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Abstract: We continue the development of the basic theory of generalized derivatives as introduced
and give some of their applications. In particular, we formulate necessary conditions for extrema,
Rolle’s theorem, the mean value theorem, the fundamental theorem of calculus, integration by
parts, along with an existence and uniqueness theorem for a generalized Riccati equation, each of
which provides simple proofs of the corresponding version for the so-called conformable fractional
derivatives considered by many. Finally, we show that for each α > 1 there is a fractional derivative
and a corresponding function whose fractional derivative fails to exist everywhere on the real line.
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1. Introduction

In a previous paper [1] generalized derivatives of the form

Dp f (t) = lim
h→0

f (p(t, h))− f (t)
h

(1)

were introduced whenever the limit exists and is finite. Here p is a real valued function
of the two real variables (t, h) where t is defined on some interval I ⊆ R. Recently, two
special cases of fractional derivatives of order α (with 0 < α < 1) were defined by means of
the limit definition,

Dα f (t) = lim
h→0

f (p(t, h, α))− f (t)
h

(2)

where p(t, h, α) = t + ht1−α see Katugampola [2], and where p(t, h, α) = t exp(ht−α), see
Khalil [3]. Under mild conditions on p it can be shown (see [1]) that such p-derivatives
satisfy all the basic rules of differentiation (Product rule, etc.) and that indeed, the deriva-
tives defined in [2,3] are special cases of these where, however, ph(t, 0) 6= 0 (ph(t, h) is the
partial derivative of p with respect to its second variable). We note that these generalized
derivatives, that are not of themselves fractional derivatives, may include some recently
considered fractional derivatives. For example, criteria for considering a derivative as
fractional can be found in [4] where it was noticed that, according to that criteria, the
conformable fractional derivative defined in [3] would not, per se, be a fractional deriva-
tive. However, the notion of generalized derivatives defined herein should not be made
to adhere to the strict assumptions outlined in [4] as these p-derivatives are not, strictly
speaking, fractional and thus we take as basic the properties accepted in [5] and other
books in analysis as our starting point.

We will show below that the fractional derivatives considered in [2,3] among others
specified later are essentially integer valued ordinary derivatives except possibly in at most
one point. This is another reason, in addition to [4], to suggest that they should not be
considered “fractional”.
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We now know (see [1]) that whenever f is a differentiable function (in the ordinary
sense, i.e., when p(t, h) = t + h) and ph(t, 0) 6= 0, then the generalized derivative (1) exists
at t and

Dp f (t) = ph(t, 0) f ′(t). (3)

where the prime is the ordinary derivative of f at t. This shows that the existence of a
derivative implies the existence of a p-derivative so long as ph(t, 0) 6= 0. Indeed, (3) shows
that generalized or even the so-called fractional derivatives defined by either (1) and (2), or
by [2,3], are simply multiplication operators on the space of derivatives of differentiable
functions, or just weighted first order differential operators where the weight, represented
by ph(t, 0), may itself be sign-indefinite on I.

Possible physical applications of the foregoing theory can be found in [1], where it is
shown that in non-relativistic celestial mechanics elliptical orbits prevail independently
of the fractional derivative chosen. The resulting theory can then be included within the
framework of weighted operator theory of ordinary differential operators, not without its
own difficulties especially when the indicated partial derivative changes sign on intervals
or, more generally, on sets of positive measure.

One may think of these generalized derivatives as momentum operators where the
ph-term in (3) can serve both as a classical positive mass or hypothetically as a negative
mass. We note that such negative mass particles are a subject of current interest; see,
for example, [6] and the references therein. Negative masses can be interpreted as the
negative mass density, which belongs to a kind of exotic hypothetical matter distribution
like dark matter or dark energy. This could happen conceptually, for example, due to a
region of space where the stress component of the Einstein energy-momentum tensor is
larger in magnitude than the mass density or due to the Casimir effect. More importantly,
from the physical point of view, a negative mass violates energy conditions in general
relativity and has its own consequence [7–9]. However, positive energy is not a required
condition for the mathematical consistency of the theory, and this concept can be built up
only mathematically.

By way of examples, there has been a flurry of activity of late in the area of locally
defined fractional differential operators and corresponding equations. Among these we
cite [2,3,10–18]. We cannot begin to cite all the references related to these as, for example,
Google Scholar refers to more than 2000 references to paper [3] alone! Clearly, our bibliog-
raphy cannot be exhaustive. In the sequel, unless otherwise specified, α, β will denote real
parameters with 0 < α < 1, β 6= 0, and β 6∈ Z−.

Khalil, et al. [3] define a function f to be α−differentiable at t > 0 if the limit,

Tα
0 f (t) = lim

h→0

f (t + ht1−α)− f (t)
h

. (4)

exists and is finite. Katugampola [2] presented another (locally defined) derivative by
requiring that, for t > 0,

Tα
0 f (t) = lim

h→0

f (teht−α
)− f (t)
h

. (5)

exist and be finite. Recently, other authors, e.g., [10], considered minor variations in the
definition (4) by assuming that, for t > 0,

DGFD f (t) = lim
h→0

f (t + Γ(β) ht1−α

Γ(β−α+1) )− f (t)

h
. (6)

exist and be finite. Note that in each of the three definitions, the case α = 1 (and β = 1 in
(6)) leads to the usual definition of a derivative (see Section 2 in the case of (5)).

