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Abstract: The outbreak of coronavirus (COVID-19) began in Wuhan, China, and spread all around
the globe. For analysis of the said outbreak, mathematical formulations are important techniques
that are used for the stability and predictions of infectious diseases. In the given article, a novel
mathematical system of differential equations is considered under the piecewise fractional operator of
Caputo and Atangana–Baleanu. The system is composed of six ordinary differential equations (ODEs)
for different agents. The given model investigated the transferring chain by taking non-constant
rates of transmission to satisfy the feasibility assumption of the biological environment. There are
many mathematical models proposed by many scientists. The existence of a solution along with
the uniqueness of a solution in the format of a piecewise Caputo operator is also developed. The
numerical technique of the Newton interpolation method is developed for the piecewise subinterval
approximate solution for each quantity in the sense of Caputo and Atangana-Baleanu-Caputo (ABC)
fractional derivatives. The numerical simulation is drawn against the available data of Pakistan
on three different time intervals, and fractional orders converge to the classical integer orders,
which again converge to their equilibrium points. The piecewise fractional format in the form
of a mathematical model is investigated for the novel COVID-19 model, showing the crossover
dynamics. Stability and convergence are achieved on small fractional orders in less time as compared
to classical orders.

Keywords: COVID-19 mathematical model; piecewise fractional operator; qualitative analysis;
Caputo derivative; fractional Newton interpolation technique

1. Introduction

An outbreak of coronavirus spread from Wuhan city and affected people all over the
world. Coronavirus is a virus that is responsible for a respiratory infectious disease. The
World Health Organization (WHO) named this virus COVID-19, as it was tested for the first
time in December 2019. In the first phase, 55% of infected people were linked to the human
seafood market after spreading from person to person [1]. This pandemic first spread into
China and then all over the globe. After several weeks, this novel coronavirus became a
global concern for humans.

Mathematicians started working on this new disease to control it by using optimal
control strategies in mathematical models. Simulations and the modeling of infectious
diseases play an important role in discussing the phenomena of controlling infectious
diseases in human and animal populations [2–4]. In the early 2020s, several researchers
published work on this pandemic, such as those given in [5–8]. From all over the world,
several research articles have been published on the spread of COVID-19, which have been
very useful for understanding the virus infection [9–12]. In the existing literature, a classical
model called SIR (susceptible–infectious–removed) is used for modeling infectious diseases.
Several researchers have used the idea of SIR and further modified it by adding other
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compartments and studying different aspects, which can be seen [13–16]. Many researchers
have investigated the novel virus by adding isolation and quarantine classes to reduce the
spread of the disease [17,18].

As far as the novelty and motivation of the paper are concerned, a novel mathematical
system of differential equations is considered under the piecewise fractional operator of
Caputo and Atangana–Baleanu, which describes the crossover dynamics of COVID-19. The
existence of a solution along with the uniqueness of a solution in the format of piecewise
Caputo and ABC operators is also developed. The predictor and corrector methods of
the Adams–Bashforth method are developed for the piecewise subinterval approximate
solution for each quantity. The numerical simulation is drawn against the available data
of Pakistan on three different time durations and fractional orders converging to the
integer orders.

In this manuscript, a newly constructed model is proposed [19]. The effects of govern-
ment action, conditions, and personal reactions are also included. In the newly constructed
model, the total populace is divided into six sub-classes, including susceptible S , class of
exposed E , class of infected I , class of quarantined Q, class of recovered R and isolated
class G. This study also included the rate of transmission from person to person. Fol-
lowing government action, we included the isolation of humans. The system of ordinary
differential equations in the considered article is as follows:

Ṡ(t) = Λ− αESE − αISI − δS − µS ,

Ė(t) = αESE + αISI − βE − µE ,

İ(t) = βE − γI − µI ,

Q̇(t) = γI − (r + d)Q− µQ,

Ṙ(t) = (r + d)Q− µR,

Ġ(t) = δS − µG,

(1)

with initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0, R(0) = R0, G(0) = G0.

The parameters of the above model are defined as follows: Λ represents the birth
rate, αE represents the rate of transmission from person to person of the class S , αI also
represents the rate of transmission from person to person of the class I , the rate of natural
death is represented by µ, β represents the average latent time, and γ represents the average
quarantine time. The parameter δ represents the rate of protection, while r and d represent
the rate of cure and mortality.

For the analysis of crossover problems, different operators are introduced, includ-
ing fractal derivative, non-integer order derivative with a kernel of singularity and non-
singularity, fractional-fractal operator, and some other derivative operators; see [20–24].
The inclusion of randomness in the form of the stochastic equation has more realistic
achievements, but still, the crossover dynamics are not solved. This property is found in
many infectious disease models, the flow of heat, fluid flow, and many complex advection
problems [24–26]. In fractional calculus, the exponential and Mittag–Leffler mappings
are not able to find the time of crossovers. Therefore, to solve such problems, one of the
new approaches to piece-wise differentiation and integration is introduced in [27]. They
introduced the classical and global piecewise derivatives along with some application
examples. We will investigate the said problem for qualitative analysis, numerical iterative
analysis, and stability analysis in the sense of the Caputo and Atangana–Baleanu piecewise
derivative. The considered system (1) can be written in the aforementioned derivative,
which is defined as
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CABCDς
t (S(t)) = Λ− αESE − αISI − δS − µS ,

CABCDς
t (E(t)) = αESE + αISI − βE − µE ,

CABCDς
t (I(t)) = βE − γI − µI ,

CABCDς
t (Q(t)) = γI − (r + d)Q− µQ,

CABCDς
t (R(t)) = (r + d)Q− µR,

CABCDς
t (G(t)) = δS − µG,

S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0, R(0) = R0, G(0) = G0.

(2)

In more detail, we can write Equation (2) as

CABC
0 Dς

t (S(t)) =
{

C
0 Dς

t (S(t)) =
C f1(S , t), 0 < t ≤ t1,

ABC
0 Dς

t (S(t)) =
ABC f1(S , t), t1 < t ≤ T,

CABC
0 Dς

t (E(t)) =
{

C
0 Dς

t (E(t)) =
C f2(R, t), 0 < t ≤ t1,

ABC
0 Dς

t (E(t)) =
ABC f2(E , t), t1 < t ≤ T,

CABC
0 Dς

t (I(t)) =
{

C
0 Dς

t (I(t)) =
C f3(I , t), 0 < t ≤ t1,

ABC
0 Dς

t (I(t)) =
ABC f3(I , t), t1 < t ≤ T,

(3)

CABC
0 Dς

t (Q(t)) =
{

C
0 Dς

t (Q(t)) =
C f4(Q, t), 0 < t ≤ t1,

ABC
0 Dς

t (Q(t)) =
ABC f4(Q, t), t1 < t ≤ T,

CABC
0 Dς

t (R(t)) =
{

C
0 Dς

t (R(t)) =
C f5(R, t), 0 < t ≤ t1,

ABC
0 Dς

t (R(t)) =
ABC f5(R, t), t1 < t ≤ T,

CABC
0 Dς

t (G(t)) =
{

C
0 Dς

t (G(t)) =
C f6(G, t), 0 < t ≤ t1,

ABC
0 Dς

t (G(t)) =
ABC f6(G, t), t1 < t ≤ T,

where C
0 Dς

t and ABC
0 Dς

t represent the Caputo and ABC derivatives respectively.
This paper is organized as follows: Section 2 includes the basic results of fractional and

piecewise differentials and integrals from the literature. In Section 3, we show the existence
results, uniqueness of the solution and Ulam–Hyers stability for the considered model. In
Section 4, using the piecewise differential and integral technique, we find the approximate
solution for the model. In Section 5, we discuss the obtained results graphically and
compare the used method with the Laplace Adomian decomposition method. Finally, we
conclude our work in Section 6.

