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Abstract: Using the Lebedev–Milin inequalities, bounds on the logarithmic coefficients of an analytic
function can be transferred to estimates on coefficients of the function itself and related functions.
From this fact, the study of logarithmic-related problems of a certain subclass of univalent functions
has attracted much attention in recent years. In our present investigation, a subclass of starlike
functions S∗e connected with the exponential mapping was considered. The main purpose of this
article is to obtain the sharp estimates of the second Hankel determinant with the logarithmic
coefficient as entry for this class.
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1. Introduction and Definitions

There is a long history of study on univalent functions in geometric function theory.
Suppose that A is the family of analytic functions defined in the open unit disc D :=
{z ∈ C : |z| < 1} normalized by

f (z) = z +
∞

∑
l=2

alzl . (1)

Let S indicate the family of normalized univalent functions. By the 1/4-theorem of
Köebe, it is known that for each univalent function f ∈ S , there exists an inverse function
f−1 defined at least on a disc of radius 1/4 with Taylor’s series of the form

f−1(w) := w +
∞

∑
n=2

Bnwn, (|w| < 1/4). (2)

We say a function is bi-univalent in D if both f and f−1 are univalent in D.
The coefficient conjecture that |an| ≤ n for f ∈ S proposed by Bieberbach [1] in

1916 has attracted many researchers to prove or disprove this result, until it was finally
and solved by De Branges [2] in 1985. During this period, some important subclasses of
univalent functions were introduced and investigated. The most well-known subfamilies
are convex functions K and starlike functions S∗, defined, respectively, by

K :=
{

f ∈ A : <
{

1 +
z f ′′(z)
f ′(z)

}
> 0, z ∈ D

}
(3)

and

S∗ :=
{

f ∈ A : < z f ′(z)
f (z)

> 0, z ∈ D
}

. (4)
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Let α ∈ (0, 1]. If a function f ∈ A satisfies the condition∣∣∣∣arg
z f ′(z)

f (z)

∣∣∣∣ < πα

2
, z ∈ D, (5)

it is called strongly starlike of order α. Moreover, we say a function f ∈ A is strongly
convex of order α if ∣∣∣∣arg

(
1 +

z f ′′(z)
f ′(z)

)∣∣∣∣ < πα

2
, z ∈ D. (6)

For complex parameters α1, · · · , αl and β1, · · · , βm(β j 6= 0,−1,−2, · · · ; j = 1, 2, · · · , m),
the generalized hypergeometric function l Fm(z)(α1, · · · , αl ; β1, · · · , βm; z) is defined by

l Fm(z)(α1, · · · , αl ; β1, · · · , βm; z) :=
∞

∑
n=0

(α1)n · · · (αl)n

(β1)n · · · (βm)n

zn

n!
(l ≤ m + 1; l, m ∈ N0 := N∪ {0}; z ∈ D),

where N denotes the set of all positive integers, and (λ)k is the Pochhammer symbol
defined by

(λ)n =

{
1, n = 0,
λ(λ + 1)(λ + 2) · · · (a + λ− 1), n ∈ N; λ ∈ C.

In recent years, many subclasses of analytic univalent functions or bi-univalent func-
tions associated with the generalized hypergeometric function have been introduced and
studied; see, for example, [3–8].

The logarithmic coefficients γn of f ∈ S play an important role in estimation theory.
They are given by the below formula:

log
(

f (z)
z

)
= 2

∞

∑
n=1

γnzn =: Ff (z), z ∈ D. (7)

De Branges [2] obtained that for n ≥ 1,

n

∑
l=1

l(n− l + 1)|γn|2 ≤
n

∑
l=1

n− l + 1
l

, (8)

and the equality holds if and only if f takes the form z
(1−eiθ z)

2 for some θ ∈ R. Clearly,

this inequality gives the famous Bieberbach–Robertson–Milin conjectures about Taylor
coefficients of f belonging to S in its most general form. In 2005, Kayumov [9] solved
Brennan’s conjecture for conformal mappings by considering the logarithmic coefficients.
For n ≥ 3, it seems to be a more difficult work on the logarithmic coefficients problem. It is
noted that the inequality |γn| ≤ 1

n holds for f ∈ S∗, but it does not hold for the full class S ,
even in an order of magnitude (see [3]). For some significant work on studying logarithmic
coefficients, see [10–12].