Observe that, in each case, (4)–(6), the derivatives are defined for t > 0. As many
authors have noticed one merely needs to replace t1−α by (t − a)1−α in each of these
definitions to allow for a derivative to be defined on an a given interval (a, b), whether
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finite or infinite. In the case of (5) the point t = 0 must be excluded as it is not in the domain
of definition of the exponential.

More recently, Gúzman et al. [19], considered a fractional derivative called the N-
derivative defined for t > 0 by

Nα
F f (t) = lim

h→0

f (t + het−α
)− f (t)

h
. (7)

The function f is said to be N-differentiable if (7) exists and is finite. In a later paper [20],
the authors stated slight extensions of the previous definition to another Nα

F(t) derivative
defined by the existence and finiteness of the limit,

Nα
F f (t) = lim

h→0

f (t + hF(t, α))− f (t)
h

. (8)

Here F seems to have been left generally unspecified, yet the authors obtain the relation
(see [20], Equation (2))

Nα
F f (t) = F(t, α) f ′(t), (9)

also a consequence of Theorem 3 below and the results in [1] but whose validity is sensitive
to the behaviour of the function F. We will show below that the fractional derivatives
defined by anyone of (4)–(8) are, in fact, integer ordered differential operators multiplied
by a weight function.

By way of another example, we show that the definition of the generalized derivative,

Dα f (t) = lim
h→0

f (t + sin(h) (cos t)1−α)− f (t)
h

, (10)

where 0 < α < 1 and the limit exists and is finite for t ∈ [0, b], b < π/2, can also be handled
by our methods and will lead to results that are a consequence of the definition in [1].
Observe, in passing, that the case where α = 1 in (10), i.e., Dα f (t) = f ′(t) whenever f is
differentiable in the ordinary sense.

These definitions of a generalized derivative function (sometimes called a fractional
derivative) on the real line will be referred to occasionally as locally defined derivatives as,
in each case, knowledge of f is required merely in a neighborhood of the point t under
consideration. In contrast, in the case of the more traditional Riemann-Liouville or Caputo
fractional derivatives, knowledge of the function f is required on a much larger interval
including the point t, see e.g., [21]. The previous, though very popular, derivatives defined
in terms of singular integral operators will not be considered here.

In this paper we continue the study of the generalized derivatives introduced in [1]
and show that a large number of definitions such as (4)–(8) and (10) can be included in
the more general framework of [1]. Thus, the results obtained in papers using either
of the above definitions are actually a corollary of our results. We also find versions of
Rolle’s theorem, the mean value theorem, and the fundamental theorem of calculus, a
result on the nowhere fractional differentiability of a class of fractional derivatives and
corresponding functions, as well as an existence and uniqueness theorem for a generalized
Riccati differential equation, all of which generalize many results in the literature.

In Section 2 we show that a large class of known fractional derivatives are actually
integer order derivatives at all points except at most one. In Section 3 we summarize
briefly the notion of p-derivatives as introduced in [1] and show that these derivatives
all satisfy the usual properties (such as linearity, the product rule, the quotient rule, and
the chain rule). We then formulate general versions of the mean value theorem (see
Theorem 5) and study the cases where ph(t, 0) 6= 0 and ph(t, 0) = 0, separately as each
leads to widely differing results. Thus, in Section 4 we formulate a fundamental theorem of
calculus and an integration by parts formula in the former case where ph(t, 0) 6= 0 while
in Section 5 we consider the same results in the anomalous case where ph(t, 0) = 0 and
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show that, generally speaking, such fundamental results are not possible. In the same
section we consider the problem of determining classes of functions that are p-differentiable
everywhere and nowhere p-differentiable everywhere. In Section 6 we apply the preceding
theory to the formulation of an existence and uniqueness theorem for a p-differential
equation of Riccati-type on a finite interval whose solutions can be approximated arbitrarily
closely and uniformly by the method of successive approximations. We conclude by asking
a question to which the answer evades us, namely, whether there is a function p, satisfying
(20), and a function f such that f is p-differentiable and such that Dp f (t) 6= 0 for all t in
some interval.

2. Preliminary Observations

The authors in each of [2,3,10] point out that the notion of differentiability represented
by either one of the definitions (4)–(6), is more general than the usual one by showing that
there are examples whereby α−differentiability does not imply differentiability in the usual
sense, although the converse holds. However, note that for t > 0 the change of variable
s = t + ht1−α shows that

lim
h→0

f (t + ht1−α)− f (t)
h

=
1

tα−1 lim
s→t

f (s)− f (t)
s− t

.

Consequently, the left hand limit exists if and only if the right hand limit exists. Thus, for
t > 0, p-differentiability is equivalent to ordinary differentiability and the only possible
exception is at t = 0 (which is excluded anyway, by definition). A similar argument applies
in the case of (6).

