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Modern science is one of the most-used commodities globally, and it is especially
important in determining the sources of various threats faced by the world. These problems
are studied using scientific tools and norms, and the development of science and technology
has attracted the attention of experts from different disciplines. This has led to increasing
scientific investigation of real-world problems. With the help of computer programs,
experts can determine the roots of such problems using graphics and simulations.

A total of 45 papers were submitted to this Special Issue, all of which were reviewed
by several scientists who are experts in their fields. Following strict review, 16 manuscripts
were accepted for publication in this Special Issue, meaning the acceptance rate was 35%.

The following is a brief summary of the accepted papers:
In the first paper [1], the authors studied a large spacecraft, considering its different

properties such as solar cell plates and mechanical flexible arms. They observed the
fractional-order PD attitude control method of the governing model.

In [2], the authors developed a fractional order-based frequency regulation for some
systems. Their results confirmed that the stable operation and the frequency regulation
performance of the new proposed controller were highly accurate.

In [3], the authors implemented two schemes, LFNHAM and LFNDM, to investi-
gate the local fractional Lighthill–Whitham–Richards model, which arose in their fractal
vehicular traffic platform.

The methods considered incorporated local fractional natural transform (LFNT), which
produced many novel analytical solutions to the governing model.

In [4], the authors studied a mathematical model of the COVID-19 outbreak. In this
model, six fractional differential equation parameters were used to explain its characteristic
properties. COVID-19 has spread considerably over the last two years, and the generalized
Runge–Kutta method of the fourth order (GRK4M) was used to observe its numerical wave
distribution. The authors compared the results via FDM.

In [5], the authors considered the fractional Laplacian operator. They used a new
numerical scheme, CRUS-WENO, in the frame of differential equations. The operator of
order b (0 < b < 1) was split into its integral parts, and the Gauss–Jacobi quadrature method
was used to solve the integral parts of operator. This newly presented CRUS-WENO
scheme was found to possess some important advantages.

In [6], the authors investigated real-world tracking control problems using fractional
calculus properties. Using the global sliding-mode control method (GSMCM), they im-
proved the global robustness of the systems. The first form was based on a full-order
GSMCM with a fractional operator, and the second was a novel time-varying control law
which presented error signals.
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In [7], stochastic resonance was studied in terms of a time-delay fractional Langevin
system. This system is used to symbolize nonlinear-form multiplicative colored noise
and fractional Gaussian noise. Via trichotomous colored noise, the authors observed the
excitation frequency and found that a multimodal pattern only occurred with a small
noise-switching rate and memory-damping order.

In [8], the authors analyzed a nonlinear coronavirus (2019-nCoV) model using a
fractional operator. This model is based on four parameters: susceptible, infected, reported
and unreported. The results were obtained using a modified predictor–corrector method.

In [9], the authors focused on a Sobolev-type Hilfer fractional neutral delay Volterra–
Fredholm integro-differential system. Via fractional calculus, they investigated the measure
of noncompactness and the Mönch fixed-point technique and presented several simulations
of their findings.

In [10], the authors primarily achieved approximate controllability. By using resolvent
operators, fractional semilinear integro-differential equations were investigated. They
introduced two alternative options and used the theories from the functional analysis. The
primary property was proven in the second situation, after which the authors repeated the
observations for the fractional Sobolev-type semilinear integro-differential system.

In [11], the authors introduced the second kind of nonlinear Lane–Emden prediction:
the differential Singular model (NLE-PDSM). A powerful numerical scheme was used,
namely, a neuro-evolution computing intelligent solver, through which the authors cor-
roborated, validated, and confirmed the efficacy of the ANN-GAASM for three distinct
problems.

In [12], the authors studied a COVID-19 infection model by considering the Caputo
derivative. The aim of this model is to contain the spread of disease in communities. The
authors conducted stability analysis of the model and also observed the R0 number. Using
real parameters, they presented a numerical solution for the model.

In [13], the authors studied on the nonlinear Gardner and (3 + 1)-dimensional mKdV-
ZK equations. A newly developed method, namely, the rational sine-Gordon expansion
method (RSGEM), was used to study their analytical roots. The authors also provided a
detailed reported of the strain conditions for valid solutions.

In [14], the authors proposed generalized weighted-type fractional integrals. Using
these integrals, they observed some novel inequalities in certain Chebyshev’s functions.
Moreover, they observed their general wave behaviors using specific parameter values.

In [15], the authors considered the semi-analytical methods HFIT and ADM. They ap-
plied these methods to the time-fractional Swift–Hohenberg equation (SHe) and determined
the fuzzy Caputo fractional derivative (CFD) via Elzaki transform.

In [16], the authors considered the time-fractional coupled Burgers equation using the
Caputo fractional operator. A modified version of the He–Laplace method was considered
and the authors obtained an approximate solution to the governing model.
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