-013-0442-4
http://dx.doi.org/10.1007/s11075-022-01398-5
http://dx.doi.org/10.1142/S0218348X22500347
http://dx.doi.org/10.1142/S0218348X1950141X
http://dx.doi.org/10.1016/j.amc.2018.10.036
http://dx.doi.org/10.1016/j.jmaa.2018.04.041
http://dx.doi.org/10.4171/JFG/117
http://dx.doi.org/10.1007/s11785-009-0033-1
http://dx.doi.org/10.1142/S0218348X12500132
http://dx.doi.org/10.1007/s10440-007-9182-2
http://dx.doi.org/10.3390/fractalfract6100602
http://dx.doi.org/10.1142/S0218348X21500511
http://dx.doi.org/10.1016/j.matcom.2021.06.015
http://dx.doi.org/10.1007/s00009-018-1256-z
http://dx.doi.org/10.1016/j.chaos.2022.111885
http://dx.doi.org/10.1016/j.jat.2014.05.013
http://dx.doi.org/10.1016/j.jmaa.2015.08.012
http://dx.doi.org/10.1016/j.jat.2013.07.008
http://dx.doi.org/10.1142/S0218348X22501869
http://dx.doi.org/10.1016/j.chaos.2018.06.033
http://dx.doi.org/10.1142/S0218348X18500093
http://dx.doi.org/10.1142/S0218348X18500755
http://dx.doi.org/10.1016/j.chaos.2020.109743
http://dx.doi.org/10.1007/s00500-020-05358-w
http://dx.doi.org/10.1142/S0218348X19500555
http://dx.doi.org/10.3390/stats4010001

	Introduction
	Construction of Fractal Interpolation Functions
	The Nadaraya–Watson Estimator
	Fractal Perturbation of the Nadaraya–Watson Estimator
	Conclusions
	References