2. Preliminaries

This part is devoted to some preliminary definitions of Caputo and ABC fractional
derivatives and integrals.

Definition 1 ([20]). Considering a function Y(t) with condition Y(t) ∈ I1(0, T), the ABC
derivative is given as

ABC
0Dς

t (Y(t)) =
M(ς)

1− ς

∫ t

0

d
dξ

Y(ξ)Eς

[
−ς

1− ς

(
t− ξ

)ς]
dξ. (4)

Replace Eς

[
−ς

1−ς

(
t − ξ

)ξ]
by E1 = exp

[
−r

1−ς

(
t − ξ

)]
, in (4), and we will obtain the

Caputo–Fabrizio operator. Next, it is notified that

ABC
0Dς

t [constant] = 0.
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Here, M(ς) is known as the normalization function and M(0) = M(1) = 1. Further, Eς

shows the Mittag–Leffler (ML) function, and is known as the generalization of the exponential
function [28–30].

The integration in the sense of ABC is given as

ABC
0 Iς

t Y(t) =
1− ς

M(ς)
Y(t) +

ς

M(ς)Γ(ς)

∫ t

0
(t− ξ)ς−1Y(ξ)dξ. (5)

Definition 2 ([31]). The Caputo derivative for a function Y(t) is defined as

C
0 Dς

t Y(t) =
1

Γ(1− ς)

∫ t

0
(t− ξ)n−ς−1[Y

′
(ξ)]dξ.

Definition 3 ([27]). The classical piecewise derivative for a function Y(t) and g(t) which is
differentiable and increasing is defined as

PG
0 DtY(t) =


Y(t), 0 < t ≤ t1,

Y′(t)
g′(t)

t1 < t ≤ T,

where PG
0 DtY(t) represents the classical derivative for 0 < t ≤ t1 and global derivative for

t1 < t ≤ T.

The integration for classical piecewise is defined as

PG
0 ItY(t) =


∫ t

0
Y(τ)dτ, 0 < t ≤ t1,∫ t

t1

Y(τ)g′(τ)d(τ) t1 < t ≤ T,

where PG
0 ItY(t) represents the classical integration for 0 < t ≤ t1 and global integration for

t1 < t ≤ T.

Definition 4 ([27]). The classical and fractional piecewise derivative for a function Y(t) is defined as

PC
0 Dς

t Y(t) =

{
Y′(t), 0 < t ≤ t1,
C
0 Dς

t Y(t) t1 < t ≤ T,

where PC
0 Dς

t Y(t) represents the classical derivative 0 < t ≤ t1 and fractional derivative t1 < t ≤ T.

The integration for classical and fractional piecewise derivatives is given as

PC
0 ItY(t) =


∫ t

0
Y(τ)dτ, 0 < t ≤ t1,

1
Γr

∫ t

t1

(t− ξ)ς−1Y(ξ)d(ξ) t1 < t ≤ T,

where PC
0 ItY(t) represents the classical, 0 < t ≤ t1 and Caputo integration t1 < t ≤ T.

Definition 5 ([27]). The fractional piecewise derivative for a differentiable function Y(t) in the
sense of Caputo, and ABC is represented as

PCABC
0 Dς

t Y(t) =

{C
0 Dς

t Y(t), 0 < t ≤ t1,
ABC
0 Dς

t Y(t) t1 < t ≤ T,
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where PCABC
0 Dς

t Y(t) represent the Caputo, 0 < t ≤ t1 and ABC derivative t1 < t ≤ T.

The integration is defined as

PCABC
0 ItY(t) =


1

Γ(ς)

∫ t

t1

(t− ξ)ς−1Y(ξ)d(ξ), 0 < t ≤ t1,

1− ς

M(ς)
Y(t) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1Y(ξ)d(ξ) t1 < t ≤ T,

where PCABC
0 ItY(t) represent the Caputo, 0 < t ≤ t1 and ABC integration t1 < t ≤ T.

Lemma 1 ([32–35]). The solution of piecewise derivable equations

PC
0 Dς

t1
K(t) = H(t, K(t)), t ∈ [0, t1] 0 < ς ≤ 1

K(0) = K0, K
PABC
t1

Dς
t K(t) = H(t, K(t)), t ∈ [t1, T] 0 < ς ≤ 1

K(t1) = Kt1 ,

is

K(t) =


K0 +

1
Γ(ς)

∫ t1

0
H(ξ, K(ξ))(t− ξ)ς−1dξ, 0 < t ≤ t1

K(t1) +
1− ς

M(ς)
H(t, K(t)) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1H(ξK(ξ))d(ξ) t1 < t ≤ T

Proof. For the proof, we apply the piecewise Caputo (PC) integral and (PABC) integral on
each interval to the above equation as

PC
0 Iς

t1

[
PC

0Dς
t1

K(t)
]

= PC
0 Iς

t1

[
H(t, K(t)), t ∈ [0, t1]

]
0 < ς ≤ 1

PABC
t1

Iς
t

[
PABC

t1 Dς
t K(t)

]
= PABC

t1
Iς
t

[
H(t, K(t)), t ∈ [t1, T]

]
0 < ς ≤ 1,

and using the initial conditions, we obtain

K(t)−K(0) =
1

Γ(ς)

∫ t1

0
H(ξ, K(ξ))(t− ξ)ς−1dξ, 0 < t ≤ t1

K(t)−K(t1) =
1− ς

M(ς)
H(t, K(t)) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1H(ξK(ξ))d(ξ) t1 < t ≤ T,

which further implies

K(t) =


K(0) +

1
Γ(ς)

∫ t1

0
H(ξ, K(ξ))(t− ξ)ς−1dξ, 0 < t ≤ t1

K(t1) +
1− ς

M(ς)
H(t, K(t)) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1H(ξK(ξ))d(ξ) t1 < t ≤ T

Hence, it is proved.

