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Abstract: In this article, the distributed optimization problem is studied for a class of fractional-order
nonlinear uncertain multi-agent systems (MASs) with unmeasured states. Each agent is represented
through a system with unknown nonlinearities, unmeasurable states and a local objective function
described by a quadratic polynomial function. A penalty function is constructed by a sum of
local objective functions and integrating consensus conditions of the MASs. Radial basis function
Neural-networks (RBFNNs) and Neural networks (NN) state observer are applied to approximate
the unknown nonlinear dynamics and estimate unmeasured states, respectively. By combining
the NN state observer and the penalty function, and the stability theory of the Lyapunov function,
the distributed observer-based adaptive optimized backstepping dynamic surface control protocol
is proposed to ensure the outputs of all agents asymptotically reach consensus to the optimal
solution of the global objective function. Simulations demonstrate the effectiveness of the proposed
control scheme.

Keywords: fractional order multiagent systems (FOMASs); distributed optimization; dynamic surface
control (DSC); neural networks; observer

1. Introduction

In past few years, the distributed cooperative control of MASs has received a great
deal of interest and has became one of the research hotspots due to its potential applications
in various fields, including formation control [1], smart grids [2], sensor networks [3],
distributed energy resources [4], robotic systems [5], fractional-order systems [6–8], multi-
satellites system [9], multiple spacecraft [10,11] and so on. As one of the underlying
issues with cooperative control, the consensus refers to the construction of the appropriate
decentralized algorithms, which can make the states of all agents ultimately come to an
agreement. As an extension of the MASs’ consensus issue, the distributed optimization
consensus problem considers optimization on the basis of consensus, which is reasonable.
For instance, in the aviation mission completed by multiple aircraft cooperatively, there are
optimization problems in tasks such as path planning, optimal coverage, and minimum
fuel. In the distributed optimization problem, the global optimization objective is a sum of
all agents’ local optimization objectives.

The main objective of the distributed optimization consensus of MASs is to design
appropriate controllers, which is driving all agents to converge to the optimal solution of
the optimization problem cooperatively. For different problems, various control protocols
have been developed in the past several years. In [12], a distributed active antidisturbance
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control algorithm was developed to solve the distributed optimization problem of second-
order MASs with both mismatched and matched disturbances. Based on the state-integral
feedback and adaptive control method, a two-layer control framework was developed for
the distributed optimization problem of second-order MASs with unmatched constant
disturbances in [13]. In [14], an integral sliding mode controller was designed to give
robustness to MASs affected by perturbations and uncertain agent dynamics. An adaptive
distributed method was designed to handle the distributed optimization problem for a class
of the heterogenous nonlinear MASs on the weight-balanced directed graph in [15]. In [16],
continuous distributed algorithms were proposed for the finite-time distributed convex
optimization problems of MASs with local disturbance signals. Specifically, an adaptive
backstepping method was presented to handle the distributed optimization problem of
nonlinear MASs, in which each agent is denoted through the high-order nonlinear strict-
feedback form limited by mismatched parametric uncertainties in [17].

However, the aforementioned optimization algorithms may not work when there
are nonlinear uncertain functions in the MASs. Due to the inaccuracy of modeling or the
existence of unknown disturbance, nonlinear uncertainty exists objectively. Fortunately,
NNs and fuzzy logic systems (FLSs) are used to approximate arbitrary nonlinear functions,
and achieve arbitrary approximation accuracy. Combined with NNs or FLSs, a variety of
adaptive intelligent control methods are developed for nonlinear MASs [18–24]. The dis-
tributed dynamic surface technique was developed to design the local consensus controller,
and the NNs were employed for function approximation in [25]. A distributed adaptive
NNs backstepping controllers were constructed for MASs with nonlinear input in [26].
In [27], a finite-time adaptive NNs controller was developed by using the command filter
approach for uncertain nonlinear MASs with prescribed performance and input saturation.
In order to deal with the unmeasured states, several observer-based fuzzy or NNs adaptive
distributed control schemes were developed for uncertain nonlinear MASs [28–32]. Based
on high-gain observer theory and fuzzy technique, a decentralized control approach for
double-integrator uncertain MASs with disturbances, unmeasured states and unknown
nonlinear dynamics was presented in [33]. In [34], a distributed adaptive control protocol
based on the command filtered backstepping method was developed for nonlinear MASs
with input saturation. After literature investigation, it is worth mentioning that we have not
found that the adaptive intelligent control is used for multi-agent optimization problems.
Therefore, how to develop an adaptive intelligent output feedback control method that can
make the uncertain MASs with nonlinear dynamics ensure the consensus conditions and
satisfy the optimization objective function at the same time is a challenging and meaningful
scientific problem.

Furthermore, the above research is limited to integer-order MASs. Actually, it is rea-
sonable to regard the fractional-order MASs (FOMASs) as a generalization of integer-order
MASs. FOMASs have a wide range of potential applications in reality [35], such as robotic
systems operating on muddy roads, swamp flotation devices and supercoils, and so on.
The consensus control of FOMASs has drawn much attention and has become another
research hotspot [36–40]. The consensus of FOMASs with linear models using the observer
technique was proposed in [41]. In [42], an observer-based Linear Matrix Inequality con-
troller for the consensus of FOMASs depicted by the general linear dynamics with positive
constraint was designed. However, to the best of our knowledge, the distributed opti-
mization consensus problem of FOMASs with unmeasured states and nonlinear uncertain
dynamics has not been investigated in the existing study, which gives us great motivation
for the research presented in this article.