Insofar as (5) is concerned, observe that solving for h after the change of variable
s = teht−α

is performed, and t > 0, leads one to

lim
h→0

f (teht−α
)− f (t)
h

=
1
tα

(
lim
s→t

f (s)− f (t)
s− t

)(
lim
s→t

s− t
ln s− ln t

)
=

1
tα−1 lim

s→t

f (s)− f (t)
s− t

.

It follows that both definitions, (4) and (5), coincide for t > 0 (see also [1]). Definition (6) is
simply a re-scaling of (4) by a constant as can be verified by replacing h in (4) by hcwhere
c = Γ(β)/Γ(β− α + 1). Thus, strictly speaking, although it appears to be more general
than (4), it isn’t really so.

Next, observe that, for t > 0, the N-derivative defined by (7),

lim
h→0

f (t + het−α
)− f (t)

h
=

1
e−tα

(
lim
s→t

f (s)− f (t)
s− t

)
= etα

f ′(t)

if either limit exists. Thus, for t > 0, f is N-differentiable if and only if f is differentiable in
the ordinary sense. This means that in [19] (and Theorem 2.3 (f) therein), N-differentiability
is equivalent to ordinary differentiability (see the Remark in [19], p.91).

For definition (10), note that, for t ∈ [0, b], b < π/2,

lim
h→0

f (t + sin(h) cos(t)1−α)− f (t)
h

= lim
s→t

f (s)− f (t)
s− t

lim
s→t

s− t
arcsin((s− t) sec1−α(t)

= cos1−α(t) f ′(t),

if either limit on the left or right exists.
Definition (10) gives something new that hasn’t been studied before but falls within

the framework of the theory developed in [1]. These observations lead to the following
theorem (see also Theorem 2.4 in [1]).

Finally, for the generalized derivative defined by (8), it can be shown that this and the
previous results are consequences of Proposition 3 below.
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Theorem 1. For t > 0 (resp. t ≥ 0) a function is differentiable in the sense of either (4), (5), or (6),
(8), (9) (resp. (10)) if and only if it is differentiable in the usual sense.

Remark 1. It follows that the conformable fractional derivatives defined above (except for (10))
are actually differentiable in the ordinary sense whenever t > 0, the only possible point of non-
differentiability being at t = 0.

3. Generalized Derivatives

Let f : I → R , I ⊆ R and p : Uδ → R where Uδ = {(t, h) : t ∈ I, |h| < δ} for
some δ > 0 is some generally unspecified neighborhood of (t, 0). Unless δ is needed in a
calculation we shall simply assume that this condition is always met. Of course, we always
assume that the range of p is contained in I. In the sequel, L(I) ≡ L1(I) is the usual space
of Lebesgue integrable functions on I.

For a given α, the generalized derivative or p-derivative in [1] is defined by

Dp f (t) = lim
h→0

f (p(t, h))− f (t)
h

. (11)

whenever the limit exists and is finite. Occasionally, we’ll introduce the parameter α
mentioned above into the definition so that the limit

Dα
p f (t) = lim

h→0

f (p(t, h, α))− f (t)
h

. (12)

will then be called the p-derivative of order α. Since α is a parameter (12) is actually a
special case of (11).

The main hypotheses on the function p are labeled H1± and H2 in [1] and can be
summarized together as follows:

Hypothesis 1. Given an interval I ⊂ R, in addition to requiring that for t ∈ I, the function
p(t, h), ph(t, h) are continuous in a neighborhood of h = 0, we ask that for t ∈ I and for all
sufficiently small ε > 0, p(t, h) = t± ε has a solution h = h(t, ε) such that h→ 0 as ε→ 0.

Occasionally, we will assume, in addition, that 1
ph(·,0)

∈ L(I).
NOTATION: The notations D, Dα, Dp, Dα

p will be used interchangeably, occasionally
for emphasis.

It is easy to see that the notion of p-differentiability as defined in (11) is very general
in that it includes all the above definitions. To this end, it suffices to show that hypothesis
(H) is satisfied and this is a simple matter, see also [1].

Theorem 2. Each of the derivatives defined by (4)–(8), and (10) above are p-derivatives for an
appropriate function p satisfying (H).

The following basic property is expected of a generalized derivative and indeed holds
for the class considered here and in [1].

Theorem 3. (See Theorem 2.1 in [1]). Let p satisfy (H). If f is p-differentiable at a then f is
continuous at a.

Corollary 1. Let f be α-differentiable where the α-derivative is defined in either (4)–(8) or (10).
Then f is continuous there.

Remark 2. We note that Corollary 1 includes Theorem 2.1 in [3]; Theorem 2.2 in [2], and Theorem
2.2 in [19]).



Fractal Fract. 2022, 6, 672 6 of 16

The usual rules for differentiation are also valid in this more general scenario. In the
sequel for a given function p satisfying (H) we will write Dp := D or, if there is a parameter
dependence, Dα

p := D, for simplicity.

Proposition 1. (See Theorem 2.2 in [1] for proofs.)