For the given functions g1, g2 ∈ A, the subordination between g1 and g2 (written as
g1 ≺ g2) if an analytic function v appears in D comes with the restriction that v(0) = 0
and |v(z)| < 1 in such a manner that f (z) = g(v(z)) holds. v is called a Schwarz function.
Moreover, if g2 in D is univalent, it is known that

g1(z) ≺ g2(z), (z ∈ D)

if and only if
g1(0) = g2(0) and g1(D) ⊂ g2(D).
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By employing the principle of subordination, Ma and Minda [13] considered a unified
version of the class S∗(φ) in 1992 defined by

S∗(φ) :=
{

f ∈ A :
z f ′(z)

f (z)
≺ φ(z), z ∈ D

}
,

where φ is a univalent function with φ′(0) > 0 and <φ > 0. Additionally, the region φ(D)
is star-shaped about the point φ(0) = 1 and is symmetric along the real-line axis. In the
past few years, numerous sub-families of the collection S have been examined as particular
choices of the class S∗(φ). For instance, if we choose φ(z) = 1+(1−2ξ)z

1−z with 0 ≤ ξ < 1,

then we achieve the class S∗(ξ) := S∗
(

1+(1−2ξ)z
1−z

)
of the starlike function family of order

ξ. It is noted that S∗ := S∗
(

1+z
1−z

)
is simply the familiar starlike function family. For more

interesting related subclasses, see, for example, [14–16].
The Hankel determinantHq,n( f ) with q, n ∈ N for a function f ∈ S of the series form

(1) was given by Pommerenke [17,18] as

Hq,n( f ) :=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣.
In the literature, there are only a few references to the Hankel determinant for func-

tions belonging to the general family of univalent functions. In [19], it was proved that
|H2,n( f )| ≤ λ

√
n, where f ∈ S and λ is an absolute constant. The challenge of finding the

sharp limits of Hankel determinants in a particular family of functions drew the attention of
numerous mathematicians. For example, the sharp bound of |H2,2( f )| for the sub-families
K and S∗ were calculated by Janteng et al. [20,21]. It is quite clear from the formulas given
in (10) that the calculation of |H3,1( f )| is far more challenging compared with finding the
bound of |H2,2( f )|. In [22], Babalola investigated the bounds of the third-order Hankel
determinant for the families of K and S∗. Later, several authors [23–26] obtained some
interesting results on |H3,1( f )| for certain sub-families of analytic and univalent functions.
In recent years, some sharp bounds of the third-order Hankel determinant were obtained
for several subclass of univalent functions. Kowalczyk et al. [27] and Lecko et al. [28]
proved that

|H3,1( f )| ≤
{ 4

135 , for f ∈ K,
1
9 , for f ∈ S∗

(
1
2

)
,

where S∗
(

1
2

)
indicate the starlike functions family of order 1

2 . For more contributions in
this direction, see [29–38].

It seems a natural idea to generalize the Hankel determinant with logarithmic coeffi-
cients as entry. In [39,40], Kowalczyk et al. first introduced the Hankel determinant using
logarithmic coefficients. Using the logarithmic coefficient as the element, we have

Hq,n

(
Ff /2

)
=

∣∣∣∣∣∣∣∣∣
γn γn+1 . . . γn+q−1
γn+1 γn+2 . . . γn+q
...

... . . .
...

γn+q−1 γn+q . . . γn+2q−2

∣∣∣∣∣∣∣∣∣. (9)
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In particular, it is noted that

H2,1

(
Ff /2

)
=

∣∣∣∣ γ1 γ2
γ2 γ3

∣∣∣∣ = γ1γ3 − γ2
2,

H2,2

(
Ff /2

)
=

∣∣∣∣ γ2 γ3
γ3 γ4

∣∣∣∣ = γ2γ4 − γ2
3,

If f is given by (1), then its logarithmic coefficients are given by

γ1 =
1
2

a2 (10)

γ2 =
1
2

(
a3 −

1
2

a2
2

)
(11)

γ3 =
1
2

(
a4 − a2a3 +

1
3

a3
2

)
(12)

γ4 =
1
2

(
a5 − a2a4 + a2

2a3 −
1
2

a2
3 −

1
4

a4
2

)
(13)

Let fθ(z) := e−iθ f (eiθz), θ ∈ R. It is observed that H2,1

(
Ff /2

)
and H2,2

(
Ff /2

)
are

invariant under rotation since we have

H2,1

(
Ffθ

/2
)
=

e4iθ

4

(
a2a4 − a2

3 +
1
12

a4
2

)
= e4iθH2,1

(
Ff /2

)
and

H2,2

(
Ffθ

/2
)

= e6iθ
(

1
288

a6
2 −

1
48

a3a4
2 −

1
24

a3
2a4 +

1
16

a2
3a2

2 −
1
8

a5a2
2 +

1
4

a3a2a4 −
1
4

a2
4 +

1
4

a3a5 −
1
8

a3
3

)
= e6iθH2,2

(
Ff /2

)
.