Motivated by the above observations, the purpose of this paper lies in the design of
an adaptive backstepping DSC algorithm to solve a distributed constrained optimization
problem for FOMASs with unmeasured states and unknown nonlinearities. In the MASs, it
is assumed that each agent only accesses its local objective function and is constrained by a
quadratic polynomial function. By combining a global objective function and consensus
conditions, a penalty function is established. The RBFNNs are used to approximate the
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unknown nonlinear dynamics, and a NN state observer is utilized to estimate the unmea-
sured states of each agent. A distributed optimized controller for each agent can be derived
by applying the adaptive backstepping DSC technology to accomplish consensus tracking
of the optimal solution, which is obtained by minimizing the penalty function. Compared
with the aforementioned work, the novel contributions of this paper are:

(1) Compared with [19–23], where the NNs-based adaptive backstepping DSC design
algorithm was proposed for the consensus problem of MASs, we solve the distributed
optimization problem for the FOMASs with unmeasured states. To accomplish this
difficult task, based on the penalty function and negative gradient method, we con-
struct a Lyapunov function for the control strategy. The distributed control method
proposed in this paper ensures that all the agents’ outputs reach consensus to the
optimal solution of the global objective function asymptotically instead of tracking
the reference trajectory.

(2) Different from [12,16], in which the distributed optimization algorithms are developed
for first-order and second-order MASs, this article mainly focuses on the distributed
optimization problem for fractional high-order MASs with unmeasured states and the
unknown nonlinear functions. To overcome this challenge, we propose the distributed
optimized adaptive backstepping controller based on the fractional DSC method,
which is widely used in fractional high-order MASs, and the controller we propose
has excellent performance in fractional-order MASs, which will be reflected in the
Simulation section when comparing with [16].

(3) In contrast to [17], which investigates an adaptive backstepping protocol to the dis-
tributed optimization for the integer order MASs, with each agent modeled by the
strict-feedback form, this article will address the FOMASs with unmeasured states.
The unknown nonlinear functions are considered in our article and will be approxi-
mated by the NNs.

The reminder of this study is constructed as follows. Section 2 gives the formulation
and preliminaries of this paper. In Section 3, by employing the adaptive DSC technology,
a NN state observer-based distributed controller is proposed. Section 4 provides the
numerical simulations to elaborate on the feasibility of the proposed control algorithms.
Section 5 gives the conclusions.

2. Preliminaries
2.1. Fractional Calculus

Define the R-L fractional derivative as

RL
0 Iα

t f (t) =
1

Γ(n− α)

dn

dtn

∫ t

0

f (τ)

(t− τ)1+α−n dτ (1)

where n ∈ N and n− 1 < α ≤ n, Γ(z) =
∫ ∞

0 tz−1e−tdt is the Gamma function. f (t) is an
arbitrary integrable smooth function on [0, t].

In this paper, we mainly adopt the Caputo fractional derivative [43] as defined with

C
0 Dα

t f (t) =
1

Γ(n− α)

∫ t

0

f (n)(τ)

(t− τ)1+α−n dτ. (2)

Remark 1. To simplify the notation, we set C
0 Dα

t f (t) = Dα f (t).
For a two-parameter function of the Mittag-Leffler type

Eα,β(ς) =
∞

∑
k=0

ςk

Γ(αk + β)
, (α > 0), (β > 0)

we have the next Lemma.
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Lemma 1 ([44]). For real numbers β, α and v satisfying α ∈ (0, 1)

πα

2
< v < πα (3)

and for integers n ≥ 1, it is obtained that

Eα,β(ς) = −
n

∑
j=1

ζ−j

Γ(β− αj)
+ o

(
1

|ς|n+1

)
(4)

when |ς| → ∞, v ≤ |arg(ς)| ≤ π.

Lemma 2 ([44]). Let α ∈ (0, 2) and β be an arbitrary real number. For (πα/2) < υ ≤ min{π, πα},
it is proven that ∣∣Eα,β(ς)

∣∣ ≤ µ

1 + |ς| (5)

where µ > 0, υ ≤ |arg(ς)| ≤ π, and |ς| ≥ 0.

Lemma 3 ([45]). Define a vector of continuous and differentiable functions x(t) = [x1(t), . . . , xn(t)]
∈ Rn. Then, the following relationship holds

1
2 Dα

(
xT(t)Px(t)

)
≤ xT(t)PDαx(t)

x(0) = x0, ∀α ∈ (0, 1), ∀t > t0
(6)

where t0 = 0, P=diag(p1, p2, . . . , pn) and pi > 0, i = 1, 2, . . . , n.

Lemma 4 ([46]). For any x, y ∈ Rn, the following inequality relationship holds

xTy ≤ ca

a
‖x‖a +

1
bcb ‖y‖

b (7)

where a > 1, b > 1, c > 0, and (a− 1)(b− 1) = 1.

