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Abstract: The fuzzy-number valued up and down λ-convex mapping is originally proposed as an
intriguing generalization of the convex mappings. The newly suggested mappings are then used to
create certain Hermite–Hadamard- and Pachpatte-type integral fuzzy inclusion relations in fuzzy
fractional calculus. It is also suggested to revise the Hermite–Hadamard integral fuzzy inclusions
with regard to the up and down λ-convex fuzzy-number valued mappings (U·D λ-convex F-N·V·Ms).
Moreover, Hermite–Hadamard–Fejér has been proven, and some examples are given to demonstrate
the validation of our main results. The new and exceptional cases are presented in terms of the
change of the parameters “i” and “α” in order to assess the accuracy of the obtained fuzzy inclusion
relations in this study.

Keywords: fuzzy-number valued mappings; fuzzy integrals; up and down λ-convex fuzzy-number
valued mappings; fuzzy Hermite–Hadamard type inequalities

1. Introduction

The generalized convexity of mappings offers a pretty potent principle and tool, which
is frequently employed in a variety of mathematical physics issues in addition to applied
analysis and nonlinear analysis. See the published publications [1–13] and the references
therein for a large number of scholars’ recent efforts to investigate several intriguing
integral inequalities that are due to generalized convexity from various angles. One of
the most important mathematical inequalities associated with convex mappings, and one
that is frequently employed in many other areas of the mathematical sciences, notably
in optimization analysis, is the Hermite-integral Hadamard’s inequality. This inequality
stands out in particular because it provides an approximation of the mean value’s error
bound in relation to the integrable convex mapping, which has drawn academic interest
and research from a large number of academics in the field of mathematical analysis.
Significant works published recently relate various families of convex mappings to the
Hermite–Hadamard-type (H·H-type) integral inequalities. For example, we can refer to
Szostok [14] for higher-order convex mappings, to Korus [15] for s-convex mappings,
to Andric and Pecaric [16] for (h, g, m)-convex mappings, to Latif [17] for GA-convex
and geometrically quasiconvex mappings, to Niezgoda [18] for G-symmetrized convex
mappings, to Demir et al. [19] for trigonometrically convex mappings, and so on. For more
information, see [20–34].

It has been demonstrated that fractional calculus, as a rather robust technique, is an
essential foundational element not only in the mathematical sciences but also in the applied
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sciences. The field has drawn a lot of research interest in order to answer the important
topic. Therefore, many authors have discovered some important integral inequalities by ef-
fectively combining different fractional integral techniques. For example, Ahmad et al. [35]
studied four different inequalities for convex mappings involving fractional integrals with
exponential kernels, Mohammed and Sarikaya [36] studied some inequalities involving
Sarikaya fractional integrals for twice differentiable mappings, and Set et al. [37] stud-
ied the Hermetic inequalities involving Atangana–Baleanu fractional integral operators,
Khan et al. [38] and Meftah et al. [39] proposed H·H-type inequalities for conformable frac-
tional integral operators, and Dragomir [40] obtained H·H-type inequalities for generalized
conformable Riemann–Liouville fractional integrals. We recommend [41–56] to readers
who are interested in learning additional significant results relating to fractional integrals.

The study of the characteristics and uses of interval-valued mappings (I·V·Ms) is the
focus of the branch of set value analysis known as interval analysis [57], which now has a
major impact on both the pure and practical sciences. The error boundaries of a numerical
solution for a finite state machine were first determined using interval analysis. Interval
analysis has grown rapidly over the last several decades and has significant implications for
many disciplines of applied sciences, including neural network output optimization [58],
computer graphics [59], and automatic error analysis [60]. Numerous academics have
researched the current hot topics of various interval analysis theories up until this point in
time. For instance, Budak et al. [61] expanded the interval-valued mapping Y(
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to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 
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2. Preliminaries

Let XI be the space of all closed and bounded intervals of R and w ∈ XI be defined by

w = [w∗, w∗] = {
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≤ w∗},(w∗, w∗ ∈ R). (1)

If w∗ = w∗, then w is said to be degenerate. In this article, all intervals will be non-
degenerate intervals. If w∗ ≥ 0, then [w∗, w∗] is called positive interval. The set of all positive
interval is denoted by X+

I and defined as X+
I = {[w∗, w∗] : [w∗, w∗] ∈ XI and w∗ ≥ 0}.

Let m ∈ R and m ·w be defined by

m ·w =


[mw∗, mw∗] if m > 0,
{0} if m = 0,

[mw∗, mw∗] if m < 0.
(2)

Then the Minkowski difference x− w, addition w+ x and w× x for w, x ∈ XI are
defined by

[x∗, x∗] + [w∗, w∗] = [x∗ +w∗, x∗ +w∗], (3)

[x∗, x∗]× [w∗, w∗] = [min{x∗w∗, x∗w∗, x∗w∗, x∗w∗}, max{x∗w∗, x∗w∗, x∗w∗, x∗w∗}] (4)

[x∗, x∗]− [w∗, w∗] = [x∗ −w∗, x∗ −w∗], (5)

Remark 1. (i) For given [x∗, x∗], [w∗, w∗] ∈ XI , the relation “ ⊇I ” defined on XI by

[w∗, w∗] ⊇I [x∗, x∗] if and only if w∗ ≤ x∗, x∗ ≤ w∗, (6)

for all [x∗, x∗], [w∗, w∗] ∈ XI , it is a partial interval inclusion relation. The relation [w∗, w∗] ⊇I
[x∗, x∗] coincident to [w∗, w∗] ⊇ [x∗, x∗] on XI . It can be easily seen that “⊇I” looks like “up and
down” on the real line R, so we call “ ⊇I ” is “up and down” (or “U·D” order, in short) [85].