In 2014, Mendiratta R. et al. [41] introduced a subclass of starlike functions defined by

S∗e :=
{

f ∈ S :
z f ′(z)

f (z)
≺ ez, z ∈ D

}
. (14)

This class was later studied in [42] and generalized by Srivastava et al. [43], in which
the authors determined the upper bound of the Hankel determinant. In 2019, Goel et al. [44]
introduced a subclass of the starlike function S∗seg defined by

S∗seg :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 2

1 + e−z , z ∈ D
}

.

The family S∗sin of starlike functions characterised by the condition

S∗sin :=
{

f ∈ S :
z f ′(z)

f (z)
≺ 1 + sin z, z ∈ D

}
was first investigated by Cho et al. [45]. In virtue of sin z = eiz−e−iz

2i , it is seen that the three
function classes are associated with the exponential function. The exponential function
ϕ(z) = ez has a positive real part in D and an image domain ϕ(D) = {w ∈ C : |log w| < 1}
(see Figure 1). Let ψ(z) = 2

1+e−z . The function ψ is called a modified sigmoid function. It
maps D onto a domain ∆SG :=

{
w ∈ C :

∣∣log
( w

2−w
)∣∣ < 1

}
(see Figure 2). Moreover, ψ is

convex and hence starlike with respect to ψ(0) = 1. For f ∈ S∗sin, the quantity z f ′(z)
f (z) lies in

an eight-shaped region in the right-half plane.
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Figure 1. Image of D under ez.

Figure 2. Image of D under 2
1−e−z .

Recently, Sevtap Sümer Eker et al. [46] obtained the sharp bounds for the second
Hankel determinant of logarithmic coefficients for strongly starlike and strongly convex
functions. In [47], the authors discussed the bounds of second Hankel determinants with
logarithmic coefficients for the class S∗seg and improved the estimation of the existing second
Hankel determinant of logarithmic coefficients for the class S∗sin.

In the present article, our aim is to calculate sharp bounds of the Hankel determinants
with logarithmic coefficients as entry for the class S∗e .

2. Main Results

A function p ∈ P if and only if <p(z) ≥ 0 for z ∈ D with the series expansion

p(z) = 1 +
∞

∑
n=1

cnzn, z ∈ D. (15)

Lemma 1 (see [48]). Let p ∈ P . Then, for some x, δ, ρ ∈ D := {z ∈ C : |z| ≤ 1}, we have

2c2 = c2
1 +

(
4− c2

1

)
x, (16)

4c3 = c3
1 + 2c1x

(
4− c2

1

)
− x2c1

(
4− c2

1

)
+ 2
(

1− |x|2
)(

4− c2
1

)
δ, (17)

8c4 = c4
1 + x

[
c2

1

(
x2 − 3x + 3

)
+ 4x

]
(4− c2

1)− 4(4− c2
1)(1− |x|

2)[
c1(x− 1)δ + xδ2 − (1− |δ|2)ρ

]
(4− c2

1). (18)
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Throughout this paper, in the following, we use x, δ and ρ to denote some complex
number satisfying |x| ≤ 1, |δ| ≤ 1 and |ρ| ≤ 1. Let c1 = c, |x| = t and |ρ| = y be real
numbers that lie in the intervals [0, 2], [0, 1] and [0, 1], respectively.

Theorem 1. Let f ∈ S∗e . Then,∣∣∣H2,1

(
Ff /2

)∣∣∣ = ∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
16

. (19)

The inequality is sharp.

Proof. Suppose that f ∈ S∗e . From the definition, we know it can be written in the form of
a Schwarz function as

z f ′(z)
f (z)

= ew(z), (z ∈ D).

Define

p(z) :=
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + c3z3 + c4z4 + · · · , (z ∈ D). (20)

It follows that

w(z) =
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
1
8

c3
1 −

1
2

c1c2 +
1
2

c3

)
z3

+

(
1
2

c4 −
1
2

c1c3 −
1
4

c2
2 −

1
16

c4
1 +

3
8

c2
1c2

)
z4 + · · · , (z ∈ D). (21)

Using (1), we obtain

z f ′(z)
f (z)

= 1 + a2z +
(

2a3 − a2
2

)
z2 +

(
a3

2 − 3a2a3 + 3a4

)
z3

+
(

4a5 − a4
2 + 4a2

2a3 − 4a2a4 − 2a2
3

)
z4 + · · · , (z ∈ D). (22)