Lemma 5 ([43]). In fractional-order nonlinear system, if the α-order derivative of Lyapunov
function V(t, x) is satisfying

DαV(t, x) ≤ −CV(t, x) + ζ

then
V(t, x) ≤ V(0)Eα(−Ctα) +

ζµ
C , t ≥ 0 (8)

and 0 < α < 1, C > 0, and ζ ≥ 0. Then, V(t, x) is bounded on [0, t] and fractional order systems
are stable and µ is defined in Lemma 2.

2.2. Graph Theory

Suppose that there exist N agents. A directed graph G = (W , E , Ā) is used for the informa-
tion exchange between agents, whereW = {1, . . . , N} is a node set and E = {(i, j) ∈ W ×W}
is an edge set. Ā =

{
aij
}
∈ RN×N is the adjacency matrix and an edge (i, j) ∈ E , if and only

if aij = 1, means that there is information exchange between node i and node j. Assume that
there is no self-loop in diagraph, therefore aii = 0 for i = 1, . . . , N. Utilize Ni = {j|(i, j) ∈ E}
as the neighbor set of node i. Define the matrix D = diag{d1, d2, . . . , dN} as the degree matrix
of directed graph G, in which di = ∑j∈Ni

aij. Define the Laplacian matrix as L = D− Ā.

Lemma 6 ([47]). Define a column vector 1N with N elements and all elements being one. Denote a
symmetric matrix L ∈ RN×N as the Laplacian matrix of a directed graph G. 1N is the eigenvector
for eigenvalue 0 of Laplacian matrix.
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2.3. Fractional-Order Nonlinear Multi-Agent System

In this paper, the following FOMAS with nonlinear uncertain dynamics for agent i
is considered. 

Dαxi,1(t) = xi,2(t) + gi,1(xi,1(t))
Dαxi,l(t) = xi,l+1(t) + gi,l(xi,1(t), xi,2(t), · · · , xi,l(t))
Dαxi,n(t) = ui(t) + gi,n(xi,1(t), xi,2(t), · · · , xi,n(t))
yi = xi,1(t)

(9)

where l = 2, · · · , n− 1, ui is the control input, yi is the system output and gi,l(xi,l(t), xi,2(t)
, . . . , xi,l(t)) is an unknown nonlinear function defined on the system state vector. Define
Xi,l = (xi,1(t), xi,2(t), · · · , xi,l(t))T ∈ Rl are the system state vectors for agent i.

Rewrite the system of agent i:

DαXi,n = AiXi,n + Kiyi +
n

∑
l=1

Bi,l [gi,l(Xi,l)] + Biui(t)

yi = CiXi,n

(10)

where Ai =

 −ki,1

... In−1

−ki,n 0 ··· 0

, Ki =

 ki,1

...
ki,n

, Bi =

 0
...
1

, Bi,l = [0 · · · 1 · · · 0]T , Ci = [1 0 · · · 0].

For a given positive matrix QT
i = Qi, there exists a positive matrix PT

i = Pi satisfying

AT
i Pi + Pi Ai = −2Qi. (11)

Remark 2. To simplify the notation, we set xi,j = xi,j(t).

2.4. Convex Analysis

A function f (·) : Rn → R is convex if

f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y), ∀x, y ∈ Rn, 0 ≤ α ≤ 1. (12)

A differentiable function f (·) : Rn → R is strong convex on Rn if

(x− y)T(∇ f (x)−∇ f (y)) ≥ ω||x− y||2, ∀x, y ∈ Rn, ω > 0. (13)

A function f (·) : Rn → R is Λ-Lipschitz(Λ > 0) on Rn if

‖ f (x)− f (y)‖ ≤ Λ‖x− y‖, ∀x, y ∈ Rn. (14)

2.5. Problem Formulation

In this paper, we solve the distributed optimization problem for N agents with path
tracking into the account. The local objective function fi : Rn → R for each agent is
defined as

fi(xi,1) = ai(xi,1 − xd)
2 + c

= aix2
i,1 + bixi,1 + ci

(15)

where xd is the reference signal for agents to track, ai > 0, bi = −2aixd, ci = aix2
d + c,

1 ≤ i ≤ N and ai, c are scalars. Define the global objective function f : R→ R as

f (xi,1) =
N

∑
i=1

fi(xi,1). (16)
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Considering that the local objective function fi is differentiable and strictly con-
vex, the global objective function f is differentiable and strictly convex as well. Define
x1 =[x1,1 x2,1 · · · xN,1]

T . According to Lemma 6, for some α ∈ R, if x1 = α · 1N , we obtain

Lx1 = 0. (17)

Then, we design the penalty term as follows

xT
1 Lx1 = 0. (18)

Penalty function is defined as

P(x1) =
N

∑
i=1

fi(xi,1) + xT
1 Lx1. (19)

Due to the global objective function being strictly convex, we draw the conclusion that
the penalty function is convex as well.

In this paper, we aim at designing controllers (u1, . . . , uN) in order that for every
i = 1, . . . , N, limt→∞xi,1 → x∗i,1. Define x∗1 =

(
x∗1,1, · · · , x∗N,1

)
. The optimal solution x∗i,1 is

defined as (
x∗1,1, · · · , x∗N,1

)
= arg min

(x1,1,...,xN,1)

P(x1). (20)

Remark 3. According to (19), we find that the penalty function consists of two parts. The first part
is ∑N

i=1 fi(xi,1), which is used to ensure the system to minimize the global objective function and
track the reference signal. The second part is xT

i Lx1, which is used to reach consensus for all agents.
By minimizing the penalty function, the distributed optimization consensus problem can be solved.