3. Piecewise Existence and Uniqueness of Solution

Next, we find the existence results and uniqueness of the solution property of the
considered piecewise derivable problem. For this, we use Lemma 1 and rewrite model (3) as

PCABC
0 Dς

t K(t) = F(t, K(t)), 0 < r ≤ 1
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is

K(t) =


K0 +

1
Γ(ς)

∫ t

0
F(ξ, K(ξ))(t− ξ)ς−1dξ, 0 < t ≤ t1

K(t1) +
1− ς

M(ς)
F(t, K(t)) +

ς

M(ς)Γr

∫ t

t1

(t− ξ)ς−1F(ξK(ξ))d(ξ), t1 < t ≤ T,
(6)

where

K(t) =



S(t)
E(t)
I(t)
Q(t)
R(t)
G(t)

, K0 =



S0

E0

I0

Q0

R0

G0

, K(t1) =



S(t1)

E(t1)

I(t1)

Q(t1)

R(t1)

G(t1)

, F(t, K(t)) =



f1 =

{
Cf1(S , t)
ABCf1(S , t)

F2 =

{
Cf2(E , t)
ABCf2(E , t)

F3 =

{
Cf3(I , t)
ABCf3(I , t)

F4 =

{
Cf4(Q, t)
ABCf4(Q, t)

F5 =

{
Cf5(R, t)
ABCf5(R, t)

F6 =

{
Cf6(G, t)
ABCf6(G, t)

, (7)

By choosing ∞ > T ≥ t > 0 with a Banach space, A1 = (C[0, T]× R6, R+). Further,
M = A1× A2× A3× A4× A5× A6 is also a complete norm space endowed with the norm,
having the norm

‖K‖ = max
t∈[0,T]

|K(t)| = sup
t∈[0,T]

[|S(t)|+ |E(t)|+ |I(t)|+ |Q(t)|+ |R(t)|+ |G(t)|],

which can be written as in Equation (6).
To obtain the required result, we take the growth condition on a non-linear operator as

(C1) ∃ LK > 0; ∀ F, K̄ ∈ E we have

|F(t, K)− H(t, K̄)| ≤ LF|K− K̄|,

(C2) ∃ CF > 0 & MF > 0;
|F(t, K(t))| ≤ CF|K|+ MF.

Theorem 1. If F is a piecewise continuous operator on sub interval 0 < t ≤ t1 and t1 < t ≤ T on
[0, T], also obeying (C2), then piecewise problem (3) has at least one solution on each sub interval.

Proof. By applying the Schauder fixed-point theorem, let us define a closed subset in both
the subinterval of 0, T as B of E as

B = {K ∈ E : ‖K‖ ≤ R1,2, R > 0},

Next, we take an operator T : B→ B, and applying (6) as

T (K) =


K0 +

1
Γ(ς)

∫ t1

0
F(ξ, K(ξ))(t− ξ)ς−1dξ, 0 < t ≤ t1

K(t1) +
1− ς

M(ς)
F(t, K(t)) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1H(ξK(ξ))d(ξ), t1 < t ≤ T,
(8)



Fractal Fract. 2022, 6, 661 7 of 26

On any K ∈ B, we obtain

|T (K)(t)| ≤


|K0|+

1
Γ(ς)

∫ t1

0
(t− ξ)ς−1|F(ξ, K(ξ))|dξ,

|Kt1 |+
1− ς

M(ς)
|F(t, K(t))|+ ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1|F(ξK(ξ))|d(ξ),

≤


|K0|+

1
Γ(ς)

∫ t1

0
(t− ξ)ς−1[CF|K|+ MF]dξ,

|Kt1 |+
1− ς

M(ς)
[CF|K|+ MF] +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1[CF|K|+ MF]d(ξ),

≤


|K0|+

Tς

Γ(ς + 1)
[CF|K|+ MF] = R1, 0 < t ≤ t1,

|Kt1 |+
1− ς

M(ς)
[CF|K|+ MF] +

r(T − T)ς

M(ς)Γr + 1
[CF|K|+ MF]d(ξ) = R2, t1 < t ≤ T,

≤
{

R1, 0 < t ≤ t1,

R2, t1 < t ≤ T.

from the last equation, as K ∈ B. Therefore, T (B) ⊂ B. Thus, this proves that the operator
T is complete and close. Next, for complete continuity, we take ti < tj ∈ [0, t1] as the first
interval of the Caputo sense, and assume

|T (K)(tj)− T (K)(ti)| =

∣∣∣∣ 1
Γ(ς)

∫ tj

0
(tj − ξ)ς−1F(ξ, K(ξ))dξ,

− 1
Γ(ς)

∫ ti

0
(ti − ξ)ς−1F(ξ, K(ξ))dξ

∣∣∣∣
≤ 1

Γ(ς)

∫ ti

0
[(ti − ξ)ς−1 − (tj − ξ)ς−1]|F(ξ, K(ξ))|dξ

+
1

Γ(ς)

∫ tj

ti

(tj − ξ)ς−1|F(ξ, K(ξ))|dξ (9)

≤ 1
Γ(ς)

[ ∫ ti

0
[(ti − ξ)ς−1 − (tj − ξ)ς−1]dξ

+
∫ tj

ti

(tj − ξ)ς−1dξ

]
(CF|K|+ MF)

≤ (CFK + MF)

Γ(ς + 1)
[tς

j − tς
i + 2(tj − ti)

ς].

Next (9), we obtain ti → tj, then

|T (K)(tj)− T (K)(ti)| → 0, as ti → tj.

So, T is equi-continuous in the [0, t1] interval. Next, we take the other interval
ti, tj ∈ [t1, T] in the ABC sense as
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|T (K)(tj)− T (K)(ti)| =

∣∣∣∣ 1− ς

M(ς)
F(t, K(t)) +

ς

M(ς)Γ(ς)

∫ tj

t1

(tj − ξ)ς−1F(ξ, K(ξ))dξ,

− 1− ς

M(ς)
F(t, K(t)) +

(ς)

M(ς)Γ(ς)

∫ ti

t1

(ti − ξ)ς−1F(ξ, K(ξ))dξ

∣∣∣∣
≤ ς

M(ς)Γ(ς)

∫ ti

t1

[(ti − ξ)ς−1 − (tj − ξ)ς−1]|F(ξ, K(ξ))|dξ

+
ς

M(ς)Γ(ς)

∫ tj

ti

(tj − ξ)ς−1|F(ξ, K(ξ))|dξ (10)

≤ ς

M(ς)Γ(ς)

[ ∫ ti

t1

[(ti − ξ)ς−1 − (tj − ξ)ς−1]dξ

+
∫ tj

ti

(tj − ξ)ς−1dξ

]
(CF|K|+ MF)

≤ r(CFK + MF)

M(ς)Γ(ς + 1)
[tς

j − tς
i + 2(tj − ti)

ς].

Next, as (10), we obtain ti → tj, then

|T (K)(tj)− T (K)(ti)| → 0, as ti → tj.

So, T is equi-continuous in the [t1, T] interval. Therefore, T is equi-continuous map-
ping. Using the Arzelá–Ascoli theorem, operator T is completely continuous and thus,
uniform continuous and has bounds. So, by Schauder’s fixed-point theorem, piecewise
derivable problem (3) has at least one solution.

Theorem 2. With assumption (C1), the proposed system has a unique root if T is a contraction
operator.