(a) (Linearity) If f , g are both p-differentiable at t ∈ I and α is a constant, then then so is their
sum, f + αg, and

D( f + αg)(t) = D f (t) + αDg(t).

(b) (The product rule) Assume that p satisfies (H) and that for t ∈ I, p(t, h) is continuous at
h = 0. If f , g are both p-differentiable at t ∈ I then so is their product, f · g, and

D( f · g)(t) = f (t) · Dg(t) + g(t) · D f (t).

(c) (The quotient rule) Assume that p satisfies (H). If f , g are both p-differentiable at t ∈ I and
g(t) 6= 0 then so is their quotient, f /g, and

D
(

f
g

)
(t) =

g(t) · D f (t)− f (t) · Dg(t)
g(t)2 .

As a result we obtain,

Corollary 2. (See Theorem 2.2 in [3]; Theorem 2.3 in [2]; Theorem 4 in [10], and Theorem 2.3
in [19].) For each of the definitions (4)–(8) and (10) there holds an analog of the sum/product/and
quotient rule for differentiation of corresponding p-derivatives.

Proposition 2. (See [1], Theorem 2.4) Assume (H). Let f be continuous and non-constant on I,
and let f be p-differentiable at t ∈ I. Let g be defined on the range of f and let g be differentiable at
f (t). Then the composition g ◦ f is p-differentiable at t and

D(g ◦ f )(t) = g′( f (t)) D f (t).

Corollary 3. (See [3], p.66 (iv), although the chain rule is not stated correctly there, and
Theorem 2.3 in [2].) For each of the definitions (4)–(8) and (10) there holds an analog of the chain
rule for differentiation of corresponding p-derivatives in the form

D(g ◦ f )(t) = g′( f (t)) D f (t),

where D := Dα (resp. D := Dα
p) is the corresponding p-derivative in question defined in (11)

(resp. (12)).

We now proceed to formulating fundamental theorems of a calculus for generalized
derivatives. We begin by stating a necessary condition for extrema in terms of generalized
derivatives.

Theorem 4. Let f : [a, b] → R be such that Dp f (t) exists for every t ∈ (a, b). If f has a local
maximum (resp. minimum) at c ∈ (a, b) and for each t ∈ (a, b), and for all sufficiently small |h|
we have,

p(t, h) < t, h < 0 (resp. p(t, h) > t, h > 0), (13)

p(t, h) > t, h > 0 (resp. p(t, h) < t, h < 0), (14)

then Dp f (c) = 0.

Proof. We give the proof in the case where f (c) is a local maximum. By hypothesis (14),
there exists δ0 such that

p(t, h) > t, 0 < h < δ0.
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Since
p(c, h) > c, 0 < h < δ0,

and f (c) is a maximum, we can conclude that

f (p(c, h)) ≤ f (c).

Therefore

lim
h→0+

f (p(c, h))− f (c)
h

≤ 0.

Hence, Dp f (c) ≤ 0. Next, by hypothesis (13), there exists δ1 such that

p(c, h) < c, −δ1 < h < 0.

As before, since f (c) is a maximum,

lim
h→0−

f (p(c, h))− f (c)
h

≥ 0.

So, Dp f (c) ≥ 0. However, since Dp f (c) exists, it follows that Dp f (c) = 0. The proof in the
case where f (c) is a minimum is similar, and therefore omitted.

Next, we present a weak form of a general mean value theorem.

Theorem 5. A generalized mean value theorem. Let p satisfy the conditions of Theorem 4 and
let f be continuous on [a, b]. As an additional condition on p, assume that the p-derivative of the
function whose values are t− a exists for all t ∈ (a, b). Then there is a constant c ∈ (a, b) such that

Dp f (c) =
f (b)− f (a)

b− a
k, (15)

where the constant k is the p-derivative of the function whose values are t− a evaluated at t = c,

i.e., k = Dp(t− a)
∣∣∣∣
t=c

.

Proof. Define

h(t) = f (t)− f (a)− f (b)− f (a)
b− a

(t− a).

Then, by hypothesis, h is p-differentiable on (a, b), continuous on [a, b] and

Dph(t) = Dp f (t)− f (b)− f (a)
b− a

Dp(t− a).

In the event that Dph(t) = 0 for all t ∈ (a, b), c can be chosen to be any point in (a, b).
If Dph(t) 6= 0 for all such t we may assume, without loss of generality, that h(t) > 0
somewhere. Since h(a) = h(b) = 0, and h is continuous, it must achieve its maximum at,
say, t = c ∈ (a, b). By Theorem 4, Dph(c) = 0. The result follows.

Theorem 6. If, in addition to the hypotheses in Theorem 5, we have p(t, 0) = t, for every t, and
ph(t, 0) exists, then

Dp f (c) =
f (b)− f (a)

b− a
ph(c, 0).

Proof. Since

Dp(t− a)
∣∣∣∣
t=c

= lim
h→0

p(t, h)− a− (t− a)
h

= lim
h→0

p(t, h)− p(t, 0)
h

= ph(t, 0),
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the result follows.