Control objectives: This paper focuses on proposing a distributed optimized controller
based on observer-based adaptive neural network DSC technology to make sure that all
the agents’ signals remain bounded, the output errors between all agents converge to near
zero and the tracking error is as small as possible in the closed-loop system, while keeping
the consensus to the optimal solution of the global objective function.

3. Main Results
3.1. State Observer Design

Due to the nonlinear functions gi,l(Xi,l) being unknown, the RBFNNs technology is
utilized to detect nonlinear functions. The following two assumptions are needed.

Assumption 1. The unknown functions gi,l(Xi,l), i = 1, · · · , n are expressed as

gi,l(Xi,l |θi,l) = θT
i,lψi,l(Xi,l), 1 ≤ i ≤ n (21)

where the node number of NN is q, θi,l is the unknown constant vector and ψi,l(Xi,l) =[
ψ1

i,l(Xi,l), ψ2
i,l(Xi,l), . . . , ψ

q
i,l(Xi,l)

]T
represents the radial basis function vector. A typical basis

Gaussian function is given by

ψ
p
i,l(Xi,l) = exp


∥∥∥Xi,l − cp

i,l

∥∥∥2

b2
i,l

, p = 1, . . . , q (22)

where cp
i,l ∈ Rl is the center of the receptive field and bi,l ∈ R is the width of the Gaussian function.

Define ci,l =
[
c1

i,l , c2
i,l , . . . , cq

i,l

]
. According to [48,49], more nodes mean more accurate approximation.
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In this paper, we assume that the state variables of the system (9) are not available.
In this case, we need to estimate the system states, and the state observer for agent i is
designed as follows

DαX̂i,n = AiX̂i,n + Kiyi +
n

∑
l=1

Bi,l

[
ĝi,l

(
X̂i,l |θi,l

)]
+ Biui(t)

ŷi = CiX̂i,n

(23)

where Ci = [1 . . . 0 . . . 0] and X̂i,l = (x̂i,1, x̂i,2, . . . , x̂i,l)
T are the estimated values of Xi,l .

Define the state observation errors vector as ei = Xi,n − X̂i,n. According to
Equations (10) and (23), we obtain

Dαei = Aiei +
n

∑
l=1

Bi,l

[
gi,l

(
X̂i,l

)
− ĝi,l

(
X̂i,l
∣∣θi,l

)
+ ∆gi,l

]
(24)

where ∆gi,l = gi,l(Xi,l)− gi,l

(
X̂i,l

)
.

By Assumption 1, we obtain

ĝi,l

(
X̂i,l
∣∣θi,l

)
= θT

i,lψi,l

(
X̂i,l

)
. (25)

Then, the vector of optimal parameters is defined as

θ∗i,l = arg min
θi,l∈Ωi,l

[
supX̂i,l∈Ui,l

∣∣∣ĝi,l

(
X̂i,l
∣∣θi,l

)
− gi,l

(
X̂i,l

)∣∣∣] (26)

where 1 ≤ l ≤ n, Ωi,l and Ui,l are compact regions for θi,l , Xi,l and X̂i,l .
Define the optimal approximation error δi,l and the parameter estimation error θ̃i,l as

δi,l = gi,l

(
X̂i,l

)
− ĝi,l

(
X̂i,l

∣∣∣θ∗i,l )
θ̃i,l = θ∗i,l − θi,l , l = 1, 2, . . . , n.

(27)

Assumption 2. The optimal approximation errors remain bounded and there exist positive con-
stants δi0, satisfying

∣∣δi,l
∣∣ ≤ δi0.

Assumption 3. There exists a set of known constants γi,l and the following relationship holds∣∣∣gi,l(Xi,l)− gi,l

(
X̂i,l

)∣∣∣ ≤ γi,l

∥∥∥Xi,l − X̂i,l

∥∥∥. (28)

By Equations (24) and (27), we have

Dαei = Aiei +
n

∑
l=1

Bi,l

[
gi,l

(
X̂i,l

)
− ĝi,l

(
X̂i,l
∣∣θi,l

)
+ ∆gi,l

]
= Aiei +

n

∑
l=1

Bi,l

[
δi,l + ∆gi,l + θ̃T

i,lψi,l

(
X̂i,l

)]
= Aiei + ∆gi + δi +

n

∑
l=1

Bi,l

[
θ̃T

i,lψi,l

(
X̂i,l

)]
(29)

where δi = [δi,1, . . . , δi,n]
T , ∆gi = [∆g1, . . . , ∆gn]

T .
Construct the first Lyapunov function:

V0 =
N

∑
i=1

Vi,0 =
N

∑
i=1

1
2

eT
i Piei.
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According to Lemma 3 and (29), we have

DαV0 ≤
N

∑
i=1

{
1
2

eT
i

(
Pi AT

i + AiPi

)
ei + eT

i Pi(δi + ∆gi) +
n

∑
l=1

eT
i PiBi,l

[
θ̃T

i,lψi,l

(
X̂i,l

)]}

≤
N

∑
i=1

{
−eT

i Qiei + eT
i Pi(δi + ∆gi) + eT

i Pi

n

∑
l=1

Bi,l θ̃
T
i,lψi,l

(
X̂i,l

)}
.