Using the series expansion of (21), we obtain

ew(z) = 1 +
1
2

c1z +
(

1
2

c2 −
1
8

c2
1

)
z2 +

(
−1

4
c1c2 +

1
48

c3
1 +

1
2

c3

)
z3

+

(
1

348
c4

1 +
1

16
c2

1c2 −
1
4

c1c3 −
1
8

c2
2 +

1
2

c4

)
z4 + · · · , (z ∈ D). (23)

Now, comparing (22) and (23) leads to

a2 =
1
2

c1,

a3 =
1
4

c2 +
1

16
c2

1,

a4 =
1
6

c3 −
1

288
c3

1 +
1
24

c1c2,

a5 =
1

1152
c4

1 −
1

96
c2

1c2 +
1

48
c1c3 +

1
8

c4.
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From (10)–(13), we have

γ1 =
1
4

c1, (24)

γ2 =
1
8

c2 −
1

32
c2

1, (25)

γ3 =
1

288
c3

1 −
1
24

c1c2 +
1
12

c3, (26)

γ4 =
1

3072
c4

1 +
1

128
c2

1c2 −
1

32
c1c3 −

1
64

c2
2 +

1
16

c4. (27)

From (24)–(26), we have∣∣∣γ1γ3 − γ2
2

∣∣∣ = 1
9216

∣∣∣−c4
1 − 24c2

1c2 + 192c1c3 − 144c2
2

∣∣∣.
SinceH2,1

(
Ff /2

)
is rotationally invariant, we may assume that c1 = c ∈ [0, 2]. Using

(16) and (17) to express c2 and c3 in terms of c1 = c, we obtain∣∣∣γ1γ3 − γ2
2

∣∣∣ =
1

9216

∣∣∣∣−c4 − 48c2x2
(

4− c2
)
− 36x2

(
4− c2

)2
+ 12xc2

(
4− c2

)
+96c

(
1− |x|2

)(
4− c2

)
δ
∣∣∣.

By replacing |δ| ≤ 1 and |x| = t, it follows that∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
9216

[
c4 + 48c2t2

(
4− c2

)
+ 96c

(
1− t2

)(
4− c2

)
+36t2

(
4− c2

)2
+ 12c2t

(
4− c2

)]
=: Ω(c, t).

Differentiating with respect to t, we have

∂Ω(c, t)
∂t

=
1

9216
× 12

(
4− c2

)(
2tc2 − 16tc + c2 + 24t

)
.

As c ∈ [0, 2], it is a simple exercise to show that ∂Ω(c,t)
∂t ≥ 0 for t ∈ [0, 1]. Thus, we have

Ω(c, t) ≤ Ω(c, 1). Putting t = 1 gives∣∣∣γ1γ3 − γ2
2

∣∣∣ ≤ 1
9216

[
c4 + 60c2

(
4− c2

)
+ 36

(
4− c2

)2
]
=: v(c).

Since v′(c) ≤ 0 for c ∈ [0, 2], we see that v(c) is a decreasing function, and it gives its
maximum value at c = 0. This yields∣∣∣H2,2

(
Ff /2

)∣∣∣ ≤ 576
9216

=
1
16

.

Equality is determined using (10)–(12) and

f1(z) = z exp

(∫ z

0

et2 − 1
t

dt

)
= z +

1
2

z3 +
1
4

z5 + · · · . (28)

Theorem 2. Let f ∈ S∗e . Then∣∣∣H2,2

(
Ff /2

)∣∣∣ = ∣∣∣γ2γ4 − γ2
3

∣∣∣ ≤ 1
36

.
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This result is sharp.

Proof. As H2,2

(
Ff /2

)
is rotation-invariant, we assume that c1 = c ∈ [0, 2]. By using

(24)–(27), we have∣∣∣γ2γ4 − γ2
3

∣∣∣ =
1

2654208

(
−59c6 + 228c4c2 + 1056c3c3 − 720c2c2

2 − 5184c2c4

+8064cc2c3 − 5184c3
2 + 20736c2c4 − 18432c2

3

)
. (29)

Suppose that u = 4− c2. An application of Lemma 1 leads to∣∣∣γ2γ4 − γ2
3

∣∣∣ =
1

2654208

{
−5c6 + 528c3u

(
1− |x|2

)
δ− 6c4xu− 828c2u2x2

−912c4x2u− 288x3u2c2 + 144x4u2c2 − 4608u2
(

1− |x|2
)2

δ2

+2592ux2c2 + 648c4ux3 − 648x3u3 + 5184u2x3 − 2592c3u
(

1− |x|2
)

xδ

−2592c2ux̄
(

1− |x|2
)

δ2 + 2592c2u
(

1− |x|2
)(

1− |δ|2
)

ρ

−2016cxu2
(

1− |x|2
)

δ− 5184u2|x|2
(

1− |x|2
)

δ2

−576cu2x2
(

1− |x|2
)

δ + 5184u2x
(

1− |x|2
)(

1− |δ|2
)

ρ
}

.