(ii) For given [x∗, x∗], [w∗, w∗] ∈ XI , we say that [x∗, x∗] ≤I [w∗, w∗] if and only if
x∗ ≤ w∗, x∗ ≤ w∗ or x∗ ≤ w∗, x∗ < w∗, it is an partial interval order relation. The relation
[x∗, x∗] ≤I [w∗, w∗] coincident to [x∗, x∗] ≤ [w∗, w∗] on XI . It can be easily seen that “ ≤I ”
looks like “left and right” on the real line R, so we call “ ≤I ” is “left and right” (or “LR” order, in
short) [77,85].

For[x∗, x∗], [w∗, w∗] ∈ XI , the Hausdorff-Pompeiu distance between intervals [x∗, x∗] and
[w∗, w∗]is defined by

dH([x∗, x∗], [w∗, w∗]) = max{|x∗ −w∗|, |x∗ −w∗|}. (7)

It is familiar fact that (XI , dH) is a complete metric space [83].

Definition 1. A fuzzy subset L of R is distinguished by a mapping w̃ : R→ [0, 1] called the
membership mapping of L. That is, a fuzzy subset L of R is a mapping w̃ : R→ [0, 1] . So, for
further study, we have chosen this notation. We appoint E to denote the set of all fuzzy subsets of
R [82,83].

Let w̃ ∈ E. Then, w̃ is known as a fuzzy-number if the following properties are
satisfied by w̃:

(1) w̃ should be normal if there exists
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) >0}. These sets are known as i-level sets or i-cut sets
of w̃.

Proposition 1. [78] Let w̃, x̃ ∈ EC. Then, relation “ ≤F ” given on EC by

w̃ ≤F x̃ when and only when, [w̃]i ≤I [̃x]
i, for every i ∈ [0, 1], (8)

it is left and right order relation.

Proposition 2. [81] Let w̃, x̃ ∈ EC. Then, relation “ ⊇F ” given on EC by

w̃ ⊇F x̃ when and only when, [w̃]i ⊇I [̃x]
i, for every i ∈ [0, 1], (9)

it is U·D order relation on EC.

Proof: The proof follows directly from the U·D relation ⊇I defined on XI . �

Remember the approaching notions, which are offered in the literature. If w̃, x̃ ∈ EC
and i ∈ R, then, for every i ∈ [0, 1], the arithmetic operations are defined by

[w̃⊕ x̃]i = [w̃]i + [̃x]i, (10)

[w̃⊗ x̃]i = [w̃]i × [ x̃]i, (11)

[m� w̃]i = m.[w̃]i. (12)

These operations follow directly from the Equations (4)–(6), respectively.

Theorem 1. The space EC dealing with a supremum metric, i.e., for w̃, x̃ ∈ EC [83]

d∞(w̃, x̃) = sup
0≤i≤1

dH

(
[w̃]i, [̃x]i

)
, (13)

is a complete metric space, where H denote the well-known Hausdorff metric on space of intervals.

Riemann Integral Operators for Interval and Fuzzy-Number Valued Mappings

Now we define and discuss some properties of fractional integral operators of interval
and fuzzy-number valued mappings.

Theorem 2. If Y : [u, z] ⊂ R→ XI is an interval-valued mapping (I·V·M) satisfying that
Y(
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Definition 5. Let Ỹ : [u, z] ⊂ R→ EC is F-N·V·M. The fuzzy Aumann integral ((FA)-integral)
of Ỹ over [u, z], denoted by (FA)
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u Ỹ(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

)d

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

∈ EC.
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for every i ∈ [0, 1].
The family of all (FA)-integrable F-N·V·Ms over [u, z], are denoted by FA([u, z], i).
Allahviranloo et al. [86] introduced the following fuzzy Riemann–Liouville fractional

integral operators:

Definition 6. Let α > 0 and L([u, z],EC) be the collection of all Lebesgue measurable F-N·V·M
on [u, z]. Then the fuzzy left and right Riemann–Liouville fractional integral of Y ∈ L([u, z],EC)
with order α > 0 are defined by

Iα
u+ Y(
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were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
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with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
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Breckner discussed the coming emerging idea of interval-valued convexity in [79].
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, y ∈ [u, z], m ∈ [0, 1], where XI is the collection of all real-valued intervals. If (17)
is reversed, then Y is called concave.

Definition 7. The F-N·V·M Ỹ : [u, z]→ EC is called convex F-N·V·M on [u, z] if [80]
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pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
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pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 
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∈ [u, z]. If (19) is reversed then,
Ỹ is called U·D concave F-N·V·M on [u, z]. Ỹ is U·D affine F-N·V·M if and only if it is both
U·D convex and, U·D concave F-N·V·M.