Proof. As we took operator T : B→ B as the piecewise continuous, we take K and K̄ ∈ B
on [0, t1] in the Caputo sense as

‖T (K)− T (K̄)‖ = maxt∈[0,t1]

∣∣∣∣ 1
Γ(ς)

∫ t
0 (t− ξ)ς−1F(ξ, K(ξ))dξ − 1

Γ(ς)

∫ t
0 (t− ξ)ς−1F(ξ, K̄(ξ))dξ

∣∣∣∣
≤ Tς

Γ(ς+1) LF‖K− K̄‖.
(11)

From (11), we have

‖T (K)− T (K̄)‖ ≤ Tς

Γ(ς + 1)
LF‖K− K̄‖. (12)

So, the operator T is a contraction. Therefore, by using the Banach contraction theorem,
the system has a unique solution in the given sub-intervals. Further, for other interval
t ∈ [t1, T] in the sense of the fractional ABC derivative as

‖T (K)− T (K̄)‖ ≤ 1− ς

M(ς)
LF‖K− K̄‖+ r(T − Tς)

M(ς)Γ(ς + 1)
LF‖K− K̄‖. (13)

or

‖T (K)− T (K̄)‖ ≤ LH

[
1− ς

M(ς)
+

ς(T − T)ς

M(ς)Γ(ς + 1)

]
‖K− K̄‖. (14)

Thus, the system proves again the contraction and gives a unique solution in the
sub-interval. Therefore, by Equations (12) and (14), the piecewise derivable problem has a
unique solution on every sub-interval.
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Stability Analysis

Here, we proved the Ulam–Hyers (H-U) stability and different forms for our consid-
ered model. First, we give some definitions related to (H-U).

Definition 6. Our proposed model (2) is H-Ustable, if for each σ > 0, and the inequality∣∣∣PCABCDς
t Ω(t)−f(t, Ω(t))

∣∣∣ < σ, f or all, t ∈ T, (15)

unique solution Ω ∈ Z exists with a constantH > 0,∣∣∣∣Ω−Ω
∣∣∣∣

Z ≤ Hσ, f or all, t ∈ T, (16)

In addition, for a non-decreasing function ω : [0, ∞)→ R+ for the inequality presented above,∣∣∣∣Ω−Ω
∣∣∣∣

Z ≤ Hω(σ), at every, t ∈ T, (17)

it is fated that ω(0) = 0, then the obtained solution is generally H-U stable.

Definition 7. Our considered model (2) is Ulam-Hyers Rassias (U-H-R) stable if Ψ : [0, ∞)→ R+

for each σ > 0, and inequality∣∣∣PCABCDς
t Ω(t)−f(t, Ω(t))

∣∣∣ < σΨ(t), f orall, t ∈ T, (18)

unique solution Ω ∈ Z with constantHΨ > 0, so that∣∣∣∣Ω−Ω
∣∣∣∣

Z ≤ HΨσΨ(t), t ∈ T. (19)

Anew, if Ψ : [0, ∞)→ R+ exist, for the inequality∣∣∣PCABCDς
t Ω(t)−f(t, Ω(t))

∣∣∣ < Ψ(t), t ∈ T, (20)

a unique solution exist, Ω ∈ Z, with constantHΨ > 0, so∣∣∣∣Ω−Ω
∣∣∣∣

Z ≤ HΨΨ(t), t ∈ T. (21)

Then, the obtained solution is generally H-U-R stable.

Remark 1. Suppose a function ω ∈ C(T) does not depend upon Ω ∈ Z , and ω(0) = 0, then

|ω(t)| ≤ σ, t ∈ T;
PCABCDς

t Ω(t) = f(t, Ω(t)) + ω(t), t ∈ T.

Lemma 2. Suppose we have the following function:

PCABC
0 D$

t Ω(t) = f(t, Ω(t)), 0 < $ ≤ 1 (22)

The solution of (22) is

Ω(t) =


Ω0 +

1
Γ(ς)

∫ t

0
f($, Ω($))(t− $)ς−1d$, 0 < t ≤ t1

Ω(t1) +
1− ς

ABC(ς)
f(t, Ω(t)) +

ς

ABC(ς)Γ(ς)

∫ t

t1

(t− $)ς−1f($, Ω($))d($), t1 < t ≤ T,
(23)
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∣∣∣∣F(Ω)− F(Ω)
∣∣∣∣ ≤


Tς

1
Γ(ς + 1)

σ, t ∈ T1[
(1− ς)Γ(ς) + (Tς

2 )

ABC(ς)Γ(ς)

]
σ = Λσ, t ∈ T2.

(24)

Theorem 3. In light of Lemma 2, if the condition
L fTς

Γ(ς) < 1 is satisfied, then the solution of our
considered model (2) is H-U as well as generalized H-U stable.

Proof. Let us suppose Ω ∈ Z is the solution of (2), and Ω ∈ Z is a unique solution of (2),
so we have

Case 1: for t ∈ T, we have

∣∣∣∣Ω−Ω
∣∣∣∣ = sup

t∈T

∣∣∣∣Ω−(Ω◦ +
1

Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f

(
℘, Ω(℘)

)
d℘
)∣∣∣∣

≤ sup
t∈T

∣∣∣∣Ω−(Ω◦ +
1

Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f

(
℘, Ω(℘)

)
d℘
)∣∣∣∣

+ sup
t∈T

∣∣∣∣+ 1
Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f(℘, Ω(℘))d℘

− 1
Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f

(
℘, Ω(℘)

)
d℘
∣∣∣∣

≤ T∞
ς

Γ(ς + 1)
σ +

L f T∞

Γ(ς + 1)

∣∣∣∣Ω−Ω
∣∣∣∣.

(25)

On further simplification,

∣∣∣∣Ω−Ω
∣∣∣∣ ≤

 T∞
Γ(ς+1)

1− L f T∞

Γ(ς+1)

σ (26)

Case 2:∣∣∣∣Ω−Ω
∣∣∣∣ ≤ sup

t∈T

∣∣∣∣Ω− [Ω(t1) +
1− ς

ABC(ς)
[f(t, Ω(t)), ]

+
ς

ABC(ς)Γ(ς)

[∫ t

t1

(t− ℘)ς−1f
(
℘, Ω(℘)

)
d(℘)

]]∣∣∣∣
+ sup

t∈T

1− ς

ABC(ς)
∣∣f(t, Ω(t))−f

(
t, Ω(t),

)∣∣
+ sup

t∈T

ς

ABC(ς)Γ(ς)

∫ t

t1

(t− ℘)ς−1∣∣f(℘, Ω(℘))−f
(
℘, Ω(℘)

)∣∣ds.