(30)

By Lemma 4 and Assumption 3, we have

eT
i Pi(δi + ∆gi) ≤

∣∣∣eT
i Piδi

∣∣∣+ ∣∣∣eT
i Pi∆gi

∣∣∣
≤ 1

2
‖ei‖2 +

1
2
‖Piδi‖2 +

1
2
‖ei‖2 +

1
2
‖Pi‖2‖∆gi‖2

≤ ‖ei‖2 +
1
2
‖Piδi‖

2 +
1
2
‖Pi‖2

n

∑
l=1

∣∣∆gi,l
∣∣2

≤ ‖ei‖2 +
1
2
‖ei‖2‖Pi‖2

n

∑
l=1

γi,l
2 +

1
2
‖Piδi‖

2

≤ ‖ei‖2

(
1 +

1
2
‖Pi‖2

n

∑
l=1

γi,l
2

)
+

1
2
‖Piδi‖

2

(31)

and

eT
i Pi

n

∑
l=1

Bi,l θ̃
T
i,lψi,l

(
X̂i,l

)
≤ 1

2
eT

i PT
i Piei +

1
2

n

∑
l=1

θ̃T
i,lψi,l

(
X̂i,l

)
ψT

i,l

(
X̂i,l

)
θ̃i,l

≤ 1
2

λ2
i,max(Pi)‖ei‖2 +

1
2

n

∑
l=1

θ̃T
i,l θ̃i,l ,

(32)

where 0 < ψi,l(·)ψT
i,l(·) ≤ 1 and λi,max(Pi) is the maximum eigenvalue of positive matrix Pi.

By Equations (30)–(32), we obtain

DαV0 ≤
N

∑
i=1

(
−qi,0‖ei‖2 +

1
2
‖Piδ

∗
i ‖

2 +
1
2

n

∑
l=1

θ̃T
i,l θ̃i,l

)
, (33)

where qi,0 = λi,min(Qi)−
(

1 + 1
2‖Pi‖2 n

∑
l=1

γ2
i,l +

1
2 λ2

i,max(Pi)

)
.

Then, we can obtain

DαV0 ≤ −q0‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l , (34)

where q0 = ∑N
i=1 qi,0.

3.2. Controller Design

Theorem 1. Considering the uncertain nonlinear FOMASs (9) under Assumptions 1–3, there exist
state observer (23), virtual control laws (52), (67), (83), adaptive laws (53), (68), (84), (104) and
an observer-based adaptive optimized NN dynamic surface controller (103), such that: (1) signals
xi,1 in the closed-loop system remain semi-global uniformly ultimately bounded, (2) signals xi,1
converge to the optimal solution x∗i,1 of the distributed optimization problem.
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Proof. Step 1. Define the error variable as follows:

si,1 = xi,1 − x∗i,1
si,l = x̂i,l − vi,l

wi,l = vi,l − x∗i,l l = 2, · · · , n

(35)

where si,l is the tracking error, vi,l is the output of a filter, which can be obtained through
virtual controller x∗i,l , and wi,l is the output error between the filter output vi,l and the
virtual controller x∗i,l and x̂i,l is the estimation of xi,l .

First, calculate the gradient of the penalty function given with (19)

∂P(x1)

∂x1
= vec

(
∂ fi(xi,1(t))

∂xi,1

)
+ Lx1 (36)

where vec
(

∂ fi(xi,1(t))
∂xi,1

)
is a column vector.

Considering that the penalty function P(x1) is strictly convex, the necessary condition
for the optimal solution to the distributed optimization problem is

∂P(x∗1)
∂x∗1

= 0.

Then, from (19) and (36), for the agent i, we have

∂ fi(x∗i,1(t))
∂x∗i,1

+ ∑
j∈Ni

aij(x∗i,1 − x∗j,1) = 0. (37)

According to (15) and (37),we have

2ai(x∗i,1 − xd) + ∑
j∈Ni

aij(x∗i,1 − x∗j,1) = 0. (38)

Then, according to (35) and (38), we have

∂P(x1)

∂xi,1
=

∂ fi(xi,1(t))
∂xi,1

+ ∑
j∈Ni

aij(xi,1 − xj,1)

=2ai(xi,1 − xd) + ∑
j∈Ni

aij(xi,1 − xj,1)

=2ai(xi,1 − xd) + ∑
j∈Ni

aij(xi,1 − xj,1)− 2ai(x∗i,1 − xd) + ∑
j∈Ni

aij(x∗i,1 − x∗j,1)

=2aisi,1 + ∑
j∈Ni

aij(si,1 − sj,1).