Definition 9. Let K be convex set and λ : [0, 1] ⊆ K → R+ such that λ
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N∙V∙M, 
1) if 𝛶 is U∙D 𝜆-convex F-N∙V∙M, then 𝛼𝛶 is also U∙D 𝜆-convex for 𝛼 ≥ 0.  
2) if 𝛶 and 𝒯 both are U∙D 𝜆-convex F-N∙V∙Ms, then max 𝛶(𝜘), 𝒯(𝜘)  is also U∙D 𝜆-convex F-N∙V∙M. 

Here, we will go through a few unique exceptional cases of U∙D 𝜆-convex F-N∙V∙Ms: 
(i) If 𝜆(𝑚) = 𝑚 , then U∙D 𝜆-convex F-N∙V∙M becomes U∙D 𝑠-convex F-N∙V∙M, that is 𝛶(𝑚𝜘 + (1 − 𝑚)𝘴) ⊇𝔽 𝑚 ⊙ 𝛶(𝜘) ⊕ (1 − 𝑚) ⊙ 𝛶(𝘴), ∀ 𝜘, 𝘴 ∈ 𝐾, 𝑚 ∈ [0, 1]. (27)

(ii) If 𝜆(𝑚) = 𝑚, then U∙D 𝜆-convex F-N∙V∙M becomes U∙D convex F-N∙V∙M, see [84], 
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Note that there are also new special cases (i) and (iii) as well. 

Theorem 4. Let 𝐾 be convex set, non-negative real-valued mapping 𝜆: [0, 1] ⊆ 𝐾 → ℝ such 
that 𝜆 ≢ 0 and let 𝛶: 𝐾 → 𝔼  be a F-N∙V∙M, whose 𝒾-levels define the family of I∙V∙Ms 𝛶𝒾: 𝐾 ⊂ℝ → 𝒳 ⊂ 𝒳  are given by 𝛶𝒾(𝜘) = [𝛶∗(𝜘, 𝒾), 𝛶∗(𝜘, 𝒾)],  (30)

for all 𝜘 ∈ 𝐾 and for all 𝒾 ∈ [0, 1]. Then 𝛶 is U∙D 𝜆-convex on 𝐾, if and only if, for all 𝒾 ∈ [0, 1], 𝛶∗(𝜘, 𝒾) and 𝛶∗(𝜘, 𝒾) are 𝜆-convex. 

0. Then F-N·V·M
Ỹ : K → EC is said to be U·D λ-convex on K if

Ỹ(m
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) ≥F 0̃.

Remark 2. The U·D λ-convex F-N·V·Ms have some very nice properties similar to convex
F-N·V·M,

1) if Ỹ is U·D λ-convex F-N·V·M, then αỸ is also U·D λ-convex for α ≥ 0.

2) if Ỹ and T̃ both are U·D λ-convex F-N·V·Ms, then max
(

Ỹ(
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a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
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(ii) If λ(m) = m, then U·D λ-convex F-N·V·M becomes U·D convex F-N·V·M, see [84],
that is
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Note that there are also new special cases (i) and (iii) as well.

Theorem 4. Let K be convex set, non-negative real-valued mapping λ : [0, 1] ⊆ K → R such that
λ
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0 and let Ỹ : K → EC be a F-N·V·M, whose i-levels define the family of I·V·Ms
Yi : K ⊂ R→ X+

I ⊂ XI are given by
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fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
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authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
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∈ K and for all i ∈ [0, 1]. Then Ỹ is U·D λ-convex on K, if and only if, for all
i ∈ [0, 1], Y∗(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

, i) and Y∗(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

, i) are λ-convex.

Proof. Assume that for each i ∈ [0, 1], Y∗(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

, i) and Y∗(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

, i) are λ-convex and λ-concave
on K. Then, we have

Y∗(m

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

+ (1−m)s, i) ≤ λ(m)Y∗(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

, i) + λ(1−m)Y∗(s, i), ∀

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

, s ∈ K, m ∈ [0, 1],

and

Y∗(m

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

+ (1−m)s, i) ≥ λ(m)Y∗(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

, i) + λ(1−m)Y∗(s, i), ∀

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

, s ∈ K, m ∈ [0, 1].

Then by (30), (10) and (12), we obtain

Yi(m

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

+ (1−m)s) = [Y∗(m

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

+ (1−m)s, i), Y∗(m

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
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Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
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ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

+ (1−m)s, i)],

⊇I [λ(m)Y∗(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

, i), λ(m)Y∗(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

, i)] + [λ(1−m)Y∗(s, i), λ(1−m)Y∗(s, i)],

that is
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ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 
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for each i ∈ [0, 1]. Hence, the result follows. �
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, i) is a λ-convex (λ-concave) mapping.

Remark 4. If λ(m) = m, then both concepts “U·D λ-convex F-N·V·M” and classical “convex
F-N·V·M, see [80]” are behave alike when Y is lower U·D convex F-N·V·M.

Both concepts “convex interval-valued mapping, see [79]”and “left and right λ-convex
interval-valued mapping, see [85]” are coincident when Y is lower U·D λ-convex F-N·V·M
with i = 1.