By further simplification, and using Λ =

[
(1−ς)Γ(ς)+Tς

2
ABC(ς)Γ(ς)

]
, we have

∣∣∣∣Ω−Ω
∣∣∣∣

Z ≤ Λσ + ΛL f
∣∣∣∣Ω−Ω

∣∣∣∣
Z

we have

∣∣∣∣Ω−Ω
∣∣∣∣

Z ≤

 Λ
1− Λ

L f

σ
∣∣∣∣Ω−Ω

∣∣∣∣
Z.
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using

H = max


 T1

Γ(ς+1)

1− L fT1
Γ(ς+1)

,
Λ

1− ΛL f
1−M f


Now, from Equations (26) and (27), we have∣∣∣∣Ω−Ω

∣∣∣∣
Z ≤ Hσ, at each t ∈ T

So the solution of model (2) is H-U stable. Additionally, if we replace σ by ω(σ), then
from (27), ∣∣∣∣Ω−Ω

∣∣∣∣
Z ≤ Hω(σ), at each t ∈ T.

Now ω(0) = 0 shows that the solution of our proposed model (2) is generalized H-U
stable.

We define the remark to conclude the Rassias stability results and also the general-
ized form.

Remark 2. Suppose a function ω ∈ C(T) does not depend upon Ω ∈ Z , and ω(0) = 0, then

|ω(t)| ≤ Ψ(t)σ, t ∈ T;
PCABCDς

t Ω(t) = f(t, Ω(t)) + ω(t), t ∈ T;∫ t

0
Ψ(℘)ds ≤ CΨΨ(t), t ∈ T.

Lemma 3. The solution to the model

PCABCDς
t Ω(t) = f(t, Ω(t)) + ω(t),

Ω(0) = Ω◦,

holds the relation given below

∣∣∣∣F(Ω)− F(Ω)
∣∣∣∣ ≤


Tς

1
Γ(ς + 1)

CΨΨ(t)σ, t ∈ T1[
(1− ς)Γ(ς) + (Tς

2 )

ABC(ς)Γ(ς)

]
CΨΨ(t)σ = ΛCΨΨ(t)σ, t ∈ T2.

(27)

whereH f ,Ψ,Λ = ΛH f ,Ψ.
With the help of Remark 2, one can obtain equation (27).

Theorem 4. The solution of model (27) is H-U-R stable if the following conditions hold:

(H1) For each Ω, v ∈ Z and a constant Cω > 0, we obtain

|ω(Ω)−ω(v)| ≤ Cω |Ω− v|;

(H2) For each Ω, v, Ω, v ∈ Z and constant L f > 0, 0 < M f < 1, we obtain∣∣f(t, Ω, v)−f(t, Ω, v)
∣∣ ≤ L f

∣∣Ω−Ω
∣∣+ M f |v− v|

M f < 1.

Proof. We prove these results in two cases.
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Case 1: for t ∈ T, we have

∣∣∣∣Ω−Ω
∣∣∣∣ = sup

t∈T

∣∣∣∣Ω−(Ω◦ +
1

Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f

(
℘, Ω(℘)

)
d℘
)∣∣∣∣

≤ sup
t∈T

∣∣∣∣Ω−(Ω◦ +
1

Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f

(
℘, Ω(℘)

)
d℘
)∣∣∣∣

+ sup
t∈T

∣∣∣∣+ 1
Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f(℘, Ω(℘))d℘

− 1
Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f

(
℘, Ω(℘)

)
d℘
∣∣∣∣

≤
Tς

1
Γ(ς + 1)

Cωω(t)σ +
L f T∞

Γ(ς + 1)

∣∣∣∣Ω−Ω
∣∣∣∣.

On further simplification,

∣∣∣∣Ω−Ω
∣∣∣∣ ≤

Cωω(t) T1
Γ(ς+1)

1− L fT1
Γ(ς+1)

σ (28)

Case 2:∣∣∣∣Ω−Ω
∣∣∣∣ ≤ sup

t∈T

∣∣∣∣Ω− [Ω(t1) +
1− ς

ABC(ς)
[f(t, Ω(t)), ]

+
ς

ABC(ς)Γ(ς)

[∫ t

t1

(t− ℘)ς−1f
(
℘, Ω(℘)

)
d(℘)

]]∣∣∣∣
+ sup

t∈T

1− ς

ABC(ς)
∣∣f(t, Ω(t))−f

(
t, Ω(t),

)∣∣
+ sup

t∈T

ς

ABC(ς)Γ(ς)

∫ t

t1

(t− ℘)ς−1∣∣f(℘, Ω(℘))−f
(
℘, Ω(℘)

)∣∣ds.

By further simplification and using Λ =

[
(1−ς)Γ(ς)+Tς

2
ABC(ς)Γ(ς)

]
, we have

∣∣∣∣Ω−Ω
∣∣∣∣

Z ≤ ΛCωω(t)σ + ΛL f
∣∣∣∣Ω−Ω

∣∣∣∣
Z

and we have

∣∣∣∣Ω−Ω
∣∣∣∣

Z ≤

ΛCωω(t)
1− Λ

L f

σ
∣∣∣∣Ω−Ω

∣∣∣∣
Z.

using

HΛ,Cω
= max


 T1

Γ(ς+1)

1− L fT1
Γ(ς+1)

,
Cωω(t)Λ

1− ΛL f
1−M f


Now from Equations (28) and (29), we have∣∣∣∣Ω−Ω

∣∣∣∣
Z ≤ HΛ,Cω

σ, at each t ∈ T

So the solution of model (2) is H-U-R stable.
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Remark 3. Suppose a function ω ∈ C(T) does not depend upon Ω ∈ Z , and ω(0) = 0, then

|ω(t)| ≤ Ψ(t), t ∈ T;

Theorem 5. In light of H1, H2, Remark 3 and Lemma 3, the solution of model (2) is generalized
H-U-R stable, if M f < 1.

Where H1 For each Ω, v ∈ Z and constant Cω > 0, we obtain

|ω(Ω)−ω(v)| ≤ Cω |Ω− v|;

and H2 For each Ω, v, Ω, v ∈ Z and constant L f > 0, 0 < M f < 1, we obtain∣∣f(t, Ω, v)−f(t, Ω, v)
∣∣ ≤ L f

∣∣Ω−Ω
∣∣+ M f |v− v|

Proof. We obtained our results in two cases:
Case 1: for t ∈ T, we have

∣∣∣∣Ω−Ω
∣∣∣∣ = sup

t∈T

∣∣∣∣Ω−(Ω◦ +
1

Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f

(
℘, Ω(℘)

)
d℘
)∣∣∣∣

≤ sup
t∈T

∣∣∣∣Ω−(Ω◦ +
1

Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f

(
℘, Ω(℘)

)
d℘
)∣∣∣∣

+ sup
t∈T

∣∣∣∣+ 1
Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f(℘, Ω(℘))d℘

− 1
Γ(ς)

∫ t1

0
(t1 − ℘)ς−1f

(
℘, Ω(℘)

)
d℘
∣∣∣∣

≤
Tς

1
Γ(ς + 1)

Cωω(t)σ +
L f T∞

Γ(ς + 1)

∣∣∣∣Ω−Ω
∣∣∣∣.

