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Abstract: This article employs the Laplace residual power series approach to study nonlinear systems
of time-fractional partial differential equations with time-fractional Caputo derivative. The proposed
technique is based on a new fractional expansion of the Maclurian series, which provides a rapid
convergence series solution where the coefficients of the proposed fractional expansion are computed
with the limit concept. The nonlinear systems studied in this work are the Broer-Kaup system,
the Burgers’ system of two variables, and the Burgers’ system of three variables, which are used
in modeling various nonlinear physical applications such as shock waves, processes of the wave,
transportation of vorticity, dispersion in porous media, and hydrodynamic turbulence. The results
obtained are reliable, efficient, and accurate with minimal computations. The proposed technique is
analyzed by applying it to three attractive problems where the approximate analytical solutions are
formulated in rapid convergent fractional Maclurian formulas. The results are studied numerically
and graphically to show the performance and validity of the technique, as well as the fractional
order impact on the behavior of the solutions. Moreover, numerical comparisons are made with
other well-known methods, proving that the results obtained in the proposed technique are much
better and the most accurate. Finally, the obtained outcomes and simulation data show that the
present method provides a sound methodology and suitable tool for solving such nonlinear systems
of time-fractional partial differential equations.

Keywords: fractional differential equations; Laplace residual power series; fractional Broer-Kaup
equations; fractional Burgers’ equations

1. Introduction

Fractional-order systems have acquired a lot of attention and interest in various
engineering and scientific fields as popular mathematical models used to describe real-
world physical phenomena [1-5]. Fractional calculus provides a valuable instrument for
showing the development of complicated dynamical systems with long-term memory
impacts. In contrast to ordinary derivatives, defining fractional order derivatives of a
specific function necessitates the existence of its complete history. Such a non-local feature,
i.e., the memory consequence, has made it much more practical to explain various real-
world physical systems using fractional differential equations. Investigating dynamics,
including complexity, chaos, stability, bifurcation, and synchronization of these fractional
order systems, has recently become an interesting research field in nonlinear sciences [6-13].
In order to study the real-world physical systems” dynamic behavior, it is essential to
determine how these solution trajectories can change over slight perturbations. Therefore,
performing and developing various numerical techniques to analyze and simulate the
systems’ nonlinear dynamics is important. Considering fractional derivatives, analytic-
numeric approaches to fractional calculus frequently depend on versions of the Riemann-
Liouville, Caputo, Grunwald-Letnikov, Riesz, or other approaches, which were discussed

Fractal Fract. 2022, 6, 650. https:/ /doi.org/10.3390/ fractalfract6110650

https:/ /www.mdpi.com/journal/fractalfract


https://doi.org/10.3390/fractalfract6110650
https://doi.org/10.3390/fractalfract6110650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0001-5309-7430
https://orcid.org/0000-0001-9099-5619
https://orcid.org/0000-0002-2353-5919
https://orcid.org/0000-0001-9138-916X
https://doi.org/10.3390/fractalfract6110650
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6110650?type=check_update&version=2

Fractal Fract. 2022, 6, 650

2 of 27

in previous studies during the past few years [14-16]. This study, however, will use
Caputo’s approach of fractional differentiation, benefiting from Caputo’s approach that
initial conditions of the fractional partial differential equations, i.e., (FPDEs) with Caputo’s
derivatives take the same conventional form as in integer order.

Differential equations (DEs) can be used for modeling many chemical, biological, and
physical phenomena. Because FPDEs have a significant impact on many applied disciplines,
particularly nonlinear ones such as fluid flow, biological diffusion of populations, dynamical
systems, control theory, electromagnetic waves, etc., there has been a growing interest in
them in recent years [17-21]. Most scientific phenomena in various disciplines such as
physics, biological systems, and engineering are nonlinear problems; therefore, it might
be challenging to find their exact solutions, e.g., physical problems are typically modeled
by utilizing higher nonlinear FPDEs, thereby finding exact solutions for these problems is
quite challenging. Thus, numerical as well as approximate methods must be employed.
Numerous useful techniques were used for solving linear and nonlinear FPDEs, including
the variational iteration technique, the Adomian decomposition technique, the homotopy
analysis technique, the homotopy perturbation technique, and the fractional residual power
series technique [22-28].

The fractional power series method (FPSM) has been employed to solve several classes
of differential and integral equations of the fractional order if the solution of the equa-
tion can be extended into a fractional power series [29]. Moreover, FPSM is a fast and
easy method utilized to determine the fractional power series solution coefficients be-
cause if we compare the computational effort required to compute the solutions of the
FPDEs in FPSM with other methods, it becomes clear that it is much less. Moreover,
the results are much better, as the speed of implementation on mathematical packages
helps to obtain the results in less time and with more accuracy, especially in non-linear
problems [30-32]. Recently, the FPSM has received the attention of many researchers,
whereby various fractional integral and differential equations were investigated success-
fully by using FPSM, involving fractional Fokker-Planck equations [33], Sawada—Kotera—
Ito, Lax, and Kaup-Kupershmidt equations [34], fractional Fredholm integrodifferential
equation of order 2 arising in natural sciences [35]. The Laplace transform (LT) technique
represents a simple technique for solving several kinds of linear differential integral and
integrodifferential equations, as well as a specific class of linear FPDEs [5]. Solving linear
DEs by LT technique involves three steps. Transforming the main DEs into the Laplace
space represents the first step of this process. Solve the new equation algebraically in the
Laplace space in the second step. The last step involves transforming back the obtained
solution in the previous step into the initial space, which solves the problem at hand [36].

Overall, there are no semi-approximate or conventional analytical methods that can
produce accurate closed-form or approximate solutions for nonlinear FPDE systems. Ac-
cordingly, there is a pressing need for efficient numerical methods so that accurate ap-
proximate solution can be found for these models for extended periods. Motivated by
the above-mentioned discussion, designing an innovative iterative algorithm to produce
analytical solutions to the nonlinear FPDE systems is the main aim of our study. The
motivation of this study is to present an analytical method called LFPSM to solve a nonlin-
ear system of FPDEs. To specify the efficacy and accuracy of this method, we apply it to
solve three nonlinear systems of FPDEs and compare the results obtained with the exact
solutions and solutions obtained by other methods. According to our best knowledge,
the proposed method has not been applied to find analytical solutions to Broer-Kaup and
Burgers’ systems of fractional orders in the literature, which intensely motivated this work.

This study primarily aims to generate accurate approximate solutions to nonlinear
FPDE systems in the Caputo sense, which are subject to proper initial conditions by using
an innovative analytical algorithm. This algorithm is called Laplace FPSM, which has been
suggested and proved in [37]. It is worth mentioning that this newly introduced method
relies on transforming the considered equation into the LT space so that a sequence of
Laplace series solutions to the new equation form is established, and then the solution to the
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considered equation can be established by utilizing the inverse LT. Without perturbation,
linearization, or discretization, this innovative method can be applied to generate the
FPS expansion solutions for both linear and nonlinear FPDEs [38,39]. Furthermore, this
technique, unlike the conventional FPSM, does not necessitate matching the corresponding
coefficients terms nor the utilization of a relation of recursion. The technique offered is
based on the limit concept for finding the variable coefficients. Unlike FPSM, which needs
numerous times to compute different fractional derivatives in the steps of the solution,
only a few computations are needed to determine the coefficients specified. Therefore,
this proposed method has the capability of yielding closed-form solutions, in addition to
accurate approximate solutions, by involving a fast convergence series.

The rest of the article is organized as follows. A review of some necessary definitions,
properties, and theorems concerning fractional calculus, Laplace transform, and Laplace
fractional expansion is presented in Section 2. The methodology for solving a system of
nonlinear time-FPDEs by Laplace FPSM is deeply investigated in Section 3. In Section 4,
the Broer-Kaup (BK) system of nonlinear time FPDEs, and two Burgers’ systems of non-
linear time FPDEs are solved to show that our approach is accurate and applicable. The
results are debated graphically and numerically in Section 5. Finally, Section 6 is lifted for
the conclusions.

2. Preliminary Concepts

This section is devoted to overviewing the essential definitions and theorems of
fractional differentiation, in addition, to giving a brief for some preliminary definitions and
necessary theorems regarding LT, which will be used in sections three and four.

Definition 1. For n € N, and « € R the time-fractional derivative in the Caputo sense for the
real-valued function U(z, ¢ ) is defined as: [3]

7 *(DiU(=,2)), 0<n—1<ea<mn,

DiU(2,7) = DiU(z, 1), e =n,

where D} = aa%, and Ly is the R-L fractional integral operator and which is given by:

th" U _gp 0<n<t,a>0
Tle) § (g=pte - ’ ’

U(z, 1) a = 0.

TiU(z, ) =

Consequently, forn —1 < e« <n, B> —1land ¢ > 0, the operators Dy and T3 satisfy the
following properties:

Dfc=0,ceR
I'(p+1 —
2. Dpeb = qbiilssboe,
3. DiLiU(z,¢)=U(z,1?).
4 I{DfU(z,t) = U(z,t) = L)) Di(2,0") 5, for U € C'[a,b], n =1 < @ < n,

n € Nanda,b e R.

Definition 2. The Laplace transformation (LT) of the piecewise continuous function U(z,¢) on
I x [0, 00) and of exponential order ¢ is given by: [38]
Wz,s) = LU(z, )] = / U (2, )dt, s> 5,
0
and the inverse LT of the transform function (z, s) is given by:
c+ico

Uz, t) = LV[8U(z,5)] = / e*!3((z,5)ds, c = Re(s) > &,

c—ioo
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where &y lies in the right half plane of the absolute convergence of the Laplace integral.

Lemma 1. Let U(z,Z) and V(z,¢) be two piecewise continuous functions defined on
I x [0, 00) and of exponential order &1 and &y, respectively, where 61 < &. Suppose that
Wz,s) = LIU(z,?)], V(z,s) = L[V(2,¢)]and {a,b} € R. Then, [38]

LlaU(z, ) +bV(z, )] =all(z,s)+ b\ (z,s),2 €1, 5 > d.
L7 all(z,5) +bx(V,s)] = ald (2, 2) + bV (2, 2),x € 1, £ > 0.
L[e"U(z,t)] =Mz,5s—a),x €1, 5> a+b.