In the next two sections we can formulate more precise results by considering the two
cases, ph(t, 0) 6= 0 and ph(t, 0) = 0.

4. The Case where ph(t, 0) 6= 0

We’ll see below that this restriction on p is the most common one and all fractional
derivatives presented (i.e., (4)–(8), and (10)) satisfy this condition. The next result, when
combined with Theorem 1, allows us to transform p-derivatives into ordinary derivatives.

Proposition 3. (See Theorem 2.4 in [1]) Let p satisfy hypothesis (H). In addition, for t ∈ I, let

lim
ε→0

ε

h(t, ε)
6= 0. (16)

Then f is differentiable at t iff and only if f is p-differentiable at t. In addition,

D f (t) = ph(t, 0) f ′(t). (17)

Remark 3. Violation of either (16) or the tacit assumption, ph(t, 0) 6= 0, can void (17), see Remark
2.4 in [1] and the example therein. In other words, if (16) is not satisfied there may exist p-derivatives
that are not necessarily representable as multiplication operators of the form (17) on the space of
derivatives of differentiable functions. In fact, the function p(t, h) = t + h3 on (−1, 1) is such an
example with f (t) = |t|. It is easily seen that (16) does not hold and yet f is p-differentiable at
t = 0 but not differentiable there.

Corollary 4. (See Theorem 2.2 in [3]; Theorem 2.3 in [2]; and Theorem 1 in [10].) Let the
α-derivative be defined as in either (4) or (5) and let f be α-differentiable at t. Then,

Tα
0 f (t) = t1−α f ′(t).

If f is α-differentiable in the sense of (6) then,

DGFD f (t) =
Γ(β)

Γ(β− α + 1)
t1−α f ′(t). (18)

If f is α-differentiable in the sense of (10) then, for t ∈ [0, b], b < π/2,

D f (t) = (cos t)1−α f ′(t). (19)

Similar results hold for derivatives defined by either (7) or (8) (if F(t, α) 6= 0.)

Corollary 5. Let t > 0 (resp. t ≥ 0). Then f is α-differentiable at t in the sense of anyone of (4),
(5), or (6), (resp. (10)) if and only if f is differentiable at t.

Stronger versions of a generalized mean value theorem follow in which we do not
require the assumptions in Theorem 4 above but do require that ph(t, 0) 6= 0.

Theorem 7. A generalized mean value theorem. Let p satisfy the conditions of Proposition 3
and let f be p-differentiable on (a, b) and continuous on [a, b]. Then there exists c ∈ (a, b) such that

Dp f (c) =
[

f (b)− f (a)
b− a

]
ph(c, 0).

Proof. The proof is clear on account of the usual mean value theorem applied to f on (a, b)
since f is necessarily differentiable there by Proposition 3. Since there exists c ∈ (a, b) such
that f (b)− f (a) = (b− a) f ′(c) we get Dp f (c) = ph(c, 0) f ′(c) and the result follows.
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Theorem 8. [Another generalized mean value theorem] Let p satisfy the conditions of Proposi-
tion 3 and let f , g be p-differentiable on (a, b), continuous on [a, b], and Dp(g(t)) 6= 0 there. Then
there exists c ∈ (a, b) such that

f (b)− f (a)
g(b)− g(a)

=
Dp f (c)
Dpg(c)

.

Proof. Write

h(t) = f (t)− f (a)−
[

f (b)− f (a)
g(b)− g(a)

]
(g(t)− g(a)).

then h(a) = h(b) = 0 and h satisfies the conditions of Theorem 7. So, there exists c ∈ (a, b)
such that Dph(c) = 0. However,

Dph(c) = Dp f (c)−
[

f (b)− f (a)
g(b)− g(a)

]
Dpg(c).

The result follows.

Remark 4. Specializing to the case where

p(t, h) = t +
Γ(β) ht1−α

Γ(β− α + 1)

and g(t) = tα/Γ(α) with α ∈ (0, 1) we get [[10], Theorem 6]. The choice g(t) = tα/α gives [[2],
Theorem 2.9].

Next, if ph(t, 0) exists everywhere on (a, b) and p(t, 0) = 0, then Theorem 6 gives us that k in
(15) is given by k = ph(c, 0). In this case, we note that the function f need not to be differentiable
in the usual sense here (see Theorem 3) and ph(c, 0) may or may not be zero.

Example 1. Given I = [a, b], f (t) = |t| and p(t, h) = t + th + t3h3. Then p satisfies the
conditions of Theorem 5. Furthermore, ph(t, 0) 6= 0 for t 6= 0. A simple calculation shows that
Dp f (t) = |t| = f (t), for all t ∈ (a, b). By Theorem 5, there exists c ∈ (a, b) that

Dp f (c) =
[

f (b)− f (a)
b− a

]
ph(c, 0),

i.e.,

|c| =
[

f (b)− f (a)
b− a

]
c.

The existence of c can be calculated directly as follows. Let a < b < 0. Then,

|c| =
[
−b + a
b− a

]
c,

so that |c| = −c. So, we may choose any c such that a < c < b. Let 0 < a < b. In this case,

|c| =
[

b− a
b− a

]
c.