3. Main Results

The following is a proposal for our first primary result based on the newly presented
fuzzy-number valued U·D λ-convex mappings and the H·H-type integral inequalities.

Theorem 5. Let Ỹ : [u, z]→ EC be a U·D λ-convex F-N·V·M on [u, z], whose i-levels define
the family of I·V·Ms Yi : [u, z] ⊂ R→ K+

C are given by Yi(
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u+ Ỹ(z)⊕ Iα
z− Ỹ(u)
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Remark 5. From Theorem 5 we clearly see that:
If λ(m) = m , then Theorem 5 reduces to the result for λ-convex F-N·V·M, see [55]:
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and Theorem 5 is verified.
We propose the following Pachpatte-type fractional integral inclusions taking use of

the fuzzy-number valued U·D λ-convexity:
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Theorem 6. Let Ỹ, T̃ : [u, z]→ EC be U·D λ1-convex and λ2-convex F-N·V·Ms on [u, z], respec-
tively, whose i-levels Yi, Ti : [u, z] ⊂ R→ K+

C are defined by Yi(
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∈ [u, z] and for all i ∈ [0, 1]. If Ỹ⊗ T̃ ∈ L([u, z],E), then

Γ(α)
(z−u)α �

[
Iα

u+ Ỹ(z)⊗ T̃(z)⊕ Iα
z−Ỹ(u)⊗ T̃(u)

]
⊇F ∆̃(u, z)�

∫ 1
0 mα−1[λ1(m)λ2(m) + λ1(1−m)λ2(1−m)]dm

⊕ ∇̃(u, z)�
∫ 1

0
mα−1[λ1(m)λ2(1−m) + λ1(1−m)λ2(m)]dm, (47)

where ∆̃(u, z) = Ỹ(u)⊗ T̃(u) ⊕ Ỹ(z)⊗ T̃(z),, ∇̃(u, z) = Ỹ(u)⊗ T̃(z) ⊕ Ỹ(z)⊗ T̃(u), and
∆i(u, z) = [∆∗((u, z), i), ∆∗((u, z), i)] and ∇i(u, z) = [∇∗((u, z), i), ∇∗((u, z), i)].

Proof. Since Ỹ, T̃ both are U·D λ1-convex and λ2-convex F-N·V·Ms then, for each i ∈ [0, 1]
we have

Y∗(mu + (1−m)z, i) ≤ λ1(m)Y∗(u, i) + λ1(1−m)Y∗(z, i)
Y∗(mu + (1−m)z, i) ≥ λ1(m)Y∗(u, i) + λ1(1−m)Y∗(z, i).

and
T∗(mu + (1−m)z, i) ≤ λ2(m)T∗(u, i) + λ2(1−m)T∗(z, i)

T∗(mu + (1−m)z, i) ≥ λ2(m)T∗(u, i) + λ2(1−m)T∗(z, i).

From the Definition of U·D λ-convex F-N·V·Ms it follows that 0̃ ≤F Ỹ(
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), so

Y∗(mu + (1−m)z, i)× T∗(mu + (1−m)z, i)
≤ λ1(m)λ2(m)Y∗(u, i)× T∗(u, i) + λ1(1−m)λ2(1−m)Y∗(z, i)× T∗(z, i)
+λ1(m)λ2(1−m)Y∗(u, i)× T∗(z, i) + λ1(1−m)λ2(m)Y∗(z, i)× T∗(u, i)

Y∗(mu + (1−m)z, i)× T∗(mu + (1−m)z, i)
≥ λ1(m)λ2(m)Y∗(u, i)× T∗(u, i) + λ1(1−m)λ2(1−m)Y∗(z, i)× T∗(z, i)
+λ1(m)λ2(1−m)Y∗(u, i)× T∗(z, i) + λ1(1−m)λ2(m)Y∗(z, i)× T∗(u, i).

(48)

Analogously, we have

Y∗((1−m)u + mz, i)T∗((1−m)u + mz, i)
≤ λ1(1−m)λ2(1−m)Y∗(u, i)× T∗(u, i) + λ1(m)λ2(m)Y∗(z, i)× T∗(z, i)
+λ1(1−m)λ2(m)Y∗(u, i)× T∗(z, i) + λ1(m)λ2(1−m)Y∗(z, i)× T∗(u, i)

Y∗((1−m)u + mz, i)× T∗((1−m)u + mz, i)
≥ λ1(1−m)λ2(1−m)Y∗(u, i)× T∗(u, i) + λ1(m)λ2(m)Y∗(z, i)× T∗(z, i)
+λ1(1−m)λ2(m)Y∗(u, i)× T∗(z, i) + λ1(m)λ2(1−m)Y∗(z, i)× T∗(u, i).