(39)

Let s1 = [s1,1 · · · sN,1]
T , according to (39), we have

∂P(x1)

∂x1
= Hs1

where H = A+ L and A = diag{2ai}.
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Construct Lyapunov function:

V1 = V0 +
1
2

(
∂P(x1)

∂x1

)T
H−1

(
∂P(x1)

∂x1

)
+

N

∑
i=1

1
σi,1

θ̃T
i,1θ̃i,1

= V0 +
1
2

sT
1 Hs1 +

N

∑
i=1

1
σi,1

θ̃T
i,1θ̃i,1

(40)

where s1 = [s1,1 · · · sN,1]
T and σi,1 is a designed parameter. According to (9), (27) and (35),

we have

Dαsi,1 = x̂i,2 + θT
i,1ψi,1 + θ̃T

i,1ψi,1 + ∆gi,1 + δi,1 + ei,2. (41)

Then, according to (40) and (41), we can obtain

DαV1 =DαV0 + sT
1 HDαs1 +

N

∑
i=1

1
σi,1

θ̃T
i,1Dα θ̃i,1

=DαV0 + sT
1 H
(

x̂2 + vec
(

θT
i,1ψi,1

)
+ vec

(
θ̃T

i,1ψi,1

)
+ ∆g1 + δ1 + e2

)
+

N

∑
i=1

1
σi,1

θ̃T
i,1Dα θ̃i,1

=DαV0 + sT
1 H
(

s2 + w2 + x∗2 + vec
(

θT
i,1ψi,1

)
+ vec

(
θ̃T

i,1ψi,1

)
+ ∆g1 + δ1 + e2

)
+

N

∑
i=1

1
σi,1

θ̃T
i,1Dα θ̃i,1

=DαV0 + sT
1 Hs2 + sT

1 Hw2 + sT
1 H
(

x∗2 + vec
(

θT
i,1ψi,1

)
+ vec

(
θ̃T

i,1ψi,1

))
+ sT

1 H∆g1

+ sT
1 Hε1 + sT

1 He2 −
N

∑
i=1

1
σi,1

θ̃T
i,1Dαθi,1

(42)

where s2 = [s1,2 s2,2 · · · sN,2]
T , w2 = [w1,2 w2,2 · · · wN,2]

T , x∗2 = [x∗1,2 x∗2,2 · · · x∗N,2]
T ,

∆g1 = [∆g1,1 ∆g2,1 · · · ∆gN,1]
T , δ1 = [δ1,1 δ2,1 · · · δN,1]

T , e2 = [e1,2 e2,2 · · · eN,2]
T ,

vec
(

θT
i,1ψi,1

)
and vec

(
θ̃T

i,1ψi,1

)
are column vectors.

According to Lemma 4, we have

sT
1 Hs2 ≤

1
2

sT
1 HHTs1 +

1
2

sT
2 s2 (43)

sT
1 Hw2 ≤

1
2

sT
1 HHTs1 +

1
2

wT
2 w2 (44)

sT
1 H∆g1 ≤ sT

1 Hγ1e1 ≤
1
2

sT
1 Hγ1γT

1 HTs1 +
1
2

eT
1 e1 (45)

sT
1 Hε1 ≤

1
2

sT
1 HHTs1 +

1
2

δT
1 δ1 (46)

sT
1 He2 ≤

1
2

sT
1 HHTs1 +

1
2

eT
2 e2 (47)
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where γ1 = diag[γi,1], e1 = [e1,1 e2,1 · · · eN,1]
T . Substituting (43)–(47) into (42), we have

DαV1 ≤DαV0 + sT
1 H
(

x∗2 + vec
(

θT
i,1ψi,1

)
+ vec

(
θ̃T

i,1ψi,1

))
+

1
2

sT
1 HHTs1 +

1
2

wT
2 w2 +

1
2

sT
1 HHTs1 +

1
2

sT
2 s2

+
1
2

sT
1 Hγ1γ1HTs1 +

1
2

eT
1 e1 +

1
2

sT
1 HHTs1

+
1
2

δT
1 δ1 +

1
2

sT
1 HHTs1 +

1
2

eT
2 e2 −

N

∑
i=1

1
σi,1

θ̃T
i,1Dαθi,1.

(48)

According to the definition of H, we have

sT
1 H =sT

1A+ sT
1 L

=[s1,1 s2,1 · · · sN,1]


2a1

2a2
. . .

2aN

+ [s1,1 s2,1 · · · sN,1]


∑j∈Ni

a1j · · · −a1N

−a21 · · · −a2N
...

. . .
−aN1 · · · ∑j∈Ni

aNj



=[2a1s1,1 2a2s2,1 · · · 2aNsN,1] + [s1,1 s2,1 · · · sN,1]


∑j∈Ni

a1j · · · −aN1

−a12 · · · −aN2
...

. . .
−a1N · · · ∑j∈Ni

aNj


=[2a1s1,1 2a2s2,1 · · · 2aNsN,1] +

[
∑

j∈Ni

a1j(s1,1 − sj,1) · · · ∑
j∈Ni

aNj(sN,1 − sj,1)

]

=

[
2a1s1,1 + ∑

j∈Ni

a1j(s1,1 − sj,1) · · · 2aNsN,1 + ∑
j∈Ni

aNj(sN,1 − sj,1)

]
.

(49)

Then, we have

sT
1 HHTs1 =

(
2a1s1,1 + ∑

j∈Ni

a1j(s1,1 − sj,1)

)2

+ · · · +
(

2aNsN,1 + ∑
j∈Ni

aNj(sN,1 − sj,1)

)2

=
N

∑
i=1

[
2ai(xi,1 − xd) + ∑

j∈Ni

aij(xi,1 − xj,1)

]2

,

(50)

sT
1 Hγ1γT

1 HTs1 =γ2
1,1

(
2a1s1,1 + ∑

j∈Ni

a1j(s1,1 − sj,1)

)2

+ · · ·

+ γ2
N,1

(
2aNsN,1 + ∑

j∈Ni

aNj(sN,1 − sj,1)

)2

=
N

∑
i=1

γ2
i,1

[
2ai(xi,1 − xd) + ∑

j∈Ni

aij(xi,1 − xj,1)

]2

.