511_1&511(93,5) =U(2,0), z € L.

LN

Lemma 2. Let U (z, ¢) be a piecewise continuous function defined on I x [0, oo) and of exponential
order 6, and (z,s) = L[U(x,7)]. Then, [31]

1. L[ZU(z,?)] = s WU(xz,s), « > 0.

2. LUz, )] =s5"U(z,5) — Ty s° 7k 1Dk1/l(x 0),n—-1< «<n.

3. ﬁ[@ffu@, ?) } — §%4U(z,5) — Yh_bsU DU (2,0),0 < @ < 1, where
DL = DFDE DY (j-times).

Proof. The proof is in [38]. O

Theorem 1. Let U(x, ) be a piecewise continuous function defined on I x [0, 00) and of expo-

nential order 6. Suppose that the function U(z,s) = L[U(x, )] has the following fractional

expansion (FE): [38]

Wa,s) = 2 W(fl),xels>(5 0<e<1

n=
Then, #n(2z) = D%“U(x,0).
Proof. The proof is in [38]. O

Remark 1. The inverse LT L7 [U(z,s)] = U(z, ), in Theorem 1 is in the following expansion
series (FSE) form:

00 na

7
Z/{(ﬂf{ Z ”@UZOW,O<04§1,Z>O

Theorem 2. Let U(x,¢) be an exponential function of order & defined on I x [0, o),
and let Y(z,s) =  L[U(=,)] can be represented as the FE in Theorem 1. If

‘55 {@;"H)@U(x,i‘) } ‘ < M(2),on I x (5, ] where0 < @ < 1, then the reminder R, (z,s)
of the FE in Theorem 1 satisfies the following inequality: [38]

M(z
|Rn(m,5)\§51+(57+1))a,x61,5<5§’)'

Proof. The proof is in [38]. O

Theorem 3. If ¢ € 0,1], | Up1(2,7) ||< < || Uk(2,7) || givesVk € Nand 0 <t < T < 1,
then the series of numerical solutions converges to the exact solution [39].

Proof. We noticethat V0O < Z < T < 1,
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o
| U(z, ) — Uz, ) Z Un(z,0)|| < Y. |l Un(z,7 )
m=k+1 m:k+1
<l z(n Z cm| = kH — || 2(n) [|[= 0ask — c0.]
m=k+1

3. The Methodology of Laplace RPSM

In this part, we present the fundamental idea of the Laplace RPSM for solving the
system of time FPDEs with initial conditions. Our strategy for using the proposed scheme
is to rely on coupling the Laplace transform and the RPS approach. More precisely, consider
the system of FPDEs with the initial conditions of the form:

DUy, 7) = A [U(y, )] + A2 [U(n,7)], 0 < 2 <1,
U(n,0)="Pin),j=12,...,n,

where A;, A are two linear or nonlinear operators such that
Uy t) = (U(g,¢),Us(,2),...,Un(y, 7)), is the unknown vector function to be deter-
mined, and # = (1, #2,...,1m) € R™, n,m € R. Here, ® refers to the time-fractional
derivative of order « € (0, 1], in the Caputo meaning.

To build the approximate solution of (1) by using the Laplace RPSM, one can accom-
plish the following procedure:

Step 1: Taking the LT on the two sides of (1) and employing the initial data of (1), as
well as relying on Lemma 2, part (2), we get:

() = 42 — - (C{ AU, )]} + £{ AU, )] D), o
where u(y,s) = L[U(n,?)](s), s > 6.

Step 2: Based on Theorem 1, we suppose that the approximate solution of the Laplace
Equation (2) has the following Laplace fractional expansions:

)

ul(q,s)zpl()—i—of) 2 ) nel,s>6>0,

wal9) =B 1 £ 20 el ssaz0 .
n=

un(q,s):p”(”)—i- ) Lol nel,s>6>0,

and the k — th Laplace series solutions take the following form:

k
ui(1y,5) = Pln) 4y fn';(ﬂ, nel, s>6>0,

wa(,s) = L+ ¥ G p €T 5> 020, “

k
”)+2 2 e 5> 6> 0.

ghae+1/
n=

“n,k(”l ) -

Step 3: Define the k — th Laplace fractional residual function of (2) as:

£(Resi (1) = T~ Licqaum o)+ claum ), 6)

and the Laplace fractional residual function of (2) can be defined as:
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Jim £ (Resu, (1,5)) = £(Resu (1,5))

= P 1A UGy, )]} + £{ AU, 2] }).

As in [37-39], some of the beneficial facts of Laplace residual function, which are
fundamental in constructing the approximate solution, are listed as follows:

o klim L (Resy, (11,5)) = L(Resu(y,5)),fornpe I, s >8> 0.
—00

e  L(Resy(y,5)) =0,foryel, s >6>0.
. hmsk@Hﬁ(Resuk(q, )) =0,foryel, s>6>0andk=1,23,...

5—00

Step 4: The k — th Laplace fractional residual function of (5) is substituted by the k — th
Laplace series solution (4).

Step 5: By solving the system lign 5“1 (Resy, (17,5)) = 0, the unknown coefficients

(6)

%r(n), for k = 1,2,3,..., easily could be founded. Then, we accumulate the received
variable coefficients in terms of the Laplace fractional expansion series (4) u; (1, ).

Step 6: The approximate solution U; x (1, Z), of the main Equation (1), can be attained
by applying the inverse Laplace transform operator on both sides of the obtained Laplace
series solution.

4. Numerical Examples

In this section, we show that the Laplace RPSM is superior, efficient, and applicable,
which is achieved by testing three nonlinear time-FPDEs systems. It should be noted
here that all numerical and symbolic calculations are made using the Mathematica 12
software package.

Example 1. Consider the following Broer-Kaup system of nonlinear time-FPDEs:

wu 3
A +UH + ¥ =0,

¢V | U () 33U
o7 T ox T +x3—0

@)
subject to ICs
U(x,0) =1+ 2tanh(x), and V(x,0) = 1 — 2tanh*(x),
where ¢ € (0,1] and (x,Z) € R x [0,1]. The exact solutions when « = 1, are
U(x,2),V(x,2)) = (1= 2tanh(¢ — x),1 —Ztanhz(x—{)).

By applying the LT operator on (7) and using the second part of Lemma 2 and the ICs
of (7), the Laplace fractional equations are:

o)~ 2 e{ g ) - (e )
Vi s) = %_%ﬁ{iﬁ_l{”}}—5%{E‘l{ﬂ}ﬁ‘1{V}} ®)
oL { st

where H(x,s) = L[U(x,¢)]and \/(x,5) = L[V(x,7)].
According to the last discussion of the proposed method, the k — th Laplace series
solutions, L (x,s) and \/i(x, s) for (8) are expressed as:

uk(x 5) 1+2tanh + Z snaJr] ,
©)

1-2tanh?(x) nh2
Vk('xlﬁ) : + anrJr]

Hence, the k — th Laplace fractional residual functions of (8) is defined as:
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k
L(Resw, (x,9)) = L G+ g L{LTHUIFL TN | + S L{FLTHVI |,
n= (10)
k
L(Resy, (x,9)) = © o) + 5&{%571{11,(}} FL2{LTHUILTH V) + %c{%cfl{uk}}.

n=

The 1 — st Laplace fractional residual functions can be carried out by letting k = 1,
in (10):

ﬁ(RESul (xzﬁ)) — sa(ﬂ) +; £{£ {l+2tanh( ) + /jz(fl) }%E—l { 1+2taﬁnh(x) + ii(fl) }}

:
+5%£{§£_1{1—2ta§h2( x) i s@(ﬂ)}}
- 5(}“ (/il(x) + 2sec hz(x))
+ﬁ (2701 (x)sech?(x) + 'y (x) + "1 (x) + 241 (x)tanh(x)
ster (1 ()25 () G5,
L(Resy, (x,5)) = i;(fl) {% {Hzmsnh(x) + fi(fl) }} (11)
{ {1+2tanh(x su(fl)}ﬁ 1{1 2tanh( ) n 5a(ﬂ)}}
R
= % (gl(x) — 4tanh(x)sec hz(x))
+ it (241 (x)sech? (x) — 471 (x)tanh(x)sech? (x) + g1 (x) + 24"y (x)tanh (x)

241 (x)seeh? () + 14 (3)) + e (1(x) 2’4 (0) + @1 () A () 2

To find the 1 — st Laplace series solution of (8), we simply take the next process
lim st (L (Resy, (x,5)), L (Resy, (x,5))) = (0,0), which yields that %1 (x) = —2sech?(x)
5—00

and g1 (x) = 4tanh(x)sech?(x). So, the 1 — st Laplace series solutions of (8) are:

14+2tanh(x)  2sech?(x)

Hh (x 5 ) = ’
1— Ztanhzﬁ( ) 4tanh?x )ch h?(x) (12)
Vl (x 5) + getl .