It suffices to choose c such that a < c < b again. Finally, let a < 0 < b. As

|c| =
[

b + a
b− a

]
c,

it suffices to choose c = 0.
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Remark 5. In this example, ph(0, 0) = 0 and consequently Dp f (0) = 0 even though f ′(0) does
not exist.

Of course, Rolle’s theorem is obtained by setting f (a) = f (b) = 0 in Theorem 8. The latter
then includes [[2], Theorem 2.8].

Definition 1. Let p satisfy (H), and let f : [a, b]→ R be continuous. Then

Ip( f )(t) =
∫ t

a

f (x)
ph(x, 0)

dx.

This definition includes the fractional integral considered in [2] (and Definition 3.1
therein). Observe that, since 1/ph ∈ L(a, b) and f is bounded, this integral always exists
(absolutely). It follows that Ip( f ) ∈ AC[a, b] and consequently I′p( f ) exists a.e. In this case,
the continuity of ph guarantees that Ip( f ) ∈ C1(a, b).

Next we state and prove a version of the generalized fundamental theorem of calculus
for such p-derivatives. The first part is clear, i.e.,

Theorem 9. Let p satisfy (H), and let f : [a, b]→ R be continuous. Then Dp(Ip( f )(t)) = f (t).

Proof. By Proposition 3, since Ip( f ) is differentiable, we have,

Dp(Ip( f )(t)) = ph(t, 0)I′p( f )(t) = f (t).

NOTE: The preceding includes [2] (and Theorem 3.2 therein) as a special case.

Theorem 10. Let p satisfy (H) and let F : [a, b] → R be continuous. If F is p-differentiable on
(a, b) and DpF is continuous on [a, b], then Ip(DpF)(b) = F(b)− F(a).

Proof. Let a = x0 < x1 < x2 < .... < xn = b be a partition of [a, b]. Applying Corollary 7 to
each [xi−1, xi] we get, for some ti,

DpF(ti) =
F(xi)− F(xi−1)

xi − xi−1
ph(ti, 0)

or

F(xi)− F(xi−1) = (xi − xi−1)
DpF(ti)

ph(ti, 0)
.

Thus,

F(b)− F(a) =
n

∑
i=1

F(xi)− F(xi−1) =
n

∑
i=1

DpF(ti)

ph(ti, 0)
∆xi.

Now since f is continuous on every subinterval [xi−1, xi] of [a, b], we can pass to the limit
as ∆xi → 0. This gives,

F(b)− F(a) =
∫ b

a

DpF(t)
ph(t, 0)

dt.

This shows that Ip(DpF)(b) = F(b)− F(a) and we are done.

Combining Theorems 9 and 10 we get the generalized fundamental theorem of calculus.
In addition, using the above relation, we can get a generalized integration by parts formula,
i.e.,
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Corollary 6. If f , g are both p-differentiable on (a, b) and continuous on [a, b], then,

Ip( f Dp(g)) = [ f g]− Ip(Dp( f )g).

This is clear on account of the product rule in Proposition 1(b) and Theorem 10, above.

5. The Case where ph(t, 0) = 0

In this section we consider the exceptional case

ph(t, 0) = 0. (20)

The effect of (20) is that it tends to smooth out discontinuities in the ordinary derivative
of functions. A glance at (3) would lead one to guess that whenever (20) holds we have
Dp f (t) = 0 but that is not the case, in general.

Example 2. Consider the special case p(t, h) = t + h2 which satisfies (20). Then the function
f (x) =

√
x, x > 0, although not differentiable at x = 0, is clearly right-p-differentiable at x = 0

with D+
p f (0) = 1.

Theorem 11. Let (20) hold, p(t, 0) = t, and assume that (13), (14) are satisfied for each t, as well.
If f is continuous on [a, b] and Dp f (t) exists, then Dp f (t) = 0.

Proof. Note that f is continuous on (a, b) on account of the hypothesis and Theorem 3.
Using the proofs of Theorems 5 and 6 we observe that the function h defined there is
continuous on [a, b], as f is continuous there, and therefore its maximum value is attained
at x = c. Thus k = ph(c, 0) = 0 by (15).

Of course, the previous example had an ordinary derivative with an infinite discon-
tinuity at x = 0 but still simple discontinuities in the ordinary derivative can lead to the
existence of their p-derivative for certain p.

Remark 6. Incidentally, Example 2 also shows that (13) cannot be waived in the statement of
Theorem 11.

Example 3. As before we let p(t, h) = t + h2. Then the function f , defined by f (x) = |x|,
although not differentiable at x = 0 it is clearly p-differentiable at x = 0 with Dp f (0) = 0.

Below we study the consequences of this extraordinary assumption (20) and its impact
on the study of such p-derivatives.

5.1. Consequences of ph(t, 0) = 0

We have seen that the notion of p-differentiability can be used to turn non-differentiable
functions into p-differentiable ones, for some exceptional p’s and these can have a p-
derivative equal to zero, as well. We first look at some simple special cases of p satisfy-
ing (20).