(51)

According to (48), (50) and (51), design the first virtual controller x∗i,2 and update law θi,1 as

x∗i,2 = −ci,1

[
2ai(xi,1 − xd) + ∑

j∈Ni

aij(xi,1 − xj,1)

]
− θT

i,1ψi,1 (52)
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Dαθi,1 = σi,1ψi,1

[
2ai(xi,1 − xd) + ∑

j∈Ni

aij(xi,1 − xj,1)

]
− ρi,1θi,1 (53)

where ci,1 = 2 +
γ2

i,1
2 and ρi,1 is the designed parameters. Substituting (52) and (53) into

(48), after (34) we obtain

DαV1 ≤− q0‖e‖2 +
1
2
‖Pε‖2 +

N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

1
2

eT
1 e1

+
1
2

eT
2 e2 +

1
2

δT
1 ε1 +

N

∑
i=1

ρi,1

σi,1
θ̃T

i,1θi,1 +
N

∑
i=1

1
2

s2
i,2 +

N

∑
i=1

1
2

w2
i,2

≤− q1‖e‖2 + η1 +
N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

ρi,1

σi,1
θ̃T

i,1θi,1 +
N

∑
i=1

1
2

s2
i,2 +

N

∑
i=1

1
2

w2
i,2

(54)

where q1 = q0 − N, η1 = 1
2‖Pε‖2 + 1

2 δT
1 ε1.

Based on DSC technique, we have the state variable vi,2 as a solution of the fractal
differential equation

λi,2Dαvi,2 + vi,2 = x∗i,2 vi,2(0) = x∗i,2(0). (55)

According to Equations (35) and (55), we obtain

Dαwi,2 = Dαvi,2 − Dαx∗i,2

= −
vi,2 − x∗i,2

λi,2
− Dαx∗i,2

= −wi,2

λi,2
+ Bi,2

(56)

where λi,2 is designed parameter and Bi,2 is a continuous function depanding on variables
xi,1, xj,1, si,2, sj,2, wi,2, wj,2, θi,1, θj,1, xd, Dαxd. According to [50,51], there exist constants
Mi,2 > 0, i = 1, . . . , N, such that |Bi,2| ≤ Mi,2 holds.

Remark 4. In Equation (52), the designed virtual controller contains three parts. The first part
−2ci,1ai(xi,1 − xd) is used to ensure that the system can track reference signal. The second part
−ci,1 ∑j∈Ni

aij(xi,1 − xj,1) can make sure that all agents achieve consensus. Third part −θT
i,1ψi,1

is used to approximate the unknown nonlinear functions gi,1(xi,1). Note that there is no conflict
between three parts.

Step 2. Define the error variable si,2 = x̂i,2 − vi,2. Then, we obtain after (21) and (25)

Dαsi,2 =Dα x̂i,2 − Dαvi,2

=x̂i,3 + ki,2ei,1 + θT
i,2ψi,2 + θ̃T

i,2ψi,2 + δi,2 + ∆gi,2 − Dαvi,2.
(57)

According to (35), we have

Dαsi,2 =si,3 + x∗i,3 + wi,3 + ki,2ei,1 + θT
i,2ψi,2

+ θ̃T
i,2ψi,2 + δi,2 + ∆gi,2 − Dαvi,2.

(58)
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Construct the Lyapunov function

V2 = V1 +
N

∑
i=1

Vi,2

= V1 +
1
2

N

∑
i=1

{
s2

i,2 +
1

σi,2
θ̃T

i,2θ̃i,2 + w2
i,2

} (59)

where σi,2 is designed parameter. Then, we have

DαV2 = DαV1 +
N

∑
i=1

{
si,2Dαsi,2 +

1
σi,2

θ̃T
i,2Dα θ̃i,2 + wi,2Dαwi,2

}
. (60)

Substituting (58) into (60), we have

DαV2 =DαV1 +
N

∑
i=1

[
si,2

(
si,3 + x∗i,3 + wi,3 + ki,2ei,1 + θT

i,2ψi,2 + θ̃T
i,2ψi,2

+ δi,2 + ∆gi,2 − Dαvi,2

)
+

1
σi,2

θ̃T
i,2Dα θ̃i,2 + wi,2Dαwi,2

]
.

(61)

According to Lemma 4, we have

si,2ki,2ei,1 ≤
1
2

s2
i,2 +

1
2

k2
i,2‖ei,1‖2 (62)

si,2(si,3 + wi,3) ≤ s2
i,2 +

1
2

(
s2

i,3 + w2
i,3

)
(63)

si,2δi,2 ≤
1
2

s2
i,2 +

1
2
‖δi,2‖2 (64)

si,2∆gi,2 ≤
1
2

s2
i,2 +

1
2

γ2
i,2‖ei,2‖2. (65)

Substituting (62)–(65) into (61), we have

DαV2 ≤DαV1 +
N

∑
i=1

[
si,2

(
x∗i,3 + θT

i,2ψi,2 + θ̃T
i,32ψi,2 − Dαvi,2

)
+

5
2

s2
i,2

+
1
2

(
s2

i,3 + w2
i,3

)
+

1
2

k2
i,2‖ei,1‖2 +

1
2
‖δi,2‖2 +

1
2

γ2
i,2‖ei,2‖2

− 1
σi,2

θ̃T
i,2Dαθi,2 + wi,2Dαwi,2

]
.