(49)

Adding (48) and (49), we have

Y∗(mu + (1−m)z, i)× T∗(mu + (1−m)z, i)
+Y∗((1−m)u + mz, i)× T∗((1−m)u + mz, i)

≤ [λ1(m)λ2(m) + λ1(1−m)λ2(1−m)][Y∗(u, i)× T∗(u, i) + Y∗(z, i)× T∗(z, i)]
+[λ1(m)λ2(1−m) + λ1(1−m)λ2(m)][Y∗(z, i)× T∗(u, i) + Y∗(u, i)× T∗(z, i)]

Y∗(mu + (1−m)z, i)× T∗(mu + (1−m)z, i)
+Y∗((1−m)u + mz, i)× T∗((1−m)u + mz, i)

≥ [λ1(m)λ2(m) + λ1(1−m)λ2(1−m)][Y∗(u, i)× T∗(u, i) + Y∗(z, i)× T∗(z, i)]
+[λ1(m)λ2(1−m) + λ1(1−m)λ2(m)][Y∗(z, i)× T∗(u, i) + Y∗(u, i)× T∗(z, i)].

(50)
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Taking multiplication of (50) with mα−1 and integrating the obtained result with
respect to m over (0,1), we have∫ 1

0 mα−1Y∗(mu + (1−m)z, i)× T∗(mu + (1−m)z, i)
+mα−1Y∗((1−m)u + mz, i)× T∗((1−m)u + mz, i)dm

≤ ∆∗((u, z), i)
∫ 1

0 mα−1[λ1(m)λ2(m) + λ1(1−m)λ2(1−m)]dm
+∇∗((u, z), i)

∫ 1
0 mα−1[λ1(m)λ2(1−m) + λ1(1−m)λ2(m)]dm∫ 1

0 mα−1Y∗(mu + (1−m)z, i)× T∗(mu + (1−m)z, i)
+mα−1Y∗((1−m)u + mz, i)× T∗((1−m)u + mz, i)dm

≥ ∆∗((u, z), i)
∫ 1

0 mα−1[λ1(m)λ2(m) + λ1(1−m)λ2(1−m)]dm
+∇∗((u, z), i)

∫ 1
0 mα−1[λ1(m)λ2(1−m) + λ1(1−m)λ2(m)]dm.

It follows that,

Γ(α)
(z−u)α

[
Iα

u+ Y∗(z, i)× T∗(z, i) + Iα
z− Y∗(u, i)× T∗(u, i)

]
≤ ∆∗((u, z), i)

∫ 1
0 mα−1[λ1(m)λ2(m) + λ1(1−m)λ2(1−m)]dm

+∇∗((u, z), i)
∫ 1

0 mα−1[λ1(m)λ2(1−m) + λ1(1−m)λ2(m)]dm.
Γ(α)

(z−u)α

[
Iα

u+ Y∗(z, i)× T∗(z, i) + Iα
z− Y∗(u, i)× T∗(u, i)

]
≥ ∆∗((u, z), i)

∫ 1
0 mα−1[λ1(m)λ2(m) + λ1(1−m)λ2(1−m)]dm

+∇∗((u, z), i)
∫ 1

0 mα−1[λ1(m)λ2(1−m) + λ1(1−m)λ2(m)]dm.

It follows that

Γ(α)
(z−u)α

[
Iα

u+Y∗(z, i)× T∗(z, i) + Iα
z− Y∗(u, i)× T∗(u, i), Iα

u+ Y∗(z, i)× T∗(z, i) + Iα
z− Y∗(u, i)× T∗(u, i)

]
⊇I [∆∗((u, z), i), ∆∗((u, z), i)]

∫ 1
0 mα−1[λ1(m)λ2(m) + λ1(1−m)λ2(1−m)]dm

+[∇∗((u, z), i), ∇∗((u, z), i)]
∫ 1

0 mα−1[λ1(m)λ2(1−m) + λ1(1−m)λ2(m)]dm,

that is
Γ(α)

(z−u)α

[
Iα

u+ Yi(z)× Ti(z) + Iα
z−Yi(u)× Ti(u)

]
⊇I ∆i(u, z)

∫ 1
0 mα−1[λ1(m)λ2(m) + λ1(1−m)λ2(1−m)]dm

+∇i(u, z)
∫ 1

0 mα−1[λ1(m)λ2(1−m) + λ1(1−m)λ2(m)]dm.

Thus,

Γ(α)
(z−u)α �

[
Iα

u+ Ỹ(z)⊗ T̃(z)⊕ Iα
z−Ỹ(u)⊗ T̃(u)

]
⊇F ∆̃(u, z)�

∫ 1
0 mα−1[λ1(m)λ2(m) + λ1(1−m)λ2(1−m)]dm

⊕∇̃(u, z)�
∫ 1

0 mα−1[λ1(m)λ2(1−m) + λ1(1−m)λ2(m)]dm.

and the theorem has been established. �

Example 3. Let [u, z] = [0, 2], α = 1
2 , and the F-N·V·Ms Ỹ, T̃ : [u, z] = [0, 2]→ EC, defined by

Ỹ(
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convex and λ-concave mappings with λ(m) = m, for each i ∈ [0, 1], we have Y(
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and Theorem 6 has been demonstrated.

Theorem 7. Let Ỹ, T̃ : [u, z]→ EC be two U·D λ1-convex and λ2-convex F-N·V·Ms, re-
spectively, whose i-levels define the family of I·V·Ms Yi, Ti : [u, z] ⊂ R→ K+

C are given by
Yi(
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where ∆̃(u, z) = Ỹ(u)⊗ T̃(u)⊕ Ỹ(z)⊗ T̃(z), ∇̃(u, z) = Ỹ(u)⊗ T̃(z)⊕ Ỹ(z)⊗ T̃(u), and
∆i(u, z) = [∆∗((u, z), i), ∆∗((u, z), i)] and ∇i(u, z) = [∇∗((u, z), i), ∇∗((u, z), i)].