Thus, we see that∣∣∣γ2γ4 − γ2
3

∣∣∣ = 1
2654208

(
v1(c, x) + v2(c, x)δ + v3(c, x)δ2 + Φ(c, x, δ)ρ

)
,

where

v1(c, x) = −6
(

4− c2
)

x
[
6
(

4− c2
)

x
(
−4x2c2 − 10xc2 + 23c2 − 72x

)
− 108c4x2

+152c4x + c4 − 432xc2
]
− 5c6,

v2(c, x) = −48
(

4− c2
)(

1− |x|2
)

c
[(

12x2 + 42x
)(

4− c2
)
+ 54xc2 − 11c2

]
,

v3(c, x) = −288
(

4− c2
)(

1− |x|2
)[(

2|x|2 + 16
)(

4− c2
)
+ 9x̄c2

]
,

Φ(c, x, δ) = 2592
(

4− c2
)(

1− |x|2
)(

1− |δ|2
)[

2
(

4− c2
)

x + c2
]
.

Now, by utilizing |δ| = y, |x| = t and taking |ρ| ≤ 1, we achieve∣∣∣γ2γ4 − γ2
3

∣∣∣ ≤ 1
2654208

(
|v1(c, t)|+ |v2(c, t)|y + |v3(c, t)|y2 + |Φ(c, t, δ)|

)
,

≤ 1
2654208

[H(c, t, y)]. (30)

where
H(c, t, y) = h1(c, t) + h2(c, t)y + h3(c, t)y2 + h4(c, t)

(
1− y2

)
. (31)
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with

h1(c, t) = 6
(

4− c2
)

t
[
6
(

4− c2
)

t
(

4t2c2 + 10tc2 + 23c2 + 72t
)
+ 108c4t2

+152c4t + c4 + 432tc2
]
+ 5c6,

h2(c, t) = 48
(

4− c2
)(

1− t2
)

c
[(

12t2 + 42t
)(

4− c2
)
+ 54tc2 + 11c2

]
,

h3(c, t) = 288
(

4− c2
)(

1− t2
)[(

2t2 + 16
)(

4− c2
)
+ 9tc2

]
,

h4(c, t) = 2592
(

4− c2
)(

1− t2
)[

2
(

4− c2
)

t + c2
]
.

Let the closed cuboid be ∆ := [0, 2]× [0, 1]× [0, 1]. We have to achieve the points of
maxima of H(c, t, y) in ∆. By observing that H(0, 0, 1) = 73728, we know

maxH(c, t, y) ≥ 73728, (c, t, y) ∈ ∆. (32)

Denote m0 = 73728. In the following, we aim to prove that maxH(c, t, y) = m0 for all
(c, t, y) ∈ ∆. To show this, we first prove that the global maximum value of H(c, t, y) can be
obtained on the face of y = 1. On t = 1, H(c, t, y) reduces to

q1(c) := H(c, 1, y) = −229c6 − 4392c4 + 10944c2 + 41472, c ∈ (0, 2). (33)

Solving q′1(c) = 0, we obtain critical points c = c0 = 0 and c = c1 ≈ 1.0694. Here,
c0 is the minimum points of q1. Thus, q1 attains its maximum 47901.1108 at c1. Clearly, it
is impossible for H(c, t, y) to obtain its global maximum on the face of t = 1. On c = 2,
H(c, t, y) reduces to

H(2, t, y) ≡ 320, t, y ∈ [0, 1]. (34)

Obviously, the global maximal value of H(c, t, y) also cannot be obtained on the face
of c = 2. In the following, we assume that c < 2 and t < 1.

I. Let (c, t, y) ∈ [0, 2)× [0, 1)× (0, 1). Now, to find points of maxima in ∆, we take
partial derivative of (31) with respect to y. Since

h3(c, t)− h4(c, t) = 288
(

4− c2
)(

1− t2
)
(1− t)

[(
4− c2

)
(16− 2t)− 9c2

]
, (35)

it is easy to see that

∂H
∂y

= h2(c, t) + 2[h3(c, t)− h4(c, t)]y = 48
(

4− c2
)(

1− t2
)

M(c, t)y, (36)

where

M(c, t) = 6ct(2t + 7)
(

4− c2
)
+ (54t + 11)c3 + 12(1− t)

[(
4− c2

)
(16− 2t)− 9c2

]
. (37)

Now, ∂H
∂y = 0 yields

y =
6ct
(
4− c2)(2t + 7) + c3(54t + 11)

12(1− t)[(4− c2)(2t− 16) + 9c2]
.