As is usual we define a polygonal function as a function whose planar graph is
composed of line segments only, i.e., it is piecewise linear.

Theorem 12. Let p(t, h) = t + h2. Then every polygonal function f on R is p-differentiable
everywhere and Dp f (x) = 0 for all x ∈ R.

Proof. Since the graph of every polygonal function consists of an at most countable and
discrete set of simple discontinuities in its ordinary derivative, it is easy to show that its
p-derivative at the cusp points must be zero (just like the absolute value function above).
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The curve being linear elsewhere it is easy to see that at all such points its p-derivative
exists and must be equal to zero (see Example 3.1 in [1]).

Remark 7. In contrast with the case where ph(t, 0) 6= 0 where an integral can be defined via
Definition 1, in this case such an inverse cannot be constructed, in general, as the preceding example
shows.

There must be limitations to this theory of generalized or p-derivatives. Thus, we
investigate the non-existence of p-derivatives under condition (20) for a class of power
functions defining the derivative. Our main result is Theorem 1 below which states that
for power-like p-functions there are functions that are nowhere p-differentiable on the
real line. In the event that ph(t, 0) 6= 0, Proposition 3 makes it easy to construct functions
that are nowhere p-differentiable on the whole real axis simply by choosing, in particular,
any function with ph(t, 0) = 1. For a fascinating historical survey of classical nowhere
differentiable functions, the reader is encouraged to look at [22]

At this point one may think that p-differentiability is normal and that most functions
have a zero p-derivative if ph(t, 0) = 0. This motivates the next question: Does there exist a
function p satisfying (20) such that it is continuous and nowhere p-differentiable on R? The
answer is yes and is in the next theorem.

5.2. Weierstrass’ Continuous, Nowhere Differentiable Function

In this subsection we show that the series (21), first considered by Weierstrass, and
one that led to a continuous nowhere differentiable function, [5], can also serve as the basis
for a continuous nowhere p-differentiable function for a large class of functions p satisfying
(20), namely power functions. Below we show that for each α > 1 there is a function p
satisfying (20) and a function f that is nowhere p-differentiable on the whole line.

Theorem 13. Let p(t, h) = t + hα where α > 1. Then Weierstrass’ continuous and nowhere
differentiable function

f (x) =
∞

∑
n=0

bn cos(anπx) (21)

where 0 < b < 1, a is a positive integer, and

α
√

a b > 1 +
3
2

π, (22)

is also nowhere p-differentiable on R.

Proof. Observe that the cases where α ≤ 1 are excluded by (20), so we let α > 1. We will
show, as usual, that there exists a sequence of h→ 0 along which |( f (x + hα)− f (x))/h| →
∞. Now, for fixed x ∈ R,

f (x + hα)− f (x)
h

=
∞

∑
n=0

bn cos(anπ(x + hα))− cos(anπx)
h

=
m−1

∑
n=0

bn cos(anπ(x + hα))− cos(anπx)
h

+
∞

∑
n=m

bn cos(anπ(x + hα))− cos(anπx)
h

:= Sm + Rm.

Estimating Sm by the mean value theorem shows that for some 0 < θ < 1,

| cos(anπ(x + hα))− cos(anπx)| = |hαanπ sin(anπ(x + θhα))| ≤ anπ|h|α, (23)
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so that

|Sm| ≤ π|h|α−1
m−1

∑
n=0

(ab)n <
π |h|α−1(ab)m

ab− 1
. (24)

Recall that x is fixed at the outset. Now, for any positive integer m, we can write amx in the
form amx = αm + tm where αm is an integer and |tm| ≤ 1/2. Define a sequence hm > 0 by

hm =
α

√
1− tm

am .

Then 0 < hα
m ≤ 3/(2am). From this choice of a sequence and (24) we get the estimate,

|Sm| < π

(
1− tm

am

) α−1
α (ab)m

ab− 1
≤ π

(
3

2am

) α−1
α (ab)m

ab− 1
= π

(
3
2

) α−1
α a

m
α bm

ab− 1
. (25)

The next step is to show that the remainder term, Rm, remains bounded away from 0.
To this end note that an π (x + hα

m) = an−mamπ (x + hα
m) = an−mπ(αm + 1). It follows that

since a is odd, then for n ≥ m, we have

cos(an π (x + hα
m)) = (−1)αm+1. (26)

A similar calculation shows that

cos(an π x) = cos(an−m π (αm + tm)) = (−1)αm cos(an−mπtm). (27)

Combining (26) and (27) we see that

Rm =
∞

∑
n=m

bn (−1)αm+1 − (−1)αm cos(an−mπtm)

hm

=
(−1)αm+1

hm

∞

∑
n=m

bn(1 + cos(an−mπtm))

i.e., |Rm| =
1
|hm|

∞

∑
n=m

bn(1 + cos(an−mπtm)).