Proof. Consider Ỹ, T̃ : [u, z]→ EC are U·D λ1-convex and λ2-convex F-N·V·Ms. Then, by
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+Y∗((1−m)u + mz, i)× T∗((1−m)u + mz, i)

]
,

≤ λ1

(
1
2

)
λ2

(
1
2

)[ Y∗(mu + (1−m)z, i)× T∗(mu + (1−m)z, i)
+Y∗((1−m)u + mz, i)× T∗((1−m)u + mz, i)

]

+λ1

(
1
2

)
λ2

(
1
2

)
(mY∗(u, i) + (1−m)Y∗(z, i))
×((1−m)T∗(u, i) + mT∗(z, i))
+((1−m)Y∗(u, i) + mY∗(z, i))
×(mT∗(u, i) + (1−m)T∗(z, i))


≥ λ1

(
1
2

)
λ2

(
1
2

)[ Y∗(mu + (1−m)z, i)× T∗(mu + (1−m)z, i)
+Y∗((1−m)u + mz, i)× T∗((1−m)u + mz, i)

]

+λ1

(
1
2

)
λ2

(
1
2

)
(mY∗(u, i) + (1−m)Y∗(z, i))
×((1−m)T∗(u, i) + mT∗(z, i))
+((1−m)Y∗(u, i) + mY∗(z, i))
×(mT∗(u, i) + (1−m)T∗(z, i))

,

= λ1

(
1
2

)
λ2

(
1
2

)[ Y∗(mu + (1−m)z, i)× T∗(mu + (1−m)z, i)
+Y∗((1−m)u + mz, i)× T∗((1−m)u + mz, i)

]
+λ1

(
1
2

)
λ2

(
1
2

)[ {λ1(m)λ2(1−m) + λ1(1−m)λ2(m)}∇∗((u, z), i)
+{λ1(m)λ2(m) + λ1(1−m)λ2(1−m)}∆∗((u, z), i)

]
= λ1

(
1
2

)
λ2

(
1
2

)[ Y∗(mu + (1−m)z, i)× T∗(mu + (1−m)z, i)
+Y∗((1−m)u + mz, i)× T∗((1−m)u + mz, i)

]
+λ1

(
1
2

)
λ2

(
1
2

)[ {λ1(m)λ2(1−m) + λ1(1−m)λ2(m)}∇∗((u, z), i)
+{λ1(m)λ2(m) + λ1(1−m)λ2(1−m)}∆∗((u, z), i)

]
.

(54)

Taking multiplication of (54) with mα−1 and integrating over (0, 1), we get

1
αλ1( 1

2 )λ2( 1
2 )

Y∗
( u+z

2 , i
)
× T∗

( u+z
2 , i

)
≤ Γ(α)

(z−u)α

[
Iα

u+ Y∗(z)× T∗(z) + Iα
z− Y∗(u)× T∗(u)

]
+∇∗((u, z), i)

∫ 1
0

[
mα−1 + (1−m)α−1

]
λ1(m)λ2(1−m)dm.

+∆∗((u, z), i)
∫ 1

0

[
mα−1 + (1−m)α−1

]
λ1(1−m)λ2(1−m)dm

1
αλ1( 1

2 )λ2( 1
2 )

Y∗
( u+z

2 , i
)
× T∗

( u+z
2 , i

)
≥ Γ(α)

(z−u)α

[
Iα

u+ Y∗(z)× T∗(z) + Iα
z− Y∗(u)× T∗(u)

]
+∇∗((u, z), i)

∫ 1
0

[
mα−1 + (1−m)α−1

]
λ1(m)λ2(1−m)dm

+∆∗((u, z), i)
∫ 1

0

[
mα−1 + (1−m)α−1

]
λ1(1−m)λ2(1−m)dm.
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It follows that

1
αλ1( 1

2 )λ2( 1
2 )

Yi
( u+z

2
)
× Ti

( u+z
2
)

⊇I
Γ(α)

(z−u)α

[
Iα

u+ Yi(z)× Ti(z) + Iα
z− Yi(u)× Ti(u)

]
+∇i(u, z)

∫ 1
0

[
mα−1 + (1−m)α−1

]
λ1(1−m)λ2(1−m)dm

+∆i(u, z)
∫ 1

0

[
mα−1 + (1−m)α−1

]
λ1(1−m)λ2(1−m)dm,

that is
1

αλ1( 1
2 )λ2( 1

2 )
Ỹ
( u+z

2
)
×̃T̃
( u+z

2
)

⊇F
Γ(α)

(z−u)α �
[
Iα

u+ Ỹ(z)⊗ T̃(z)⊕ Iα
z− Ỹ(u)⊗ T̃(u)

]
⊕∇̃(u, z)�

∫ 1
0

[
mα−1 + (1−m)α−1

]
λ1(1−m)λ2(1−m)dm

⊕∆̃(u, z)�
∫ 1

0

[
mα−1 + (1−m)α−1

]
λ1(1−m)λ2(1−m)dm.