On further simplification,

∣∣∣∣Ω−Ω
∣∣∣∣ ≤

Cωω(t) T1
Γ(ς+1)

1− L fT1
Γ(ς+1)

σ (29)

Case 2:∣∣∣∣Ω−Ω
∣∣∣∣ ≤ sup

t∈T

∣∣∣∣Ω− [Ω(t1) +
1− ς

ABC(ς)
[f(t, Ω(t))]

+
ς

ABC(ς)Γ(ς)

[∫ t

t1

(t− ℘)ς−1f
(
℘, Ω(℘)

)
d(℘)

]]∣∣∣∣
+ sup

t∈T

1− ς

ABC(ς)
∣∣f(t, Ω(t))−f

(
t, Ω(t),

)∣∣
+ sup

t∈T

ς

ABC(ς)Γ(ς)

∫ t

t1

(t− ℘)ς−1∣∣f(℘, Ω(℘))−f
(
℘, Ω(℘)

)∣∣ds.

By further simplification and using Λ =

[
(1−ς)Γ(ς)+Tς

2
ABC(ς)Γ(ς)

]
, we have

∣∣∣∣Ω−Ω
∣∣∣∣

Z ≤ ΛCωω(t)σ + ΛL f
∣∣∣∣Ω−Ω

∣∣∣∣
Z (30)

and we have

∣∣∣∣Ω−Ω
∣∣∣∣

Z ≤
(

ΛCωω(t)
1−ΛL f

)∣∣∣∣Ω−Ω
∣∣∣∣

Z.
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using

HΛ,Cω
= max


 T1

Γ(ς+1)

1− L fT1
Γ(ς+1)

,
Cωω(t)Λ
1−ΛL f


Now from Equations (29) and (30), we have∣∣∣∣Ω−Ω

∣∣∣∣
Z ≤ HΛ,Cω

, at each t ∈ T

So the solution of the model (2) is generalized H-U-R stable.

4. Numerical Scheme

In this section, we study a numerical scheme for the considered piecewise differentiable
system (3). First, we establish a numerical scheme for the two sub-intervals of [0, T], in
the sense of Caputo and ABC. For this, we will use the piecewise derivative integer order
numerical scheme as in [27]. On applying the piecewise integration to Equation (3) for the
Caputo and ABC sense, it is given as

S(t) =


S0 +

1
Γ(ς)

∫ t1

0
(t− ξ)ς−1Cf1(ξ)dξ, 0 < t ≤ t1,

S(t1) +
1− ς

M(ς)
ABCH1(t) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1ABCf1(ξ)dξ, t1 < t ≤ T,

E(t) =


E0 +

1
Γ(ς)

∫ t1

0
(t− ξ)ς−1Cf2(ξ)dξ, 0 < t ≤ t1,

E(t1) +
1− ς

M(ς)
ABCH2(t) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1ABCf2(ξ)dξ, t1 < t ≤ T,

I(t) =


I0 +

1
Γ(ς)

∫ t1

0
(t− ξ)ς−1Cf3(ξ)dξ, 0 < t ≤ t1,

I(t1) +
1− ς

M(ς)
ABCf3(t) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1ABCf3(ξ)dξ, t1 < t ≤ T,
(31)

Q(t) =


Q0 +

1
Γ(ς)

∫ t1

0
(t− ξ)ς−1Cf4(ξ)dξ, 0 < t ≤ t1,

Q(t1) +
1− ς

M(ς)
ABCf4(t) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1ABCf4(ξ)dξ, t1 < t ≤ T,

R(t) =


R0 +

1
Γ(ς)

∫ t1

0
(t− ξ)ς−1Cf5(ξ)dξ, 0 < t ≤ t1,

R(t1) +
1− ς

M(ς)
ABCf5(t) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1ABCf5(ξ)dξ, t1 < t ≤ T,

G(t) =


G0 +

1
Γ(ς)

∫ t1

0
(t− ξ)ς−1Cf6(ξ)dξ, 0 < t ≤ t1,

G(t1) +
1− ς

M(ς)
ABCf6(t) +

ς

M(ς)Γ(ς)

∫ t

t1

(t− ξ)ς−1ABCf6(ξ)dξ, t1 < t ≤ T,

where CFi(t) =C Fi(S , E , I ,Q,R,G, t) and ABCFi(t) =ABC Fi(S , E , I ,Q,R,G, t) are the left-
hand side of Equation (2) for i = 1, 2, . . . , 5, also given in Equation (3). We will derive the
scheme for the first equation of system (31) and the same procedure will be used for the
rest of the compartments.

At t = tj+1
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S(tj+1) =


S0 +

1
Γ(ς)

∫ t1

0
(t− ξ)ς−1Cf1(S , E , I ,Q,R,G, ξ)dξ,

S(t1) +
1− ς

M(ς)
ABCf1(S , E , I ,Q,R,G, tj) +

ς

M(ς)Γ(ς)

∫ tn+1

t1

(t− ξ)ς−1ABCf1(ξ)dξ, t1 < t ≤ T,

Writing the above equation in the Newton interpolation approximation, given in [27],
gives

S(tj+1) =



S0 +



(Ht)ς−1

Γ(ς + 1)

i

∑
k=2

[C

f1(Sk−2)

]
Π +

(Ht)ς−1

Γ(ς + 2)

i

∑
k=2

[C

f1(Sk−1, tk−1)

−C f1(Sk−2, tk−2)

]
∑+

r(Ht)ς−1

2Γ(r + 3)

i

∑
k=2

[C

f1(Sk, tk)− 2Cf1(Sk−1, tk−1)

+C f1(Sk−2, E k−2, Ik−2, tk−2)

]
h

S(t1) +



1− ς

M(ς)
ABCf1(S j, tj) +

ς

M(ς)

(Ht)ς−1

Γ(ς + 1)

j

∑
k=i+3

[ABC

f1(Sk−2, tk−2)

]
Π

+
ς

M(ς)

(Ht)ς−1

Γ(ς + 2)

j

∑
k=i+3

[ABC

f1(Sk−1, tk−1) +
ABC f1(Sk−2, tk−2)

]
∑

+
ς

M(ς)

r(Ht)ς−1

Γ(r + 3)

j

∑
k=i+3

[ABC

f1(Sk, tk)− 2ABCf1(Sk−1, tk−1) +
ABC f1(Sk−2, tk−2)

]
h.



(32)

Similarly, for the remaining classes, we can write the Newton interpolation approxi-
mation as follows:

E(tj+1) =



E0 +



(Ht)ς−1

Γ(ς + 1)

i

∑
k=2

[C

f2(E k−2, tk−2)

]
Π +

(Ht)ς−1

Γ(ς + 2)

i

∑
k=2

[C

f2(E k−1, tk−1)

−C f2(E k−2, tk−2)

]
∑+

r(Ht)ς−1

2Γ(r + 3)

i

∑
k=2

[C

f2(E k, tk)− 2Cf2(E k−1, tk−1)

+C f2(Sk−2, E k−2, Ik−2, tk−2)

]
h

E(t1) +



1− ς

M(ς)
ABCf2(E j, tj) +

ς

M(ς)

(Ht)ς−1

Γ(ς + 1)

j

∑
k=i+3

[ABC

f2(E k−2, tk−2)

]
Π

+
ς

M(ς)

(Ht)ς−1

Γ(ς + 2)

j

∑
k=i+3

[ABC

f2(E k−1, tk−1) +
ABC f2(E k−2, tk−2)

]
∑

+
ς

M(ς)

r(Ht)ς−1

Γ(r + 3)

j

∑
k=i+3

[ABC

f2(E k, tk)− 2ABCf2(E k−1, tk−1) +
ABC f2(E k−2, tk−2)

]
h.