For k = 2, in (10) the 2 — nd Laplace residual functions can be written as:
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L(Resy,(x,5)) = — 2200 4 220
+5¢E{‘C {1+2ta5nh( x) ZSesca}fl(x) i ?@(ﬁ }%5_1{1+2ta5nh(x) _ ZSescalfl(x)
+52&(+2} + 1r { - {1 2tanh2(x) +4tanh(;c(zielch2( x) +52a(+2}}
= ,Ml( 2(x) + 4tanh(x )sechz(x)>
+ it (272(x)sech? (x) + g5 (x) + ' (x)
427’5 (x)tanh(x) — 8tanh(x)sech?(x )(igiﬁ;;; )
o (4ﬁz(x)tanh(x)sec h2(x) — 24/5(x)sec hz(x)) T
+m(ﬁz(x)ﬁ’2(x))%f
ﬁ(REsz (x,5)) = 4tanh(;c2/5f]ch2( x) +52((+Z + 2 1r { r- {1+2ta5nh() 2se§fl(x) 4 sz(ﬂ}}
Y] { - {1+2ta5nh( %) ZSescahjl(x) + 2 @(J} -1 {l—2ta2h2(x) (13)

annh(x 2 X — anh(x 2 X X
L h(ﬁ()iech( ) 5Z(O(J}Jr E{ax3ﬁ 1{1+2t5 h(x) 2se5c@h+1( ) | iz@(&}}
= 52@“ (gz( ) — 4sech*(x)(cosh(2x) — 2))
+53¢+1 (}%2( )(x) — 4%, (x)tanh(x)sech?(x) + ¢'5(x) + 24’5 (x)tanh(x)
+24/5(x)sech?(x) + 2g2(x)sech?(x)

(om0~ 2552

—1—54,%“ (4g2(x)tanh(x)sec h%(x) — 8%, (x)sech?(x) 4 12/, (x)sech?(x)
—2g’2(x)sech2(x)+4fo’2(x)tanh(x)sech2(x)) [(3e+1)

TRe+DI(e+1)
+5,5%+1(7§2(x)£/2(x) + g2(x) A1 (x)) [(4e+1)

(T(22+1))%"

To find the 2 — nd Laplace series solution of (8), we simply find out the next pro-

cess 51i_r}r01052{”+1 (L (Resy, (x,5)), L(Resx,(x,5))) = (0,0), and by solving limits, we get

%y(x) = —4tanh(x)sech?(x) and g,(x) = 4sech*(x)(cosh(2x) —2). So, the 2 — nd
Laplace series solution of (8) could be expressed as:

14+2tanh(x) Zsechz(x) 4tanh(x)sech?(x)
h(x,s) = 5 satl o2at1 ’

VZ(x 5) 1— Ztaghz( ) + 4tanh(5x2/s+elch2(x) + 45ech4(x5)§§?flh(2x)—2) )

Similarly, for k = 3, we have:

(14)
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,C(R@Sus (x,s)) _ _Zsescﬁl'f](x) _ 4tanh(;;)j§?h2(X) + f?ﬁ(fg
+5¢£{£ {1+2ta5nh( x) ZSeﬁc@}fl(x) . 4tanh(;§)@si§h2(x) + fg@(ﬁ }%5_1{1+2ta5nh(x)
2 2
B S ¢ i ]
2 2 4
+;@£{£(£1{1—2ta2h (x) + 4tanh(;cfzielch (x) + 4sech (xigiof?(zx) 2) + 53@(+2 }}
[:(RES\/S (X,S)) _ 4tanh(;(()bielch2(x) + 4sech4(x;£2cislh(2x)—2) + f;@(ﬂ (15)
+L E{ r- {l+2ta5nh( x) ZSesc;f](x) . 4tanhi3;l/si$h2(x) + f?ﬁ(ﬂ }}
+£ax {E {1+2ta§nh( ) Zse;atfl(X) . 4tanh(ﬁ)§)¢sif h? (x)
+Z3@(ﬂ } r-1 { 1—2ta;1h2(x) + 4tanh(;cﬂ)/s;re1ch2(x) + 4sech4(x2§io+slh(2x)72) + 53@(+2 }}
E{axs £_1{1+2taﬁnh(x) . Zszcafl(x) . 4tanh(;;)@sJejh2(x) + fga(ﬁ }}
By solving 51i_r)1;os3“+1 (L(Resg, (x,5)), L(Resy,(x,8))) = (0,0). It yields that:
%3(x) = —4sech*(x)(cosh(2x) —2) and g3(x) = 8sech*(x)tanh(x)(cosh(2x) —5). So,
the 3 — rd Laplace series solution of (8) could be written as:
ng(x,s) _ 1+2ta5nh(x) . ZSeﬁcalfl(x) . 4tanh(;§)asiih2(x) . 4sech4(xg§2clslh(2x)72),
VS(x 5) 1— 2tanh2(x) + 4tanh(;cls;elchz(x) + 4sech?*(x )(iczfll\(Zx) 2) (16)
8sec h* (x)tanh(x)(cosh(2x)—5)
+ g3e+1 .
Using Mathematica, we can perform the aforesaid steps for an arbitrary k, and
using the fact 51%5““ (L (Resg (x,5)), L(Resy, (x,5))) = (0,0), one can obtain that
k 4k k
Air(x) = (—1)F L0 (2tanh(x)) and gi(x) = (-1)* L5 (—Ztanhz( )). Thus, the k — th
Laplace series solution of (8) could be reformulated by the following fractional expansions:
a2 d3)
d (2tanh(x)) L= (2tanh(x))
e(x,5) = <1+2ta5nh(x) _ I (2;12}11(95)) + dx( )52r+1 _ dx<3)53¢+1 +...
(k) d(m)
(2tanh(x)) k - (2tanh(x))
+(- ) e ) = HERE (1)
n=

Vi(x,8) :<12tanh2(x) _ #=(—2tanh*(x)) ”’(22) (—2tanh?(x)) ddx((33)> (—2tanh?(x))

(17)

dx( _
5 50_+1 + 52@+1 53@+1 + R

4k 2 d(m) 2
ko (72tanh (x)) 1—2tanh2 k L (72tanh (x))
+(-1)"4 = kat1 = ta? = + X (=" ) Shnatl
Finally, by applying the inverse Laplace transform for the obtained expansions (17),
we conclude that the k — th approximate solution of the time-fractional nonlinear system
(7) can be formulated as:

(~1)" L2 (2tanh(x)) ;.
! (18)

nx

dmn) 2
(~1)"L (—Ztanh (x))m.

When k — o and « = 1in (18), we obtain the Maclaurin series expansions of the
closed form:

M=

Uy (x,x) =1+ 2tanh(x) +

Ve(x,x) = 1 — 2tanh?(x) +

=
1M =
[N il
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U(x,7) =1+ 2tanh(x) 21(4)";1‘2) (2tanh(x)) 4
n=
=1
[} & (n) n
+ £ (<) 5 @ranh(x) 7 = 1+ 1 (<1)" (5 (anh(r+0)) ) &
n= n=
ad (n)
=1+ ;Eo( A (2tanh (x — {))V:O) 20 — 14 2tanh(x — ) = 1 — 2tanh(# — x),
V(x,x) =1—2tanh®(x) + ¥ (—1)”:(8) (—Ztanhz(x))%
n=1 * (19)
=1
& dm) 2 n
+n§0(_1)ndx(”> (—Ztanh (x)) &
=1
N O 2 2
+ L (1) (d{m (—2tanh?(x + 7)) l{_o) &
® (n) z
=1+ ng()(ddz(n) (—Ztanhz(x - {))‘ _ ) =1 2tanh?(x — 7),
and which is totally in agreement with the exact solution.
Example 2. Consider the Burgers’ system of nonlinear time fractional IV P:
°U _ U au
a{@—w—ZuaanU +V¥ =y,
9“V _ Y W au
subject to ICs
U(x,0) = sin(x) and V(x,0) = sin(x),
where @ € (0,1] and (x,¢) € R x [0,1]. The exact solutions when « = 1, is

U(x,7) =sin(x)e " and V(x,Z) = sin(x)e .
By taking the Laplace transform operator on both sides of (20) and using the second
part of Lemma 2 and the initial conditions of (20), the Laplace fractional equations will be:

Uew) = e { e+ o{e e ) - dee{e T e v

s L{LHvige 1{u}}

Vixs) = {0 VI + FL{LTHVIZL M VH = e L{e gL VY
— e L{L VYL 1{11}}

where U(x,s) = L[U(x,¢)]and \/(x,y,s) = L[V (x,7)].
According to the last discussion of the proposed method, the k — th Laplace series
solutions, Ll (x,s) and \/i(x, ) for (21) are expressed as:

(21)

t(x,8) = 2 4 Z 24,

(22)

Vi(x,s) = 320 4 2 Lt

As well we define the k — th Laplace residual functions of (21) are:
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k
L(Resw (x,9) = & G = S L{fal M - FL{ LU f0 ) |

+ 2 L{ LY LTV + S L{ LV R L
x 2 - _
2 - Lo{ BV} - 2e{e v gLV
Ll LU L ) )+ L eV S LT )
By letting k = 1, in (23), the 1 — st Laplace residual functions are:
671{sin5(x) + )z;(jcl) }} _ 5%‘(:{‘671{51“5,(]() + )jlb(fl) }%£,1{sinﬁ(x) + ii(fl) }}
cr{mi  a)

(23)

o
&‘“
Y

N
QU

D

153

(24)

+ oz (cos(x) (41 (x) — g1(x)) +sin(x) (£1(x) — 2'1(x)) — 21" (x))

bt (g1 (0220) 4 71 (213 () — 21 () (x)) T2

To find the 1 — st Laplace series solution of (21), we simply take the next process
lim 5T (L(Resy, (x,5)), L(Resy, (x,5))) = (0,0), which yields that %1(x) = —sin(x)
and ¢1(x) = —sin(x). Hence, the 1 — st Laplace series solutions of (21) are:

I (x,s) _ sin(x) _ sin(x)

5 5a+1 7

P getl ®

. . 25
Vi (X,E) _ sin(x) _ sin(x) (25)

By letting k = 2, in (23), the 2 — nd Laplace residual functions are:
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£(Resy, (x,9)) = — 03 + 2209 — Lol & porfonl) _sn) ﬁz” }}

5 5
—do{en (= - g o {0 -y )
pdo{ s ) 4 2 1o et font) R
po et S s | g} 8 por fin) _sinta) 4 2091

x) = ga(x)) + sin(x) (4'2(x) = ¢2(%)) e

st (A2(1) g2 (%) + g2(2)A'2(x) = 2A2(x) A2 (1)) £ G4
£ (Resv, (x,5) == 5000 + 25 — o { Foe {0 - 50 + 20}
_%£{£,1{Sm(x) _sin(x) 522“(‘*'3 }%Efl{sms(ﬂ _ S;Zf) i gaﬂ }}
efet{dn —snby o g L o1l _ i) o 29 1)

! j

_ i i _ i 1 7
Lo snn _snt g0 g fonin) _sn) 4 ay0o )

+ e (cos(x) (g2(x) — A2(x)) +sin(x) (g5 (x) — £'2(x)) — 75 ()
( (

(26)

(x) = g2(x)) +sin(x) (£'2(x) = g'5(x)) = 25 (%))
%) (ga2(x) = #2(x)) + sin(x)(2'2(x) = 4'2(x))) rrrrr T
st (@2(0)A2(x) + A2(1)'2(x) — 202(0)¢'2(0)) 5
To find the 2 — nd Laplace series solution of (21), we simply find out the next pro-
cess lim. s2¢T1(L(Resy,(x,5)), L(Resy,(x,5))) = (0,0), and by solving limits, we obtain
%p(x) = sin(x) and g (x) = sin(x). Hence, the 2 — nd Laplace series solutions of (21) are:
(s, 5) = S0 _ sinGs) | sints)

Valxs) = 5% = 55 + 5.