Hence, the required result. �
Let us introduce a new version of fuzzy fractional H·H-type-Fejér inequality with

the help of U·D λ-convex F-N·V·M. Firstly, we obtain the right part of classical H·H Fejér
inequality through fuzzy Riemann–Liouville fractional integral is known as the second
fuzzy fractional H·H Fejér inequality.

Theorem 8. (Second fuzzy fractional H·H Fejér type inequality) Let Ỹ : [u, z]→ EC be a U·D λ-
convex F-N·V·M with u < z, whose i-levels define the family of I·V·Ms Yi : [u, z] ⊂ R→ K+

C are
given by Yi(
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It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 
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∈ [u, z] and for all i ∈ [0, 1]. If Ỹ ∈ L([u, z],EC)
and F : [u, z]→ R, F(
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) ≥ 0, symmetric with respect to u+z
2 , then

Γ(α)
(z−u)α �

[
Iα

u+ ỸF(z)⊕ Iα
z− ỸF(u)

]
⊇F

Ỹ(u)⊕Ỹ(z)
2 �

∫ 1
0 mα−1[λ(m) + λ(1−m)]F((1−m)u + mz)dm.

(55)

If Ỹ is U·D λ-concave F-N·V·M, then inequality (55) is reversed.

Proof. Let Ỹ be a U·D λ-convex F-N·V·M and mα−1F(mu + (1−m)z) ≥ 0. Then, for each
i ∈ [0, 1], we have

mα−1Y∗(mu + (1−m)z, i)F(mu + (1−m)z)
≤ mα−1(λ(m)Y∗(u, i) + λ(1−m)Y∗(z, i))F(mu + (1−m)z)

mα−1Y∗(mu + (1−m)z, i)F(mu + (1−m)z)
≥ mα−1(λ(m)Y∗(u, i) + λ(1−m)Y∗(z, i))F(mu + (1−m)z),

(56)

and
mα−1Y∗((1−m)u + mz, i)F((1−m)u + mz)

≤ mα−1(λ(1−m)Y∗(u, i) + λ(m)Y∗(z, i))F((1−m)u + mz)
mα−1Y∗((1−m)u + mz, i)F((1−m)u + mz)

≥ mα−1(λ(1−m)Y∗(u, i) + λ(m)Y∗(z, i))F((1−m)u + mz).

(57)
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After adding (56) and (57), and integrating over [0, 1], we get

1∫
0

mα−1Y∗(mu + (1−m)z, i)F(mu + (1−m)z)dm

+
∫ 1

0 mα−1Y∗((1−m)u + mz, i)F((1−m)u + mz)dm

≤
∫ 1

0

[
mα−1Y∗(u, i){λ(m)F(mu + (1−m)z) + λ(1−m)F((1−m)u + mz)}
+mα−1Y∗(z, i){λ(1−m)F(mu + (1−m)z) + λ(m)F((1−m)u + mz)}

]
dm

= Y∗(u, i)
∫ 1

0 mα−1[λ(m) + λ(1−m)]F(mu + (1−m)z)dm
+Y∗(z, i)

∫ 1
0 mα−1[λ(m) + λ(1−m)]F((1−m)u + mz)dm,∫ 1

0 mα−1Y∗((1−m)u + mz, i)F((1−m)u + mz)dm
+
∫ 1

0 mα−1Y∗(mu + (1−m)z, i)F(mu + (1−m)z)dm

≥
∫ 1

0

[
mα−1Y∗(u, i){λ(m)F(mu + (1−m)z) + λ(1−m)F((1−m)u + mz)}
+mα−1Y∗(z, i){λ(1−m)F(mu + (1−m)z) + λ(m)F((1−m)u + mz)}

]
dm

= Y∗(u, i)
∫ 1

0 mα−1[λ(m) + λ(1−m)]F(mu + (1−m)z)dm
+Y∗(z, i)

∫ 1
0 mα−1[λ(m) + λ(1−m)]F((1−m)u + mz)dm.

(58)

Taking right hand side of inequality (58), we have∫ 1
0 mα−1Y∗(mu + (1−m)z, i)F((1−m)u + mz)dm

+
∫ 1

0 mα−1Y∗((1−m)u + mz, i)F((1−m)u + mz)dm
= 1

(z−u)α

∫ z
u (
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It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
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formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 
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researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
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pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
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grals using this idea. Additionally, [66] and [67] address a few applications of interval-
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Now, we obtain the following result connected with left part of classical H·H Fejér
inequality for U·D λ-convex F-N·V·M through fuzzy order inclusion relation which is
known as first fuzzy fractional H·H Fejér inequality. �
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Theorem 9. (First fuzzy fractional H·H Fejér inequality) Let Ỹ : [u, z]→ EC be a U·D λ-convex
F-N·V·M with u < z, whose i-levels define the family of I·V·Ms Yi : [u, z] ⊂ R→ K+

C are given
by Yi(
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If Ỹ is U·D λ-concave F-N·V·M, then inequality (60) is reversed.
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z− ỸF(u)

]
.