(33)
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I(tj+1) =



I0 +



(Ht)ς−1

Γ(ς + 1)

i

∑
k=2

[C

f3(Ik−2, tk−2)

]
Π +

(Ht)ς−1

Γ(ς + 2)

i

∑
k=2

[C

f3(Ik−1, tk−1)

−C f3(Ik−2, tk−2)

]
∑+

r(Ht)ς−1

2Γ(r + 3)

i

∑
k=2

[C

f3(Ik, tk)− 2Cf3(Ik−1, tk−1)

+C f3(Ik−2, , tk−2)

]
h

I(t1) +



1− ς

M(ς)
ABCf3(I j, tj) +

ς

M(ς)

(Ht)ς−1

Γ(ς + 1)

j

∑
k=i+3

[ABC

f3(Ik−2, tk−2)

]
Π

+
ς

M(ς)

(Ht)ς−1

Γ(ς + 2)

j

∑
k=i+3

[ABC

f3(Ik−1, tk−1) +
ABC f3(Ik−2, tk−2)

]
∑

+
ς

M(ς)

r(Ht)ς−1

Γ(r + 3)

j

∑
k=i+3

[ABC

f3(Ik, tk)− 2ABCf3(Ik−1, tk−1) +
ABC f3(Ik−2, tk−2)

]
h.



(34)

Q(tj+1) =



I0 +



(Ht)ς−1

Γ(ς + 1)

i

∑
k=2

[C

f4(Qk−2, tk−2)

]
Π +

(Ht)ς−1

Γ(ς + 2)

i

∑
k=2

[C

f4(Qk−1, tk−1)

−C f4(Qk−2, tk−2)

]
∑+

r(Ht)ς−1

2Γ(r + 3)

i

∑
k=2

[C

f4(Qk, tk)− 2Cf4(Qk−1, tk−1)

+C f3(Qk−2, tk−2)

]
h

Q(t1) +



1− ς

M(ς)
ABCf4(Qj, tj) +

ς

M(ς)

(Ht)ς−1

Γ(ς + 1)

j

∑
k=i+3

[ABC

f4(Qk−2, tk−2)

]
Π

+
ς

M(ς)

(Ht)ς−1

Γ(ς + 2)

j

∑
k=i+3

[ABC

f4(Qk−1, tk−1) +
ABC f4(Qk−2, tk−2)

]
∑

+
ς

M(ς)

r(Ht)ς−1

Γ(r + 3)

j

∑
k=i+3

[ABC

f4(Qk, tk)− 2ABCf4(Qk−1, tk−1) +
ABC f4(Qk−2, tk−2)

]
h.



(35)

R(tj+1) =



R0 +



(Ht)ς−1

Γ(ς + 1)

i

∑
k=2

[C

f5(Rk−2, tk−2)

]
Π +

(Ht)ς−1

Γ(ς + 2)

i

∑
k=2

[C

f5(Rk−1, tk−1)

−C f5(Rk−2, tk−2)

]
∑+

r(Ht)ς−1

2Γ(r + 3)

i

∑
k=2

[C

f5(Rk, tk)− 2Cf5(Rk−1, tk−1)

+C f5(Rk−2, tk−2)

]
h

R(t1) +



1− ς

M(ς)
ABCf5(Rj, tj) +

ς

M(ς)

(Ht)ς−1

Γ(ς + 1)

j

∑
k=i+3

[ABC

f5(Rk−2, tk−2)

]
Π

+
ς

M(ς)

(Ht)ς−1

Γ(ς + 2)

j

∑
k=i+3

[ABC

f5(Rk−1, tk−1) +
ABC f5(Rk−2, tk−2)

]
∑

+
ς

M(ς)

r(Ht)ς−1

Γ(r + 3)

j

∑
k=i+3

[ABC

f5(Rk, tk)− 2ABCf5(Rk−1, tk−1) +
ABC f5(Rk−2, tk−2)

]
h.



(36)
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G(tj+1) =



G0 +



(Ht)ς−1

Γ(ς + 1)

i

∑
k=2

[C

f6(Gk−2, tk−2)

]
Π +

(Ht)ς−1

Γ(ς + 2)

i

∑
k=2

[C

f6(Gk−1, tk−1)

−C f6(Gk−2, tk−2)

]
∑+

r(Ht)ς−1

2Γ(r + 3)

i

∑
k=2

[C

f6(Gk, tk)− 2Cf6(Gk−1, tk−1)

+C f6(Gk−2, tk−2)

]
h

G(t1) +



1− ς

M(ς)
ABCf6(G j, tj) +

ς

M(ς)

(Ht)ς−1

Γ(ς + 1)

j

∑
k=i+3

[ABC

f6(Gk−2, tk−2)

]
Π

+
ς

M(ς)

(Ht)ς−1

Γ(ς + 2)

j

∑
k=i+3

[ABC

f6(Gk−1, tk−1) +
ABC f6(Gk−2, tk−2)

]
∑

+
ς

M(ς)

r(Ht)ς−1

Γ(r + 3)

j

∑
k=i+3

[ABC

f6(Gk, tk)− 2ABCf6(Gk−1, tk−1) +
ABC f6(Gk−2, tk−2)

]
h.



(37)

Here,

H =


(1 + j− k)ς

(
2(j− k)2 + (3ς + 10)(j− k) + 2ς2 + 9ς + 12

)
− (j− k)

(
2(j− k)2 + (5ς + 10)(−k + n) + 6ς2 + 18ς + 12

)
,

∑ =


(1 + j− k)ς

(
3 + 2ς− k + j

)
− (j− k)

(
j− k + 3ς + 3

)
,

h =
[
(1 + j− k)ς − (j− k)ς

]
.

and

Cf1(S , t) = ABCf1(S , t) = Λ− αESE − αISI − δS − µS ,
Cf2(E , t) = ABCf2(E , t) = αESE + αISI − βE − µE ,
Cf3(I , t) = ABCf3(I , t) = βE − γI − µI ,
Cf4(Q, t) = ABCf4(Q, t) = γI − (r + d)Q− µQ,
Cf5(R, t) = ABCf5(R, t) = (r + d)Q− µR,
Cf6(G, t) = ABCf6(G, t) = δS − µG.

For convergence of the above techniques, we established the following theorem.

Theorem 6. Let Y be a complete norm space and F be a contraction operator on Y. If we produce
(32) by the technique as

yi = mathbbF(yi−1),
i−1

∑
k=0

yk, y ∈ Y, i = 1, 2, 3 . . .

and if y0 ∈ Bσ(y) where Bσ(y) = {ȳ ∈ Y : ‖ȳ−y‖ < �}, then limi→∞ yi = y.