(27)

Similarly, for k = 3, we have:

WWmm}%WﬂH%F£@¢TMJ%H%H%M
sl [ - TR - EE - ER R Y - N - B B )

&
+i@£{£*1{sm("> -2 o 4 gl a o fen) @) L 20 oG
)

oo st lem + &g 2 fan) ) ) 4 2, o)

S 5
L(Resv,(x,5)) =— Sa(ﬂ) + Slzr;(fl) + 3a(+2 - {axz {Sm . S;;Jrl) 2121;(11) + 3@(12 }}
LV{W>%>w3@ N -l E s B8]

L~
+MV{WL%uﬂu@fzqu%uwu@m

L~

L

,_.\_/ ._nv

5
+o{c1{da sty | n 4 glg 1 g oo fenl) _dn)  Sng 4 R0 LY
By solving  lim 53T (L (Resy,(x,5)), L(Resy,(x,5))) = (0,0). It yields that:
%3(x) = —sin(x) and ¢3(x) = —sin(x). Hence, the 3 — rd Laplace series solutions
of (21) are: I __ sin(x) sin(x) sin(x) sin(x)
S(x/5) = - + 2atl T PBatls (29)

I e+l
_ sin(x)  sin(x) | sin(x)  sin(x)
Va(x,s) = =~ — pees i s xSl PES B
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Using Mathematica, we can process the above steps for any k, and by the
fact that 511_1}10105’“”“(K(Resuk(x,s)),ﬁ(Rest(x,s))) = (0,0), one can obtain that

Zop(x) = (—1)ksin(x) and gi(x) = (—1)ksin(x). Thus, the k — th Laplace series solu-
tions of (21) could be formulated on the fractional expansion:

. k .
Ue(x,8) = sin(x) (1 = Sy + b — b + o+ (CD)F ke ) = sin(x) £ G2y
0 (30)
. k .
Vi(x,8) = s1n(x)(% - 5@1“ + 524% - 530% +...+(=1) 5ki+1) = sin(x) Zo%.
n=

In the end, we take the inverse LT for the obtained expansions (30) to get that the

k — th approximate solutions of the nonlinear system of time-FPDEs (20) have the form:

k  \njne
U(x, 1) = sin(x) © 5oty
n=0 31)
—sin(y) & DT
Vi(x,7) =sin(x) ¥ NSV
n=0

When k — o and « = 11in (31), the Maclaurin series expansions of the closed forms

are: U(x,2) = sin(x)e™?,

32
V(x,7) = sin(x)e 7. (32)
and which is totally in agreement with the exact solution.
Example 3. Consider the Burgers’ system of nonlinear time-FPDEs:
AU | VIW _ VW _
ol +5E7EW+M—O
9“YV | U IW , U I _
9F T ax 9y +Byax -V =0,
W | AUV | AUV _
arr Ty Ty V=0 (33)
subject to ICs
U(x,4,0) =1, V(x,y,0) =e*%and W(x,y,0) = e ¥7%,
where « € (0,1] and (x,y,7) € R?x[0,1]. The exact solutions when « = 1, are

U(x, 4, 2),V(x,4,2), W(x, g, 1)) = (eXT47, ¥ 4T e *Tut?),
By taking the LT operator on both sides of (33) and using the second part of Lemma 2
and the ICs of (33), the Laplace fractional equations will be:

Xty

U(x,y,8) = S _FE{DX “HVID, LT} + e L{D, LTHVIDLLT ) ] -
V(x,g,5) =% — LL{DL7HUYD, L7 } — L £{D, L U} DL 1{441}}+§ , (34)
WA(x,y,5) = ¢ §” fﬁc{D LYGYD, L YV} — Lo{D, L s} D LYV} + L

where U(x,y,5) = L[U(x, 4, )], V(x,4,5) = LIV(x, ¢, 7)) and W x,y,5) = LIWV(x,4,1)].

According to the last discussion of the proposed method, the k — th Laplace series
solutions YU (x,y,s), Vi(x,y,s) and Wg(x, ¢, s) for (34) are expressed as:

+
ﬂk(X,y,ﬁ) et y + Z 5n¢+] 7

Vi(x,2,8) = S + nzl wirgl (35)

k
Wi (x,y,5) = 4 z In(g)

ghe+l

As well, the k — th Laplace fractional residual functions of (34) are defined as:
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k
L(Resu,(v,1,9)) = ¥ Z55 4+ o £{DRLTH{VI D, LT Wi} = S £{Dy L7 {VIFDRL T Wi} + ety
n=
k
L(Resy, (,2,6) = ¥ G+ o L{DLTH{UD LT 4} + 5 L{D,£7HUDRL T ) = Vi (36)
k
L(Resw,(x,2,9) = & no) 4 L L{De L7 YWD, L7 HVi}} + & £{D, L7} DLV} — &

For k = 1, in (36), the 1 — st Laplace residual functions are expressed as:
L(Resyy, (x,4,5))

=2+ E{D L~ { gt }Dy£71 S 54’%}}

E{D L~ {ew+5§L}Dxﬁil{$+silﬂ}}+ ) (wu . )
+

s\ s +
—, (0 ) — J o)
= sha(mre ) e ghalen(fr ) vev (B +5) )
Tt (Yl - o) TCar)
TS|

Jx Jdy Jx Jdy (F(a,+l))2’
L(Resy, (x,y,5))
=+ Sof{pe e + A dp, oo 4 I
e ,;{D e { Setpl {5 ) (5 )
o) 4 oo (3 ) e (3 3)
s (aﬁl o j%) r(2p+1)
T o o o) e
L(Resy, (x,4,5))
BN el S L S
(o, {2+ ot (e ) - (54
= g (fi—e ) + i [eﬁy(% + agl) —exﬂ<aﬁl - %) +f1}

. 1 9741 aﬁl 4 ag1 9% r(27+1)
§3«FT\ 9x 9y | Ox dy ((7+1))2'

To find the 1 — st Laplace series solution of (34), we simply take the next process
f}i_r)r.}os‘”H (L(Resy, (x,4,5)), L(Resy, (x,,5)), L(Resw, (x,,5))) = (0,0,0), which yields

that %1 (x,y) = —e¥, g1(x,y) = ¢* % and f1(x, ) = e *T%. Hence, the 1 — st Laplace
series solutions of (34) are:

L(l (x, y,s) _ Xty _ Xty

5 et/
Vil g.8) = S + S (38)
Wh(x g, s) = Sy i

s getl *

For k = 2, in (36), the 2 — nd Laplace residual functions are:
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L(Resy, (x,y,8))
2 . Xty XY oy —1 ) e xty e ¥ty f2
— T getl + 52/+1 + £{D L~ { + §et1 + 52/+1} z,/lﬁ { + Gl + S2atl }}
B x—g _ —x+ —x+,
—%L{Dyﬁ { S+ }DXE { fr e P }}
+& (5 - S5+ 1)
5% 5 st glet
_ — e} 9
= ok (o — )+ Sl [y (B + 32) e (B2 4 92 ) + 1)
1 of o2 —x+y [ 922 dg I'(3a+1)
+ o [e ( w+3 >+€ ' y(Tﬂ‘iﬂm
L1 (@L,i@)m
set1\ 0x 9y 9x Iy ) (T(2e+1))*’
L(Resy,(x,y,5)) § N N N
Xty eXty —Xty —Xty
= S+ o+ LoDt { R W e )
+L L{D R N e R G =Ry o)
39
= (g2 — ) + =k {exﬂ(g} + %’3) +e"‘+y<% - 'MZ) +g2}
1 iy (o L @ iy (5, r(3a+1)
g [t (3 + 3 ) +eru (B )| TG
1 04 9f2 | 9f2 94, ) _T'(4etl)
T e (ax 9y o oy ) (T(2e+1))?’
L(Resyy, (x,4,5))

—x fa X+ s x
= Eaﬁ + g2e+1 e ﬁ{D L~ {egy - 5451 + 5za+1 }D £~ { + ea,fl + ‘.zﬁ+1 }}
er e* X X x+ x+
‘C{D ‘C’ { i - sdtrl{l +52(+1 }D ‘C { - + e/+y1 +520+1}}_%<e - +ea+1y +?%>

L 1 4y (0 J —y (9% 9%
520+1 (fZ_e x Z’()‘|'53¢+1 [ex y(%"’%) —et y(TxZ_T;> +f2]
1 [ty (922 o 9 —y (ks 0% T(3y+1
54‘@“[36 z,/( 2 2) et y(axz 2)} ( ( )

9y )| TZet1)I(e+])
4+ 9g2 0y | 0/p 9g2 | _T(4e+l)
5 T\ 9x gy T 0x ¢ ) (T(2at1))

To find the 2 — nd Laplace series solution of (34), we simply find out the next
process !}i_r>£1052@+1 (L(Resy, (x,4,5)), L(Resy,(x,4,5)), L(Resw,(x,4,5))) = (0,0,0),and
by solving limits, we get %2 (x,y) = 7%, ga(x,y) = e % and f2(x, ) = e *%. Hence,
the 2 — nd Laplace series solutions of (34) are:

_ ety ety eXty
ilz(x, y,ﬁ) — 75 T getl + g2a+17
__ Y ey e Y
Va(x,z,5) = s T gort T gzt (40)

—x+y —x+y Xty

WZ(x/ 215) = 5 50;-%—1 + eZa-H .