If y0 is a critical point inside ∆, then y0 ∈ (0, 1), which is possible only if

6ct
(

4− c2
)
(2t + 7) + c3(54t + 11) + 12(1− t)

(
4− c2

)
(16− 2t) < 108(1− t)c2, (38)

and

c2 >
8(8− t)
25− 2t

=: h(t). (39)
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Then, we must obtain the solutions which satisfy both inequalities (38) and (39) for
the existence of the critical points.

Since h′(t) < 0 for (0, 1), h(t) is decreasing in (0, 1), hence, c2 > 56
23 . A simple exercise

shows that (38) does not hold in this case for all values of t ∈
[

1
2 , 1
)

, and there is no critical

point of H in (0, 2)× (0, 1)×
[

1
2 , 1
)

. In fact, suppose that

Υ(c, t) := 6ct
(

4− c2
)
(2t + 7) + c3(54t + 11) + 12(1− t)

(
4− c2

)
(16− 2t)

−108(1− t)c2.

It is easily obtained that

Υ(c, t) ≥ 672− 276c2 + 11c3 + 6(−112 + 46c2 + 9c3)t =: L(c, t). (40)

As it is observed that L
(

c, 1
2

)
≥ 0 and L(c, 1) ≥ 0 for c ∈ [0, 2], we have

L(c, t) ≥ min
{

L
(

c,
1
2

)
, L(c, 1)

}
≥ 0, (c, t) ∈ [0, 2]×

[
1
2

, 1
)

. (41)

Combining (40) and (41), we see (38) is impossible to hold for all t ∈
[

1
2 , 1
)

. This is to

say that there are no critical points of H(c, t, y) satisfying y ∈ (0, 1) with t ∈
[
0, 1

2

)
.

For t < 1
2 , we will prove that all the critical points of H(c, t, y) with y ∈ (0, 1) have

a maximum value no larger than m0. Suppose that (ĉ, t̂, ŷ) is a critical point of H and
ŷ ∈ (0, 1). To guarantee the inequalities (38) and (39) to be true simultaneously, we know
that t̂ < 1

2 . Using (39), it follows that ĉ2 > h
(

1
2

)
= 5

2 . By noting that 1− t2 ≤ 1 and t < 1
2 ,

it is not hard to observe that

h1(c, t) ≤ h1

(
c,

1
2

)
=: κ1(c) (42)

and

hj(c, t) ≤ 4
3

hj

(
c,

1
2

)
=: κj(c), j = 2, 3, 4. (43)

Hence, we obtain that

H(c, t, y) ≤ κ1(c) + κ2(c)y + κ3(c)y2 + κ4(c)
(

1− y2
)
=: Θ(c, y). (44)

A basic calculation shows that

∂2Θ(c, y)
∂y2 = 2[κ3(c)− κ4(c)] = 3456

(
4− c2

)(
5− 2c2

)
≤ 0 (45)

for c2 ∈
( 5

2 , 4
]
. Thus, we know

∂Θ(c, y)
∂y

≥ ∂Θ(c, y)
∂y

|y=1

= κ2(c) + 2[κ3(c)− κ4(c)]

= 48
(

4− c2
)(

360 + 96c− 150c2 + 14c3
)
≥ 0
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with c ∈
(√

5
2 , 2
]

. This leads to

Θ(c, y) ≤ κ1(c) + κ2(c) + κ3(c) := ι(c), c ∈
(√

5
2

, 2

]
. (46)

Now, a basic calculation shows that ι attains its maximum value 38095.55 at c ≈
1.5811399. Therefore, we conclude that

H(ĉ, t̂, ŷ) ≤ Θ(ĉ, ŷ) ≤ ι(ĉ) < m0. (47)

This implies that the global maximum value of H(c, t, y) in ∆ cannot be obtained with
y ∈ (0, 1).

II. On the face of y = 0, we have

H(c, t, 0) = h1(c, t) + h4(c, t) =: R1(c, t) (48)

and
H(c, t, 1) = h1(c, t) + h2(c, t) + h3(c, t) =: R2(c, t). (49)

It is noted that

R2(c, t)− R1(c, t) = h2(c, t) + h3(c, t)− h4(c, t) = 48
(

4− c2
)(

1− t2
)

N(c, t), (50)

where

N(c, t) = 12
(

4− c2
)
(1 + c)t2 +

(
−432 + 168c + 162c2 + 12c3

)
t + 384− 150c2 + 11c3. (51)

For t > 7
10 and c ≥ 1, it is found that

∂N(c, t)
∂t

= 24
(

4− c2
)
(1 + c)t− 432 + 168c + 162c2 + 12c3

≥ 84
5

(
4− c2

)
(1 + c)− 432 + 168c + 162c2 + 12c3

=
6
5

(
−304 + 196c + 121c2 − 4c3

)
=: $(c).