Proof. For the proof, we can see [36].

Similarly for the remaining Equations (33)–(37), we can use the above theorem.
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5. Numerical Simulation and Discussion

This section is devoted to the numerical simulation of the piecewise fractional COVID-19
model by partitioning the whole interval of [0, T] into two sub intervals [0, t1] and [t1, T],
respectively. We simulate our model for three different fractional orders and time inter-
vals. We take the data of Pakistan with the initial approximation in millions S(0) = 149,
E(0) = 4.1, I(0) = 0.0054, Q(0) = 0.02, R(0) = 0.321, G(0) = 6.5. We take data from [19]
for different parameters and compartments of the proposed model as given in Table 1.

Table 1. Description of the parameter of (1).

Notation Details

Λ 27.530/1000
αE 0.004253392
αI 3.245065087
δ 0.003505
µ 6.884/1000
β 0.0003551
γ 0.1597073
r 0.058306850
d 0.00414502

In Figures 1–3, we draw the dynamics of all population densities on two subintervals
showing bending behavior. We also change the step size in the graphs, showing that
the curves are far away from each other in small step sizes and vice versa. The class of
susceptible in Figure 1a shows less decay in the first interval while showing more in the
second interval, as it transfers to other compartments of the model for all different fractional
orders and time duration. The decay is greater at low fractional orders and less at high
fractional orders. The exposed population in Figure 1b also declines in both intervals very
quickly. The class of infected individuals in Figure 2a gradually increases, reaches the
peak value and then declines and becomes stable due to the quarantine and isolation of
infected peoples. Figure 2d shows quarantined people who are infected and how their
numbers grow and then become stable. Figure 3a,b show the removal and the isolated
classes, respectively, which show an increase and then become stable. Figures 4–6 show the
dynamics with another set of time durations that have the same initial value but change
only the final value of time. Figures 7–9 are the magnified forms of graphical representation.
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Figure 1. Dynamics of the susceptible class (a) and exposed class (b) on different arbitrary fractional
order ς on sub interval [0, t1] and [t1, T] of [0, T].
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Figure 2. Dynamics of the infected class (a) and quarantined class (b) on different arbitrary fractional
order ς on sub interval [0, t1] and [t1, T] of [0, T].
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Figure 3. Dynamical behavior of the recovered class (a) and isolated class (b) on different arbitrary
fractional order ς on sub interval [0, t1] and [t1, T] of [0, T].
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Figure 4. Dynamics of the susceptible class (a) and exposed class (b) on different arbitrary fractional
order ς on sub interval [0, t1] and [t1, T] of [0, T] for different time duration.
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Figure 5. Dynamics of the infected class (a) and quarantined class (b) on different arbitrary fractional
order ς on sub interval [0, t1] and [t1, T] of [0, T] for different time duration.
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Figure 6. Dynamical behavior of the recovered class (a) and isolated class (b) on different arbitrary
fractional order ς on sub interval [0, t1] and [t1, T] of [0, T] for different time duration.
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Figure 7. Dynamics of the susceptible class (a) and exposed class (b) on different arbitrary fractional
order ς on sub interval [0, t1] and [t1, T] of [0, T] for different time duration.
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Figure 8. Dynamics of the infected class (a) and quarantined class (b) on different arbitrary fractional
order ς on sub interval [0, t1] and [t1, T] of [0, T] for different time duration.
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Figure 9. Dynamical of the recovered class (a) and isolated class (b) on different arbitrary fractional
order ς on sub interval [0, t1] and [t1, T] of [0, T] for different time duration.

All the simulations concluded that assessing the transmission dynamics of the virus
based on different values of the parameters depends on the contacts among individuals
and elongation in the quarantine period, which are the most effective strategies to combat
the pandemic.

Convergence and Comparison

In this subsection, we provide the convergence of all the compartments of the said model
in terms of graphical representation with different initial conditions. The graphs are given in
Figures 10–12. Next, we compare the scheme of Newton interpolation techniques with the
Laplace Adomian decomposition method (LADM). A comparison of susceptible individuals is
given in Figure 13a,b. Exposed populations are shown in Figure 14a,b. Infected densities are
given in Figure 15a,b. Quarantined populations are given in Figure 16a,b. Recovered densities
are given Figure 17a,b. Finally, isolated individuals are given in Figure 18a,b.
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Figure 10. Dynamical behavior of the susceptible class (a) and exposed class (b) on different arbitrary
fractional order ς on sub interval [0, t1] and [t1, T] of [0, T], for different initial values.
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Figure 11. Dynamical behavior of the infected class (a) and quarantined class (b) on different arbitrary
fractional order ς on sub interval [0, t1] and [t1, T] of [0, T], for different initial values.
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Figure 12. Dynamical behavior of the recovered class (a) and isolated class (b) on different arbitrary
fractional order ς on sub interval [0, t1] and [t1, T] of [0, T], for different initial values.
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Figure 13. Comparison of Newton polynomial (a) and LADM (b) for first class on different arbitrary
fractional order.
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Figure 14. Comparison of Newton polynomial (a) and LADM (b) for second class on different
arbitrary fractional order.

0 10 20 30

T

0

20

40

60

80

100

I(
t)

0.999

0.98

0.97

0.96

(a)

0 10 20 30

T

0

20

40

60

80

100

I(
t)

0.999

0.98

0.97

0.96

(b)

Figure 15. Comparison of Newton polynomial (a) and LADM (b) for third class on different arbitrary
fractional order.
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Figure 16. Comparison of Newton polynomial (a) and LADM (b) for fourth class on different arbitrary
fractional order.
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Figure 17. Comparison of Newton polynomial (a) and LADM (b) for fifth class on different arbitrary
fractional order.
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Figure 18. Comparison of Newton polynomial (a) and LADM (b) for sixth class on different arbitrary
fractional order.

6. Conclusions

In the investigated model, we developed a novel technique in the sense of a piece-
wise non-integer-order derivative model of COVID-19 virus infection under Caputo and
Atangana–Baleanu fractional operators. The dynamical behavior for the said model was
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carried out for two subintervals by partitioning the total interval to check the piecewise
crossover characteristics. With this manuscript, we will be able to give predictions about
the infection dynamics of COVID-19 at two different intervals with changing behaviors.
In the first interval, the decrease and increase in all compartments are different from the
second one. The qualitative techniques for both the intervals for the considered model
solution were developed using the concept of fixed-point theory. The numerical solution
was evaluated for the model using Newton’s polynomial procedure for both sub-intervals
in Caputo and the ABC framework of order ς. The numerical simulation of all the six
compartments was carried out for three different data time durations. The crossover ef-
fects were shown by the termination of the first interval, describing the characteristics
of the piecewise derivative behaviors. This type of analysis can be applied to real-world
dynamical phenomena where an abrupt or sudden variation occurs. This investigation
is a more realistic approach, as the dynamics are changing differently at different time
durations. Such an analysis describes the crossover properties, which are still not given in
deterministic and stochastic problems of both integer and fractional orders.
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