Similarly, for k = 3, we have:
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L(Rye,5u, (%,4,5))
= ;E::( ;;::1 + 53x+1
N Y =i Y
~L{D e S St e DL S S b))
+5% (ex;—y - §@+1 + EEZX:fl + 5a‘<+1)
L(Resy,(x,4,5))
= );+1 + ﬁezxafl + 53@+1
%L‘{ { x;y - ;ﬁ + 52‘2’1 + 53a+1 }Dyg—l{fﬁy e;ﬁ + “zij + ﬁziﬂ }} (41)
%E{ {ex;-y B 5’:;”1 + 52’:11 -+ 530“ }D E—l{e—’;ﬂé eﬁ‘@"jj + ezl?ll + Eziﬂ }}
—h (B e ),
L (Resy, (x,7,5))

o e Xty
= 5@+1 + G2at1 + 52@+1
ey

ext Xty x+ )% _ y
T e o e )
+57£{D L~ { ety ;:fl + 582)::?1 + %}Dxﬁ—l{g?‘*y ffxiy + oY }}

£ 4 43
5 getl g2e+1 gla+l
_L e Xty e Xty + e Xty + f3
s% 5 gatl g2e+1 g2+l |*

By solving 51'5%053”1 (L (Resy,(x,x,8)), L(Resy, (x,x,8)), L(Resw, (x,x,5))) = (0,0,0),

it yields that: x3(x,y) = —e**Y, x3(x,x) = ¢ * and f3(x,x) = e~ *"*. Hence, the 3 — rd
Laplace series solutions of (34) are:

X —

vty Xty ety eXty
ng(x,y,s) Sl aialieos e pls s Sl v
s 5 5
_ Y ey e Y e Y
Vi(x,z,8) = getl T GZatl T Barls (42)
ety e~ Yty e~ Xty e~ Yty
Wh(x,y,5) = sotl T g2atl T Batlc

Using Mathematica, we can process the above steps for any k, and by the fact that
lijn ghetl (L(Resy, (2,4,5)), L(Resy, (z,4,5)), L(Resyy, (z,y,5))) = (0,0,0), one can ob-
5—00

tain that 4 (z,y) = (—1)¢"*%, gi(2, ) = e* ¢ and f(z,y) = e “T%. Thus, the kth-
Laplace series solutions of (34) could be formulated by the fractional expansions:

)1‘1

gha+1/

_ 1 1 1 1 k1 +
L[k(ﬁ?, y,ﬁ) - ew-ﬁ-y(g - 5@+1 + 52@+1 - 53a+1 + v + (71) 5k{4}+1> - ex ¥ 20
n=

k
— 1 1 1 1 1 - 1
\/k(x, y,ﬁ) = e$ v (g + 5@+1 + 52a+1 + 53@+1 + s + 5k¢+1) = ex ¥ Z 5;1@+1/ (43)

e 1 1 1 1 1 —x+
Wk(x,y,ﬁ) =e v y<g+5¢o+l +52a+1 +53a+1 +"'+5ka+1) =e wry Z 5na+1

In the end, we take the inverse LT for the obtained expansions (43) to conclude that the
k — th approximate solutions of the nonlinear systems of time-FPDEs (33) have the form:

oty o (1)
Z/lk(as,y,{) =@ ; T—i—])’

Vile,y,t) = e” z r ,f;‘;l) (44)

_ ,—a+ [Alais
Wi,y 1) =e " yngom'
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When k — o and ¢« = 1 in (44), the Maclaurin series expansions of the closed
forms are: Uz, y 1) = e,
V(z,y,2) =e? 4+, (45)
W(m, y,{) — efereri,
and which is totally in agreement with the exact solution.

5. Graphical and Numerical Results

This section deals with the validity and efficiency of the Laplace RPSM for systems of
time-FPDEs discussed in Examples 1-3 through different graphical representations and
tabulated data for the obtained approximation and exact solutions.

The absolute error functions calculated demonstrate the accuracy of the Laplace RPSM.
Tables 1-3 illustrate several values of the approximate and exact solutions as well as the
absolute errors for systems of time-FPDEs (7), (20), and (44) at selected grid points in the
domain. From the tables, the approximate solutions are harmonic with the exact solutions,
which confirms the performance and accuracy of the Laplace RPSM, whilst the accuracy is
in advance by using only a few of the Laplace RPS iterations. Further, numerical simulations
for the attained results of the problems studied are achieved at various values of @ as
illustrated in Tables 4-6.

Table 1. Numerical results for Examplelatz =1, « =1, andn = 7.

Numerical Results of U (z,¢)

z; U(z,2) Uy (,2) U-uy|

0.1 2.4325957403980487 2.4325957405419616 1.439128816116408 x 10~ 10
0.2 2.3280735405356980 2.3280735789915883 3.845589047202225 x 108
0.3 2.2087355542343268 2.2087365789980504 1.024763723656008 x 10~°
0.4 2.0740991339960706 2.0741097277878920 1.059379182155595 x 10~°
0.5 1.9242343145200196 1.9242993140796738 6.499955965422188 x 107>
0.6 1.7598979245104498 1.7601838692172310 2.859447067811161 x 10~*
0.7 1.5826252249031816 1.5836225257595018 9.973008563202157 x 10~*
0.8 1.3947506404498080 1.3976783358533416 2.927695403533548 x 1073
0.9 1.1993359892499116 1.2068540917157446 7.518102465833065 x 103

Numerical Results of V(z,?)

% V(z,2) Vy(z,2) [V —-V7|

0.1 —0.0261652777033167 —0.0261652782859831 5.82666359605355 x 1010
0.2 0.11811033546448813 0.11811018874091550 1.46723572624907 x 1077
0.3 0.26947917996491720 0.26947552093723215 3.659027685065652 x 10~°
0.4 0.42315552517444555 0.42312041684151236 3.510833293318694 x 107>
0.5 0.57289546593185480 0.57269750532341330 1.497960608441461 x 104
0.6 0.71127757216235540 0.71048682802189810 7.907441404573223 x 10~
0.7 0.83027392365325850 0.82780654822770770 2.467375425550755 x 1073
0.8 0.92208596593223320 0.91572529863721930 6.360667295013944 x 103
0.9 0.98013258169487960 0.96613158040482160 1.400100129005799 x 103
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Table 2. Numerical results for Example2atx =10, « =1, andn = 7.

Numerical Results of U (z,%)

Z; U(z,2) U (z,2) Abs. Error

0.2 —0.4454068138087739  —0.4454068137749855 3.378847202029078 x 10~ 11
0.4 —0.3646682560957220  —0.3646682476310534 8.464668632690575 x 10?2
0.6 —0.2985651159368848  —0.2985649035620645 2.123748202298436 x 107
0.8 —0.2444444422138206  —0.2444423647493085 2.077464512112437 x 106
1 —0.2001341822594486  —0.2001220515057324 1.213075371614413 x 107>

Numerical Results of V(z,%)

i V(z,t) V;(z,1) Abs. Error

0.2 —0.4454068138087739  —0.4454068137749855 3.378847202029078 x 1011
0.4 —0.3646682560957220  —0.3646682476310534 8.464668632690575 x 10~°
0.6 —0.2985651159368848  —0.2985649035620645 2.123748202298436 x 107
0.8 —0.2444444422138206  —0.2444423647493085 2.077464512112437 x 10~
1 —0.2001341822594486  —0.2001220515057324 1.213075371614413 x 107>

Table 3. Numerical results for Example 3 at different values of z,y = 0.4,« =1, andn =7.

Numerical Results of U (z,y,2)

Z; {i u(@m{) u7(xlyl't) |Ll—Ll7|
0.3 1.8221188003905090 1.8221187965176793  3.872829834605795 x 10~
0.5 0.6 1.3498588075760032 1.3498578473967784  9.601792247959650 x 10~7
0.9 1.0 0.9999761481976381  2.385180236186279 x 10>
0.3 3.0041660239464334 3.0041660175612160  6.385217243831676 x 10~°
1 0.6 2.2255409284924680 2.2255393454245560  1.583067911870017 x 10~°
0.9 1.6487212707001284 1.6486819457262294  3.932497389902423 x 105
0.3 4.9530324243951150 4.9530324138676710  1.052744380558579 x 10~8
1.5 0.6 3.6692966676192444 3.6692940575815050  2.610037739270154 x 10~°
0.9 2.718281828459045 2.718216992538108 6.483592093697865 x 1073
Numerical Results of V(z,y,%)
z Z V(z,yt) V7(z,y.t) V-V
0.3 1.4918246976412703 1.4918246957811063  1.860164022815524 x 10?7
0.5 0.6 2.0137527074704766 2.0137522144484308  4.930220458554402 x 10~7
0.9 2.7182818284590450 2.7182687338653180  1.309459372711430 x 10~°
0.3 2.4596031111569500 2.4596031080900580  3.066891629543988 x 107
1 0.6 3.3201169227365480 3.3201161098806145  8.128559336739727 x 107
0.9 4.4816890703380645 4.4816674810028550  2.158933520934880 x 10>
0.3 4.0551999668446745 4.0551999617882260  5.056448593165896 x 107
1.5 0.6 5.4739473917272010 5.4739460515543330  1.340172867791977 x 10~°
0.9 7.3890560989306500 7.3890205041344710  3.559479617898376 x 10~°
Numerical Results of W(z,y,?)
z; Z; W(z,y,?) Wr(z,y,?) W —Wy|
0.3 1.2214027581601699  1.2214027566371966  1.52297330302531 x 10~°
0.5 0.6 1.6487212707001282  1.6487208670478177  4.03652310465574 x 10~7
0.9 2.2255409284924674  2.2255302075458845  1.07209465829427 x 107
0.3 0.7408182206817179 0.7408182197579880  9.2372987037236 x 1010
1 0.6 1.0 0.9999997551724980  2.44827502049461 x 10~7
0.9 1.3498588075760030 1.3498523049931992  6.50258280376903 x 10°
0.3 0.4493289641172216  0.4493289635569510  5.60270607685710 x 10~10
1.5 0.6 0.6065306597126334 0.6065305112172470  1.48495386431690 x 107
0.9 0.8187307530779818 0.8187268090621439  3.94401583792003 x 10~
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Table 4. Numerical results of approximated solutions, atn = 7, z =1, and different values of «, for