Since the previous series is a series of non-negative terms we can drop all terms except the
first. In this case note that cos(πtm) ≥ 0 since |tm| ≤ 1/2. So,

|Rm| >
bm

|hm|
>

α

√
2
3

am/α bm. (28)

Finally, using (28) and (25) we get

∣∣∣∣ f (x + hα
m)− f (x)
hm

∣∣∣∣ ≥ |Rm| − |Sm| > α

√
2
3

a
m
α bm − π

(
3
2

) α−1
α a

m
α bm

ab− 1
=

(
α

√
2
3
− π

ab− 1

(
3
2

) α−1
α

)
a

m
α bm (29)

Since b < 1 we must have a ≥ 3 so that ab > α
√

ab. The stronger hypothesis (22) forces both
α
√

ab > 1 and the term in the parentheses in (29) to be positive. Since hm → 0 as m → ∞,
the left hand side of (29) tends to infinity, so that the resulting p-derivative cannot exist at x.
Since x is arbitrary, the conclusion follows.

6. An Existence and Uniqueness Theorem

In the final section we give conditions under which an initial value problem for a
generalized Riccati equation with p-derivatives has a solution that exists and is unique.



Fractal Fract. 2022, 6, 672 14 of 16

Theorem 14. Let p satisfy (H) and q : [0, T]→ R, T < ∞ be continuous. Assume that for some
b > 0, we have

‖ 1
ph
‖L1[0,T] < min

{
b

‖q‖∞ + b2 ,
1
2b

}
. (30)

Then the initial value problem for the (generalized) Riccati differential equation

Dpu(t) + u2(t) = q(t), u(0) = u0, (31)

has a unique continuous solution u(t) on [0, T].

Proof. Let B = {u ∈ C[0, T], ‖u‖∞ ≤ b}. Then B is a complete metric space. Define an
operator F on B by F(u) = Ip(q(t)− u2(t)) + u0. Then for every u, v ∈ B.

|Fu− Fv| = |Ip(q(t)− u2(t))− Ip(q(t)− v2(t))|

=

∣∣∣∣ ∫ t

0

q(s)− u2(s)
ph(s, 0)

− q(s)− v2(s)
ph(s, 0)

ds
∣∣∣∣

=

∣∣∣∣ ∫ t

0

(v(s)− u(s))(v(s) + u(s))
ph(s, 0)

ds
∣∣∣∣

≤ 2b‖u− v‖∞

∫ t

0

∣∣∣∣ 1
ph(s, 0)

∣∣∣∣ ds

It follows that ‖Fu− Fv‖∞ < k‖u− v‖ is a contraction on B, with k = 2b‖ 1
ph
‖L1[0,T] < 1, by

hypothesis.
Next, we show that F : B → B. Clearly, for u ∈ B, Fu is continuous on [0, T]. Next,

observe that

‖Fu‖∞ ≤
∫ T

0

‖q(s)− u2(s)‖∞

|ph(s, 0)| ds ≤ (‖q‖∞ + b2)‖ 1
ph
‖L1[0,T] ≤ b,

by hypothesis. Hence F maps B into itself. Applying the contraction principle we get
that F has a unique fixed point u ∈ C[0, T] such that Fu = u. Theorem 9 gives us the final
result.

Remark 8. Observe that there are no sign restrictions on ph(t, 0). Note that Dp may in fact depend
on a parameter α, subject only to the L1-condition on 1/ph at the outset. For example, if we choose
p(t, h) = t + ht1−α as in [3], the hypothesis (30) above becomes,

Tα

α
≤ min

{
b

‖q‖∞ + b2 ,
1
2b

}
,

so we can see that the assumption that α ∈ (0, 1) is not necessary, just that α > 0. Of course, T
will generally decrease as α grows. Finally, this solution can always be found using the method of
successive approximations as implied by the contraction principle.

Similarly, if p(t, h) = t + Γ(β)
Γ(β−α+1)ht1−α with β > −1, β ∈ R+ and 0 < α ≤ 1 as in [10],

the generalized Rolle’s theorem, mean value theorem and Riccati differential equation studied here
include the corresponding theorems in [10]. In addition, this existence theorem clarifies the purely
numerical results obtained in [10] when solving a special Riccati equation of the form (31) using the
fractional derivative (6), which, as we have shown, is contained in our theory.

7. Open Question

1. Is there a function p, satisfying (20), and a function f such that f is p-differentiable
and such that Dp f (t) 6= 0 for all t in some interval (or, more generally, some set of
positive measure)?
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8. Conclusions

In this paper we have extended the theory of p-derivatives in [1] to include results
such as the mean-value theorem, Rolle’s theorem and integration by parts. In so doing we
showed that the so-called conformable fractional derivative of a given function, as considered
by [2,3], is actually an ordinary (integer-valued) derivative of the first order except in at
most one point. We expanded on the cases where the partial derivative ph(t, 0) either
vanishes or doesn’t and in so doing showed that in the former case there exists, for each
α > 1, a fractional derivative and a function whose fractional derivative exists nowhere on
the real line. In the case where ph(t, 0) = 0 many of the previous results have no analogues
and an inverse of the p-derivative generally does not exist. We also presented an existence
and uniqueness theorem for a Riccati-type equation involving a p-derivative whose solution
may always be found using successive approximations. The results presented here extend
many of the results found in the literature as referred to in the text.
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