As it is easy to see that $′(c) > 0 for c ∈ [1, 2), we know that $ attains its minimum
value at c = 1. Thus, we have

$(c) ≥ $(1) =
54
5

> 0, c ∈ [1, 2). (52)

It follows that ∂N(c,t)
∂t ≥ 0 for all c ∈ [1, 2). Therefore, we deduce that

N(c, t) ≥ N
(

c,
7
10

)
=

1
25

(
2628 + 3528c− 1062c2 + 338c3

)
≥ 0. (53)

On the other hand, if c > 7
10 and c < 1, it is noted that −432 + 168c + 162c2 + 12c3 ≤ 0

and

N(c, t) ≥ 12
(

4− c2
)
(1 + c)t2 + 384− 150c2 + 11c3

≥ 147
25

(
4− c2

)
(1 + c) + 384− 150c2 + 11c3

=
1
25

(
10188 + 588c− 3897c2 + 128c3

)
> 0.
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Hence, we conclude that

N(c, t) ≥ 0, (c, t) ∈ [0, 2)×
(

7
10

, 1
)

. (54)

This implies that R2(c, t) ≥ R1(c, t) and

H(c, t, 0) ≤ H(c, t, 1), (c, t) ∈ [0, 2)×
(

7
10

, 1
)

. (55)

Thus, we have

maxH(c, t, 0) ≤ maxH(c, t, 1), (c, t) ∈ [0, 2]×
[

7
10

, 1
]

. (56)

For t ≤ 7
10 , it is observed that

h1(c, t) ≤ h1

(
c,

7
10

)
=: τ1(c) (57)

and

h4(c, t) ≤ 100
51

h4

(
c,

7
10

)
=: τ2(c). (58)

Then, it follows that

H(c, t, 0) = h1(c, t) + h4(c, t) ≤ τ1(c) + τ2(c) =: τ3(c). (59)

A basic calculation shows that τ3 attains its maximum value 72285.70 at c = 0. This
means that

H(c, t, 0) ≤ m0 ≤ maxH(c, t, 1), (c, t) ∈ [0, 2)×
[

0,
7

10

]
. (60)

Combining (56) and (60), the global optimal value of H is sure to be achieved on the
face of y = 1. Now, we only need to find points of maxima on the faces y = 1 of ∆. On
y = 1, it is clear that

H(c, t, 1) = h1(c, t) + h2(c, t) + h3(c, t) =: U(c, t). (61)

We note that

U(c, t) = 5c6 + 6
(

4− c2
)[

88c3 +
(

c2 + 432c + 432
)

c2t

+8
(

19c2 − 11c + 54
)

c2t2 + 108
(

c2 − 4c− 4
)

c2t3
]

+36
(

4− c2
)2[

128 + 32ct +
(

23c2 + 16c− 112
)

t2

+2
(

5c2 − 16c + 36
)

t3 + 4
(

c2 − 4c− 4
)

t4
]
.

As we see that c2 − 4c− 4 ≤ 0, 5c2 − 16c + 36 ≥ 0, 19c2 − 11c + 54 ≥ 0 for c ∈ [0, 2]
and t3 ≤ t2 ≤ t, it follows that

U(c, t) ≤ 5c6 + 6
(

4− c2
)[

88c3 +
(

c2 + 432c + 432
)

c2t + 8
(

19c2 − 11c + 54
)

c2t
]

+36
(

4− c2
)2[

128 + 32ct +
(

23c2 + 16c− 112
)

t2 + 2
(

5c2 − 16c + 36
)

t2
]

= 5c6 + 6
(

4− c2
)[

88c3 +
(

153c4 + 344c3 + 864c2
)

t
]

+36
(

4− c2
)2[

128 + 32ct +
(

33c2 − 16c− 40
)

t2
]
=: V(c, t).
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In virtue of t < 1, we deduce that

V(c, t) ≤ 5c6 + 6
(

4− c2
)(

153c4 + 432c3 + 864c2
)

+36
(

4− c2
)2[

128 + 32ct +
(

33c2 − 16c− 40
)

t2
]
=: W(c, t).