Example 1.
Uy (z,2)
t; a=1 @ =097 @ =0.87 « =077
0.15 2.3821389434357910 2.3660488221041770 2.3164985673552834 2.2494580999988480
0.30 2.2087365789980504 2.1798840419417136 2.0946691478570347 1.9890784760486064
0.45 2.0010680201298103 1.9605498108679509 1.8475490983553642 1.7270938997910783
0.60 1.7601838692172317 1.7110610843964820 1.5871611481074164 1.4930439371551603
0.75 1.4915784441913985 1.4404546365696143 1.3361912466819796 1.3308640595516880
0.90 1.2068540917157446 1.1653285241400642 1.1284934441148844 1.2968610082469043
Vy(z,t)
Z; a=1 @ =097 @ =0.87 « =077
0.15 0.0448459609008298 0.0663869988097889 0.129641467880782 0.2067709053195330
0.30 0.2694755209372319 0.3009312650284730 0.3825827826197465 0.4565703174103681
0.45 0.4988712398275166 0.5298370150916816 0.5914524244945669 0.6089345684206415
0.60 0.7104868280218981 0.7269468972314479 0.7268268374287052 0.6726093727343672
0.75 0.8759824453139846 0.8623611282911388 0.7744858455437431 0.7307371590702421
0.90 0.9661315804048216 0.9112450135222343 0.7596624176539246 0.9841962235906878
Table 5. Numerical results of approximated solutions, at n = 7, = 10, and different values of «, for
Example 2.
U7(a:,{ )
Z; a=1 @ =095 @ =085 « =0.75
0.2 —0.4454068138087739 —0.4366187365008558 —0.41802625689971980 —0.3985414981473607
0.4 —0.3646682560957220 —0.3565811645027616 —0.34129966933185546 —0.3275638100454310
0.6 —0.2985651159368848 —0.2934671682315440 —0.28497017140893940 —0.2786635555415501
0.8 —0.2444444422138206 —0.2429390773523567 —0.24160764152557102 —0.2420836601179408
1.0 —0.2001341822594486 —0.2021160815904085 —0.20726098237141660 —0.2132493814323069
V(z,2)
Z; a=1 @ =0.95 @ =085 2 =075
0.2 —0.4454068138087739 —0.4366187365008558 —0.41802625689971980 —0.3985414981473607
0.4 —0.3646682560957220 —0.3565811645027616 —0.34129966933185546 —0.3275638100454310
0.6 —0.2985651159368848 —0.2934671682315440 —0.28497017140893940 —0.2786635555415501
0.8 —0.2444444422138206 —0.2429390773523567 —0.24160764152557102 —0.2420836601179408
1.0 —0.2001341822594486 —0.2021160815904085 —0.20726098237141660 —0.2132493814323069
Table 6. Numerical results of approximated solutions, at y = 0.4 and different values of z, ¢, and «,
withn = 7 for Example 3.
uﬂ%mf)
z; Z; a=1 % =095 @ =0.75 « =055
0.3 1.82211879651767 1.781854354922940 1.624165815324987 1.485973706352699
0.5 0.6 1.34985784739677 1.3268102019509882 1.259880792227996 1.224207523196436
0.9 0.99997614819763 1.0012559086702593 1.025844721313154 1.048930393543767
0.3 3.00416601756121 2.937781176251118 2.677796726870322 2.449956457364802
1 0.6 2.22553934542455 2.187540202138526 2.077192260692827 2.018376983245085
0.9 1.64868194572622 1.650791914038841 1.691332012464442 1.729393851319466
0.3 4.95303241386767 4.8435823139476595 4.414940422202281 4.039295323546481
1.5 0.6 3.66929405758150 3.6066440617774465 3.424711063537949 3.327741064567730
0.9 2.71821699253810 2.7216957421756143 2.788535064766180 2.851288428088421
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Table 6. Cont.

V7($/y,f)
z; t; a=1 @ =095 @ =0.75 « =055
0.3 1.49182469578111 1.533776716329884 1.763906348007679 2.173624234307866
0.5 0.6 2.01375221444843 2.090517467011799 2.500822166419968 3.2070987754409066
0.9 2.71826873386532 2.836553335181282 3.463909478191494 4.5195588991940581
0.3 2.45960310809005 2.528770296717676 2.908189915483245 3.5837005096126577
1 0.6 3.32011610988061 3.446680614632507 4.123158700014978 5.2876119683057565
0.9 4.48166748100285 4.676685819188771 5.711021236474098 7.4514928912833001
0.3 4.05519996178822 4.169237376913107 4.794794572892834 5.9085232580172781
15 0.6 5.47394605155433 5.682615642654406 6.797939451186984 8.7177983233542732
0.9 7.38902050413447 7.710551386478182 9.415882189994994 12.285434828329576
Wﬂ%u;ﬂ
z; Z; a=1 @ =095 @ =0.75 @ =0.55
0.3 1.22140275663719 1.255750166014239 1.444164372663361 1.7796130062634311
0.5 0.6 1.64872086704781 1.711570940089245 2.047500015627131 2.6257503956122070
0.9 2.22553020754588 2.322373448258833 2.836009215673681 3.7003018611174463
0.3 0.74081821975798 0.761650976626866 0.8759299696849896 1.0793898507221418
1 0.6 0.99999975517249 1.038120251437302 1.2418715352399512 1.5925981196913803
0.9 1.34985230499319 1.408590699671533 1.7201265405336663 2.2443465289594501
0.3 0.44932896355695 0.46196466932427 0.5312783823751036 0.6546830382456215
1.5 0.6 0.60653051121724 0.62965176096531 0.7532331615474284 0.9659595881935124
0.9 0.81872680906215 0.85435344633685 1.0433094854190943 1.3612649808335340
Numerical comparisons are established to confirm the mathematical results for the
obtained approximate solutions supported by the results of numerical comparisons. Table 7
shows the absolute errors of the obtained approximate solutions for the system of time-
FPDEs (7) at « = 1 with the absolute errors of the approximate solutions generated by
the MGMLEM [40], while Tables 8-10 show a comparison of the obtained approximate
solutions for the systems of time-FPDEs (7), (20) and (44), respectively with previous results
generated by the existing method as MGMLFM [40], and FNDM [41] at various values of
«. As it is evident from the comparison results, the results obtained by Laplace RPSM are
close to the exact solutions faster than the mentioned methods.
Table 7. Numerical comparisons for Example 1 at « = 1 and different values of z and 7.
[U—U,|
z=-1 z=0.5 z=1
Z; LRPSM MGMLFM [40] LRPSM MGMLFM [40] LRPSM MGMLEM [40]
0.003 559911 x 102 451907 x 1075 5.11357 x 1072 453038 x 1075 559013 x 1079 3.28798 x 107
0.006 448282 x 1078 1.79812 x 10~ 411223 x 1078 1.80805 x 10~ 4.46846 x 1078 12751 x 107
0.009 151413 x 107 4.02448 x 1074 1.3951 x 107 4.05897 x 104 1.50686 x 10~7 2.78165 x 10~
|V — V|
z=—1 z =0.5 z=1
; LRPSM MGMLEM [40] LRPSM MGMLEM [40] LRPSM MGMLFM [40]
0.003 5.94837 x 1079 1.3969 x 1075 355919 x 10~8 214755 x 1075 6.02338 x 10~° 125863 x 107
0.006 472882 x 108 55459 x 1075 2.84908 x 107 8.62386 x 1075 4.84885 x 108 493352 x 104

0.009

1.58592 x 10~7 1.23872 x 10~4

9.62139 x 107

1.94798 x 10~4

1.64669 x 10~7

1.08802 x 103
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Table 8. Numerical comparisons for Example 1 at different values of #, «, and # for the function I/.

a=1
(@2;) Uz,2)) LRPSM MGMLFM [40]
(—0.5,0.003) 0.0710535459 0.0710535408 0.0710849
(0.5, 0.006) 0.0663545199 0.0663544797 0.0664763
(0.5, 0.003) 1.9195090915 1.91950908636 1.91955
(0.5, 0.006) 1.9147708158 1.91477077469 1.91495
2 =0.9
@yt Uyt LRPSM MGMLFM [40]
(0.5, 0.003) 0.0710535459 0.06718985810 0.0671357
(—0.5, 0.006) 0.0663545199 0.05989588986 0.0598679
(0.5, 0.003) 1.9195090915 1.91583860783 1.91561
(0.5, 0.006) 1.9147708158 1.90988083747 1.90838
< =0.8
@yt Uz,yt) LRPSM MGMLEFM [40]
(—0.5,0.003) 0.0710535459 0.06066868120 0.0600753
(0.5, 0.006) 0.0663545199 0.04976089352 0.0489784
(0.5, 0.003) 1.9195090915 1.90995039533 1.90859
(0.5, 0.006) 1.9147708158 1.89876300851 1.8977

Table 9. Numerical comparisons for Example 2 at different values of z, ¢, and ¢ for the function U.