This completes the proof. �

Remark 6. If F(

Fractal Fract. 2022, 6, x FOR PEER REVIEW 2 of 24 
 

 

It has been demonstrated that fractional calculus, as a rather robust technique, is an 
essential foundational element not only in the mathematical sciences but also in the ap-
plied sciences. The field has drawn a lot of research interest in order to answer the im-
portant topic. Therefore, many authors have discovered some important integral inequal-
ities by effectively combining different fractional integral techniques. For example, Ah-
mad et al. [35] studied four different inequalities for convex mappings involving fractional 
integrals with exponential kernels, Mohammed and Sarikaya [36] studied some inequali-
ties involving Sarikaya fractional integrals for twice differentiable mappings, and Set et 
al. [37] studied the Hermetic inequalities involving Atangana–Baleanu fractional integral 
operators, Khan et al. [38] and Meftah et al. [39] proposed H∙H-type inequalities for con-
formable fractional integral operators, and Dragomir [40] obtained H∙H-type inequalities 
for generalized conformable Riemann–Liouville fractional integrals. We recommend [41–
56] to readers who are interested in learning additional significant results relating to frac-
tional integrals. 

The study of the characteristics and uses of interval-valued mappings (I∙V∙Ms) is the 
focus of the branch of set value analysis known as interval analysis [57], which now has a 
major impact on both the pure and practical sciences. The error boundaries of a numerical 
solution for a finite state machine were first determined using interval analysis. Interval 
analysis has grown rapidly over the last several decades and has significant implications 
for many disciplines of applied sciences, including neural network output optimization 
[58], computer graphics [59], and automatic error analysis [60]. Numerous academics have 
researched the current hot topics of various interval analysis theories up until this point 
in time. For instance, Budak et al. [61] expanded the interval-valued mapping 𝛶 𝜘  de-
fined on ℝ to the interval-valued mapping 𝛶 𝜘, 𝑦  defined on ℝ  via Riemann–Liou-
ville fractional integrals. For interval-valued coordinated convex mappings, they derived 
a few fractional integral inequalities of the H∙H-type. For interval-valued mappings, Costa 
et al. [62] created certain inequalities based on the Kulisch–Miranker order relation. They 
were able to obtain the Gauss inequalities for interval mappings by utilizing Aumann’s 
and Kaleva’s improper integrals. A family of log-s-convex fuzzy-interval-valued map-
pings was explored by Liu et al. [63]. With the use of this sort of mapping, they were able 
to obtain a few Jensen- and H∙H-Fejer-type inequalities. Interval-valued preinvex map-
pings are a notion first developed by Srivastava et al. [64]. The authors also provided the 
Riemann–Liouville fractional integrals-specific modifications of the H∙H-type inequali-
ties. The concept of interval-valued harmonical h-convex mapping was introduced by the 
authors in [65]. They obtained many H∙H-type inequalities for the interval Riemann inte-
grals using this idea. Additionally, [66] and [67] address a few applications of interval-
valued mappings in optimization theory. The reader who is interested in recent advance-
ments in interval-valued mappings can consult [68–76] and the references they cite. 

Recently, Khan et al., inspired by the following research articles, introduced different 
classes of convexity and nonconvexity in the fuzzy environment, see [77–80]. Moreover, 
with the help of new classes, some new versions of fuzzy H∙H- and Pachpatte-type inte-
gral inequalities were obtained with the fuzzy Riemann and fuzzy fractional integral by 
using fuzzy order relation. Recently, Khan et al. [81] discussed the level-wise characteri-
zation of fuzzy inclusion relation and then acquired the new versions of fuzzy H∙H-type 
inequalities for U∙D convex fuzzy mappings and products of U∙D convex fuzzy mappings 
with support of fuzzy inclusion relation. Some new classes were also introduced by ap-
plying some mild restrictions on U∙D convex fuzzy mappings to achieve new and classical 
exceptional cases. For more information related to F-N∙V∙M and fuzzy-related concepts, 
see [82–95] and the references therein 

The present study is dedicated to resolving various fuzzy inclusion relations relating 
to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 

) = 1, then from Theorem 8 and Theorem 9, we get Theorem 5.
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to fuzzy fractional integrals and is motivated and inspired by the aforementioned studies, 
particularly the findings studied in [71,54] and [85]. We offer a family of fuzzy-number 
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for each i ∈ [0, 1].
Hence, Theorem 8 is verified.
For Theorem 9, we have
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From (71) and (72), we have
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for each i ∈ [0, 1].

4. Conclusions

This study is the first to address fuzzy fractional inclusion relations including fuzzy-
number valued λ-convexity, as far as we are aware. Here, we derive the fuzzy fractional
integral inclusions for the recently proposed family of mappings together with the H·H- and
Pachpatte-type inequality. Specifically, for the fuzzy-number valued λ-convex mappings,
we provide an enhanced version of the fuzzy H·H-type integral inclusions. This study’s
fuzzy integral inclusion relations are significant expansions of the findings made by Tunç
in [68]. We would like to underline the wide variety of uses for fuzzy interval analysis
in practical mathematics, particularly in the area of fuzzy optimality analysis; for more
information, check the published publications [54,71,85]. In certain ways, more studies
should be conducted on the significant field of fuzzy-number-valued analytic research that
is connected to fuzzy fractional integral operators.
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