Define

S(c, t) := 128 + 32ct +
(

33c2 − 16c− 40
)

t2, (c, t) ∈ [0, 1)× [0, 1). (62)

For c < 1, it is easily noted that 33c2 − 16c− 40 ≤ −23 and

S(c, t) ≤ 128 + 32ct− 23t2 =: T(c, t), (c, t) ∈ [0, 1)× [0, 1). (63)

It is seen that
t0 =

16
23

c ∈ [0, 1); (64)

thus, we have

T(c, t) ≤ 4× (−23)× 128− 1024c2

4× (−23)
= 128 +

256
23

c2 ≤ 128 + 12c2. (65)

It follows that

W(c, t) ≤ 5c6 + 6
(

4− c2
)(

153c4 + 432c3 + 864c2
)
+ 36

(
4− c2

)2(
128 + 12c2

)
= −481c6 − 2592c5 − 360c4 + 10368c3 − 9216c2 + 73728 =: χ(c)

To prove that χ(c) ≤ 73728 for c ∈ [0, 1), we need to show that

− 481c6 − 2592c5 − 360c4 + 10368c3 − 9216c2 ≤ 0, (66)

which is equivalent to

− 481c4 − 2592c3 − 360c2 + 10368c− 9216 ≤ 0. (67)

Let
ϑ(c) := −481c4 − 2592c3 − 360c2 + 10368c− 9216, c ∈ [0, 1). (68)

It is clear that

ϑ(c) ≤ −481c4 − 2592c3 + 10368c− 9216 =: ϑ̂(c). (69)

Since ϑ̂′(c) ≥ 0 for c ∈ [0, 1), thus, we know that ϑ̂(c) ≤ ϑ̂(1) = −1921. This
implies that ϑ(c) ≤ 0. Then we obtain that χ(c) ≤ 73728 and thus U(c, t) ≤ 73728 for all
(c, t) ∈ [0, 1)× [0, 1).

For c ∈ [1, 2), it is found that

∂V(c, t)
∂t

= 6(4− c2)(153c4 + 344c3 + 864c2) + 36(4− c2)2
[
32c + 2(33c2 − 16c− 120)t

]
≥ 6(4− c2)(153c4 + 344c3 + 864c2) + 36(4− c2)2(32c− 23t)

≥ 6(4− c2)(153c4 + 344c3 + 864c2) + 36(4− c2)2(32c− 23)

= 6(4− c2)
(

153c4 + 152c3 + 1002c2 + 768c− 552
)
≥ 0.
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Thus, we have

V(c, t) ≤ V(c, 1)

= 5c6 + 6
(

4− c2
)(

153c4 + 432c3 + 864c2
)
+ 36

(
4− c2

)2(
33c2 + 16c + 88

)
= 275c6 − 2016c5 − 7848c4 + 5760c3 + 14400c2 + 9216c + 50688 =: µ(c)

In virtue of µ attaining its maximum 71992.07 at c ≈ 1.179235, we know U(c, t) ≤ m0
for (c, t) ∈ [1, 2) × [0, 1). Thus, we claim that the maximum value of U(c, t) is sure to
exist in (c, t) ∈ [0, 1)× [0, 1) and hence has a maximum value no larger than m0. Since
H(c, t, 1) = U(c, t), and the global maximum value of H is sure to exist on the face y = 1 of
∆, we obtain that H(c, t, y) ≤ m0 for (c, x, y) ∈ ∆. From Equation (30), we can write∣∣∣γ2γ4 − γ2

3

∣∣∣ ≤ m0

2654208
=

73728
2654208

=
1
36

.

If f ∈ S∗e , then the equality is determined by using (10)–(13) and

f2(z) = z exp

(∫ z

0

e(t3) − 1
t

dt

)
= z +

1
3

z4 +
5

36
z7 + · · · . (70)

This completes the proof.

3. Conclusions

The Hankel determinants can be used in the study of singularities and power series
with integral coefficients. Additionally, there are some of its applications in meromorphic
functions in the literature. Therefore, to obtain the upper bounds of Hankel determinants
for certain subclasses of univalent functions is an active topic in the field of geometric
function theory. In the present work, we consider a family of starlike functions S∗e connected
with the exponential function. For functions in this class, we obtain some sharp results
on the logarithmic coefficient-related problems. The method of proof is based on the well-
known parametric formulas for initial coefficients in the Carathéodory class of functions.
It was found that the logarithmic coefficients of functions can be transfered to obtain the
bounds for the coefficients of a function and its inverse function. As the calculation of
bounds on coefficients of the inverse function is often a more difficult task, our results on
Hankel determinants with logarithmic coefficients seem to be of great significance. As the
exponential function is a very special class of hypergeometric functions, this work may
inspire some other investigations by considering univalent functions subordinated to a
more general class. Additionally, it will be interesting if the sharp bounds of higher-order
Hankel determinants can be obtained.
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