a=1
(@2;) Uz,2;) LRPSM MGMLFM [40]
(—10,0.2) 0.4454068138 0.4454068137 0.4454068
(—10,0.4) 0.3646682570 0.3646682476 0.3646684
(=5,0.2) 0.7851007935 0.7851007935 0.7851008
(—5,0.4) 0.6427861639 0.6427861490 0.6427865
< =0.9
@yt Uzyt) LRPSM MGMLEM [40]
(—10,0.2) 0.4454068138 0.42747254328 0.4274714
(10, 0.4) 0.3646682570 0.34877861288 0.3487726
(-5,0.2) 0.7851007935 0.75349665629 0.7534867
(=5, 0.4) 0.6427861639 0.61477525733 0.6147676
@ =075
(gt Uz,yt;) LRPSM MGMLFM [40]
(—10,0.2) 0.4454068138 0.39855149815 0.3985421
(—10,0.4) 0.3646682570 0.32766381008 0.3275878
(-5,0.2) 0.7851007935 0.70250317423 0.7024943
(=5, 0.4) 0.6427861639 0.57749363947 0.5774259
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Table 10. Numerical comparisons for Example 3 at different values of z, «, and ¢ for the function U/.

a=1
@yt Uz,yt) LRPSM MGMLFM [40] FNDM [41]
(0.5,0.4,0.3) 1.8221188 1.8221188 1.8221189 1.82217
(0.5,0.4,0.6) 1.3498588 1.3498578 1.3498715 1.35131
(0.5,0.4,0.9) 1.0000000 0.9999761 1.00021 1.0105
(1,04,0.3) 3.0041660 3.0041660 3.0041662 3.00424
(1,0.4, 0.6) 2.2255400 22255394 2.225562 2.22793
(1,04,0.9) 1.6487200 1.6486820 1.649067 1.66603
(1.5,0.4,0.3) 4.9530300 4.9530324 4.9530327 495316
(1.5,0.4, 0.6) 3.6693000 3.6692940 3.6693312 3.6323
(1.5,0.4,0.9) 2.7182800 2.7182169 2.718851 2.74682
< =0.9
(@) Uz,yt) LRPSM MGMLEM [40] FNDM [41]
(0.5,0.4,0.3) 1.8221188 1.7415823 1.74158 1.74178
(0.5,0.4, 0.6) 1.3498588 1.3063222 1.3063996 1.31047
(0.5,0.4,0.9) 1.0000000 1.0048484 1.0058445 1.02931
(1,04,0.3) 3.0041660 2.8713838 2.871385 2.8717
(1,0.4, 0.6) 2.2255400 2.1537611 2.1538889 2.1606
(1,04,0.9) 1.6487200 1.6567149 1.6583572 1.69705
(1.5,0.4,0.3) 4.9530300 47341116 47341143 4.73464
(15,04, 0.6) 3.6693000 3.5509518 3.5511624 3.56223
(1.5,0.4,0.9) 2.7182800 2.7314611 2.7341689 2.79796
2 =0.75
@y Uz,yt) LRPSM MGMLEM [40] FNDM [41]
(0.5,0.4,0.3) 1.8221188 1.6241658 1.6241897 1.6256
(0.5,0.4, 0.6) 1.3498588 1.2598808 1.2607914 1.27791
(0.5,0.4,0.9) 1.0000000 1.0258447 1.033497 110414
(1,04,0.3) 3.0041660 2.6777967 2.6778362 2.68017
(1,04, 0.6) 2.2255400 2.0771922 2.0786935 2.10692
(1,04,0.9) 1.6487200 1.6913320 1.7039486 1.82042
(1.5,04,0.3) 4.9530300 4.4149404 44150055 441885
(1.5,0.4, 0.6) 3.6693000 3.4247111 3.4271863 3.47372
(1.5,0.4,0.9) 2.7182800 2.7885351 2.809336 3.00136

The 3D plots behavior of the approximate solutions of the time-FPDEs (7), (20), and

(44) by Laplace RPSM are shown respectively in Figures 1-3 at various values of ¢ which
are compared with the exact solutions on their domains. Obviously, from these figures,
it can be deduced that the geometric behaviors almost agree and strongly match each
other, particularly when the integer order derivative is considered. From these graphics,
we can conclude that the dynamic behaviors match and correspond well with each other,
specifically when the standard order derivative is considered. Moreover, Figures 4 and 5
demonstrate the behavior of the obtained Laplace RPS solutions for the systems of the
time-FPDEs (7) and (20) at various values of « . It is observed from these figures that the
Laplace RPSM approximate solutions match with solutions at ¢ = 1, and this reinforces
the effectiveness of the proposed method.
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Figure 1. 3D-Surfaces plot of the exact solution of U («,¢) and V(«, ¢), and the 7 — th approximate
solution Uy (z,¢) and Vy(z,%), for IVP (7), with Z € [0,1], and = € [-2,2], at various values
of a. (@) (U(z,2),V(2,2)). () Us(2,0),Vs(2,0)) : @ = 1. (¢) Us(,),Vs(2,0)) : @ = 0.97.
d) Uy (2, ¢),V7(2, 1)) : e = 0.87.
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Figure 2. 3D-Surfaces plot of exact solutions (U (z,¢),V(«,¢)), and the 7 — th approximate so-
lutions (U (z,¢),V7(2,7)), for system (20), with ¢ € [0,1], and 2 € [-10,10], at various val-
ues of «. (a) (U(z,?),V(z,?)). (b) Ur(z,7),Vi(z,?)) : « = 1. (¢) Us(z, 1), Vi(2,7)) :
« =095. (d) (U (=, %), V7(2,7)) : @ = 0.85.
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Figure 3. 3D-Surfaces Plot of Exact solutions of (U,V, W) the 7 — th approximate solution
(U, V7, Wy), for system (33), with £ € [0,2], and = € [0,2] and ¥ = 0.4, at various values of
. (a) (u, V, W) (b) (U7, V7, W7) te =1 (C) (U7, V7, W7):@ =0.8. (d) (U7, V7, W7):a, = 0.6.
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(a) (b)
weg=1wa=095a=085 a=075

Figure 4. (a) 2D-Plots of exact solutions U(z,?), and the 7-th approximate solutions Uy («z,¢) and
V7 (z,2), for system (7), with Z € [0, 0.5], and « = 1, at various values of «. (b) 2D-Plots of exact
solutions V (z,7), and the 7-th approximate solutions V7 (z,¢), for system (7), with ¢ € [0, 0.5], and

« =1, at various values of «.

(a) (b)
weq =1 a=095a=08 a=075a=065

Figure 5. Plots of exact solutions (U(z,?),V («,7)), and the 7-th approximate solutions (U (z,7),
V7 (2,7)), for system (20) at various values of «. (a) Z € [0, 1], and z = 1. (b) z € [-10, 10], and ¢ = 1.

6. Conclusions
This investigation of time-FPDEs with initial conditions constructs a proper framework
for the mathematical modeling of several fractional problems that appear in physical and
engineering applications. The current work has introduced the analytical and approximate
solutions for known systems of nonlinear time-FPDEs via applying Laplace RPSM. Three
nonlinear time-FPDEs systems, including Broer-Kaup and Burgers’ systems, have been
investigated utilizing Caputo-time fractional derivatives. The exact and the Laplace RPS
solutions have been displayed numerically and graphically at various values of the frac-
tional order @ over (0, 1]. The analysis of simulation results revealed that the Laplace RPS
solutions are in imminent consistency with each other, as well as with the exact solutions at
integer-order of @, which confirms the performance of the proposed method. Numerical
comparisons of the obtained results with the results previously calculated by other numeri-
cal methods, such as modified generalized Mittag-Leffler function method MGMLEM [40]
and fractional natural decomposition method FNDM [41], have been achieved, which
indicates the high accuracy and effectiveness of the Laplace RPSM. Consequently, the
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analysis of attained results and their simulations confirm that the Laplace RPSM is an
easy and systematic, robust, efficient, and suitable instrument to generate analytical and
approximate solutions of several fractional physical and engineering problems with fewer
computations and iteration steps.

Author Contributions: Conceptualization, H.A. and M.A.; methodology, H.A.; software, H.A.;
validation, M.A., A.I. and M.D.; writing—original draft preparation, H.A.; writing—review and
editing, A.I. and M.D.; supervision, A.I. and M.D.; funding acquisition, A.I. All authors have read
and agreed to the published version of the manuscript.

Funding: Universiti Kebangsaan Malaysia (DIP-2020-001).
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Mainardji, F; Raberto, M.; Gorenflo, R.; Scalas, E. Fractional calculus and continuous-time finance II: The waiting-time distribution.
Phys. A Stat. Mech. Its Appl. 2000, 287, 468-481. [CrossRef]

2. He, ].H. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 1999, 15,
86-90.

3.  Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. ]. Int. 1967, 13, 529-539.
[CrossRef]

4. Oldham, K.B.; Spanier, J. The Fractional Calculus. Integrations and Differentiations of Arbitrary Order; Academic Press: Cambridge,
MA, USA, 1974.

5. Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999.

6.  Alabedalhadi, M.; Al-Smadi, M.; Abu Arqub, O.; Baleanu, D.; Momani, S. Structure of optical soliton solution for nonlinear
resonant space-time Schrodinger equation in conformable sense with full nonlinearity term. Phys. Scr. 2020, 95, 105215. [CrossRef]

7. Al-Smadi, M.; Abu Arqub, O. Computational algorithm for solving fredholm time-fractional partial integrodifferential equations
of Dirichlet functions type with error estimates. Appl. Math. Comput. 2019, 342, 280-294. [CrossRef]

8. Jleli, M.; Kumar, S.; Kumar, R.; Samet, B. Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-
Cattani via the homotopy perturbation transform method. Alex. Eng. J. 2020, 59, 2859-2863. [CrossRef]

9. Hasan, S.; Al-Smadi, M.; Dutta, H.; Momani, S.; Hadid, S. Multi-step reproducing kernel algorithm for solving Caputo—Fabrizio
fractional stiff models arising in electric circuits. Soft Comput. 2022, 26, 3713-3727. [CrossRef]

10. Hasan, S.; El-Ajou, A.; Hadid, S.; Al-Smadi, M.; Momani, S. Atangana-Baleanu fractional framework of reproducing kernel
technique in solving fractional population dynamics system. Chaos Solitons Fract. 2020, 133, 109624. [CrossRef]

11. Liu, Y; Liu, Z.; Wen, C.F. Existence of solutions for space-fractional parabolic hemivariational inequalities. Discret. Contin. Dyn.
Syst. B 2019, 24, 1297. [CrossRef]

12.  Li, X.; Li, Y; Liu, Z,; Li, J. Sensitivity analysis for optimal control problems described by nonlinear fractional evolution inclusions.
Fract. Calc. Appl. Anal. 2018, 21, 1439-1470. [CrossRef]

13. Liu, Y; Liu, Z.; Wen, C.E; Yao, ].C. Existence of solutions for non-coercive variational-hemivariational inequalities involving the
nonlocal fractional p-Laplacian. Optimization 2022, 71, 485-503. [CrossRef]

14. Al-Smadi, M.; Dutta, H.; Hasan, S.; Momani, S. On numerical approximation of Atangana-Baleanu-Caputo fractional integro-
differential equations under uncertainty in Hilbert Space. Math. Model. Nat. Phenom. 2021, 16, 41. [CrossRef]

15.  Al-Smadi, M.; Abu Arqub, O.; Zeidan, D. Fuzzy fractional differential equations under the Mittag-Leffler kernel differential
operator of the ABC approach: Theorems and applications. Chaos Solitons Fract. 2021, 146, 110891. [CrossRef]

16. Al-Smadi, M.; Abu Arqub, O.; Gaith, M. Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive
reproducing kernel framework. Math. Methods Appl. Sci. 2021, 44, 8472-8489. [CrossRef]

17.  Alabedalhadi, M.; Al-Smadi, M.; Al-Omari, S.; Momani, S. New optical soliton solutions for coupled resonant Davey-Stewartson
system with conformable operator. Opt. Quant. Electron. 2022, 54, 392. [CrossRef]

18. Shgqair, M.; Farrag, E.A.M.; Al-Smadi, M. Solving Multi-Group Reflected Spherical Reactor System of Equations Using the
Homotopy Perturbation Method. Mathematics 2022, 10, 1784. [CrossRef]

19. Shqair, M.; Alabedalhadi, M.; Al-Omari, S.; Al-Smadi, M. Abundant exact travelling wave solutions for a fractional massive
hirring model using extended Jacobi elliptic function method. Fract. Fract. 2022, 6, 252. [CrossRef]

20. Wang, G. A (2 + 1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions. Nucl. Phys. B
2020, 953, 114956. [CrossRef]

21. Kumar, P; Baleanu, D.; Erturk, V.S.; Inc, M.; Govindaraj, V. A delayed plant disease model with Caputo fractional derivatives.
Adv. Cont. Discr. Mod. 2022, 2022, 11. [CrossRef]

22. Wu, L; Xie, L.d.; Zhang, ].f. Adomian decomposition method for nonlinear differential-difference equations. Commun. Nonlinear

Sci. Numer. Simul. 2009, 14, 12-18. [CrossRef]


http://doi.org/10.1016/S0378-4371(00)00386-1
http://doi.org/10.1111/j.1365-246X.1967.tb02303.x
http://doi.org/10.1088/1402-4896/abb739
http://doi.org/10.1016/j.amc.2018.09.020
http://doi.org/10.1016/j.aej.2019.12.022
http://doi.org/10.1007/s00500-022-06885-4
http://doi.org/10.1016/j.chaos.2020.109624
http://doi.org/10.3934/dcdsb.2019017
http://doi.org/10.1515/fca-2018-0076
http://doi.org/10.1080/02331934.2020.1808643
http://doi.org/10.1051/mmnp/2021030
http://doi.org/10.1016/j.chaos.2021.110891
http://doi.org/10.1002/mma.6998
http://doi.org/10.1007/s11082-022-03722-8
http://doi.org/10.3390/math10101784
http://doi.org/10.3390/fractalfract6050252
http://doi.org/10.1016/j.nuclphysb.2020.114956
http://doi.org/10.1186/s13662-022-03684-x
http://doi.org/10.1016/j.cnsns.2007.01.007

Fractal Fract. 2022, 6, 650 27 of 27

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

Odibat, Z.; Momani, S. Application of variational iteration method to nonlinear differential equations of fractional order. Int. J.
Nonlinear Sci. Numer. Simul. 2006, 7, 27-34. [CrossRef]

Yulita Molliq, R.; Noorani, M.S.M. Solving the fractional Rosenau-Hyman equation via variational iteration method and homotopy
perturbation method. Int. J. Differ. Equ. 2012, 2012, 472030. [CrossRef]

Xu, H.; Liao, S.-J.; You, X.-C. Analysis of nonlinear fractional partial differential equations with the homotopy analysis method.
Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1152-1156. [CrossRef]

Hasan, S.; Al-Smadi, M.; El-Ajou, A.; Momani, S.; Hadid, S.; Al-Zhour, Z. Numerical approach in the Hilbert space to solve a
fuzzy Atangana-Baleanu fractional hybrid system. Chaos Solitons Fract. 2021, 143, 110506. [CrossRef]

Al-Smadi, M.; Freihat, A.; Khalil, H.; Momani, S.; Ali Khan, R. Numerical multistep approach for solving fractional partial
differential equations. Int. . Comput. Methods 2017, 14, 1750029. [CrossRef]

Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Din, U.K.S. Computational optimization of residual power series algorithm for certain
classes of fuzzy fractional differential equations. Int. |. Differ. Equ. 2018, 2018, 8686502. [CrossRef]

Al-Smadi, M.; Abu Arqub, O.S. Momani, Numerical computations of coupled fractional resonant Schrodinger equations arising
in quantum mechanics under conformable fractional derivative sense. Phys. Scr. 2020, 95, 075218. [CrossRef]

Al-Smadi, M.; Abu Arqub, O.; Hadid, S. Approximate solutions of nonlinear fractional Kundu-Eckhaus and coupled fractional
massive Thirring equations emerging in quantum field theory using conformable residual power series method. Phys. Scr. 2020,
95, 105205. [CrossRef]

Alaroud, M.; Ahmad, R.R;; Din, U.K.S. An efficient analytical-numerical technique for handling model of fuzzy differential
equations of fractional-order. Filomat. 2019, 33, 617-632. [CrossRef]

Bataineh, M.; Alaroud, M.; Al-Omari, S.; Agarwal, P. Series Representations for Uncertain Fractional IVPs in the Fuzzy Con-
formable Fractional Sense. Entropy 2019, 23, 1646. [CrossRef]

Freihet, A.; Hasan, S.; Alaroud, M.; Al-Smadi, M.; Ahmad, R.R.; Din, U.K.S. Toward computational algorithm for time-fractional
Fokker-Planck models. Adv. Mech. Eng. 2019, 11, 1687814019881039. [CrossRef]

Al-Smadi, M. Fractional residual series for conformable time-fractional Sawada—-Kotera-Ito, Lax, and Kaup-Kupershmidt
equations of seventh order. Math. Methods Appl. Sci. 2021, 1-22. [CrossRef]

Alaroud, M.; Al-smadi, M.; Ahmad, R.R.; Salma Din, U.K. Numerical computation of fractional Fredholm integro-differential
equation of order 23 arising in natural sciences. J. Phys. Conf. Ser. 2019, 1212, 012022. [CrossRef]

Hanna, J.; Rowland, J. Fourier Series, Transforms, and Boundary Value Problems; Wiley: New York, NY, USA, 1990.

El-Ajou, A. Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a
new approach. Eur. Phys. . Plu. 2021, 136, 229. [CrossRef]

Alaroud, M.; Tahat, N.; Al-Omari, S.; Suthar, D.L.; Gulyaz-Ozyurt, S. An Attractive Approach Associated with Transform
Functions for Solving Certain Fractional Swift-Hohenberg Equation. J. Funct. Spaces 2021, 2021, 3230272. [CrossRef]

Aljarrah, H.; Alaroud, M.; Ishak, A.; Darus, M. Approximate solution of nonlinear time-fractional PDEs by Laplace residual
power series method. Mathematics 2022, 10, 1980. [CrossRef]

Ali, HM.; Ahmad, H.; Askar, S.; Ameen, 1.G. Efficient approaches for solving systems of nonlinear time-fractional partial
differential equations. Fract. Fract. 2022, 6, 32. [CrossRef]

Rawashdeh, M.S.; Al-Jammal, H. New approximate solutions to fractional nonlinear systems of partial differential equations
using the FNDM. Adv. Differ. Equ. 2016, 2016, 235. [CrossRef]


http://doi.org/10.1515/IJNSNS.2006.7.1.27
http://doi.org/10.1155/2012/472030
http://doi.org/10.1016/j.cnsns.2008.04.008
http://doi.org/10.1016/j.chaos.2020.110506
http://doi.org/10.1142/S0219876217500293
http://doi.org/10.1155/2018/8686502
http://doi.org/10.1088/1402-4896/ab96e0
http://doi.org/10.1088/1402-4896/abb420
http://doi.org/10.2298/FIL1902617A
http://doi.org/10.3390/e23121646
http://doi.org/10.1177/1687814019881039
http://doi.org/10.1002/mma.7507
http://doi.org/10.1088/1742-6596/1212/1/012022
http://doi.org/10.1140/epjp/s13360-020-01061-9
http://doi.org/10.1155/2021/3230272
http://doi.org/10.3390/math10121980
http://doi.org/10.3390/fractalfract6010032
http://doi.org/10.1186/s13662-016-0960-x

	Introduction 
	Preliminary Concepts 
	The Methodology of Laplace RPSM 
	Numerical Examples 
	Graphical and Numerical Results 
	Conclusions 
	References