(66)

According to Theorem 1, the second virtual controller x∗i,3 and update laws θi,2 are
designed as follows

x∗i,3 = −ci,2si,2 − 3si,2 − θT
i,2ψi,2 +

x∗i,2 − vi,2

λi,2
(67)

Dαθi,2 = σi,2ψi,2(X̂i,2)si,2 − ρi,2θi,2 (68)

where ρi,2 is designed parameter.
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Substituting Equations (67), (68), (54) and (56) into (66), the following inequalities hold

DαV2 ≤− q1‖e‖2 + η1 +
N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

ρi,1

σi,1
θ̃T

i,1θi,1 +
N

∑
i=1

1
2

s2
i,2 +

N

∑
i=1

1
2

w2
i,2

+
N

∑
i=1

[
si,2

(
−ci,2si,2 − 3si,2 − θT

i,2ψi,2 +
x∗i,2 − vi,2

λi,2
+ θT

i,2ψi,2 + θ̃T
i,2ψi,2

− Dαvi,2

)
+

5
2

s2
i,2 +

1
2

(
s2

i,3 + w2
i,3

)
+

1
2

k2
i,2‖ei,1‖2 +

1
2
‖δi,2‖2 +

1
2

γ2
i,2‖ei,2‖2

− 1
σi,2

θ̃T
i,2
(
σi,2ψi,2(X̂i,2)si,2 − ρi,2θi,2

)
+ wi,2

(
−wi,2

λi,2
+ Bi,2

)]
.

(69)

According to Lemma 4, we have wi,2Bi,2 ≤ 1
2 w2

i,2 +
1
2 M2

i,2. Then, we obtain

DαV2 ≤− q2‖e‖2 + η2 +
N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

ρi,1

σi,1
θ̃T

i,1θi,1 +
N

∑
i=1

ρi,2

σi,2
θ̃T

i,2θi,2

−
N

∑
i=1

ci,2s2
i,2 −

N

∑
i=1

(
1

λi,2
− 1
)

w2
i,2 +

1
2

N

∑
i=1

M2
i,2 +

1
2

N

∑
i=1

(
s2

i,3 + w2
i,3

) (70)

where

q2 = q1 −
1
2

N

∑
i=1

(
k2

i,2 + γ2
i,2

)
η2 = η1 +

1
2

N

∑
i=1
‖δi,2‖2.

By using the DSC technique, we have the next fractal differential equation

λi,3Dαvi,3 + vi,3 = x∗i,3, vi,3(0) = x∗i,3(0). (71)

According to (71), we can obtain

Dαwi,3 = Dαvi,3 − Dαx∗i,3

= −
vi,3 − x∗i,3

λi,3
− Dαx∗i,3

= −wi,3

λi,3
+ Bi,3

(72)

where λi,3 is designed parameter and Bi,3 = −Dαx∗i,3.
Step k. Defining the k-th error variable si,k = x̂i,k − vi,k, we have

Dαsi,k =Dα x̂i,k − Dαvi,k

=x̂i,k+1 + ki,kei,1 + θT
i,kψi,k + θ̃T

i,kψi,k + δi,k + ∆gi,k − Dαvi,k.
(73)

Substituting (35) into (73), we can obtain

Dαsi,k =si,k+1 + x∗i,k+1 + wi,k+1 + ki,kei,1

+ θT
i,kψi,k + θ̃T

i,kψi,k + δi,k + ∆gi,k − Dαvi,k.
(74)
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Construct the Lyapunov function

Vk = Vk−1 +
N

∑
i=1

Vi,k

= Vk−1 +
1
2

N

∑
i=1

{
s2

i,k +
1

σi,k
θ̃T

i,k θ̃i,k + w2
i,k

} (75)

where σi,k is designed parameter. Then, we have

DαVk = DαVk−1 +
N

∑
i=1

{
si,kDαsi,k +

1
σi,k

θ̃T
i,kDα θ̃i,k + wi,kDαwi,k

}
. (76)

Substituting (74) into (76), we have

DαVk =DαVk−1 +
N

∑
i=1

[
si,k

(
si,k+1 + x∗i,k+1 + wi,k+1

+ ki,kei,1 + θT
i,kψi,k + θ̃T

i,kψi,k + δi,k + ∆gi,k

− Dαvi,k

)
+

1
σi,k

θ̃T
i,kDα θ̃i,k + wi,kDαwi,k

]
.

(77)

According to Lemma 4, we have

si,kki,kei,1 ≤
1
2

s2
i,k +

1
2

k2
i,k‖ei,1‖2 (78)

si,k(si,k+1 + wi,k+1) ≤ s2
i,k +

1
2

(
s2

i,k+1 + w2
i,k+1

)
(79)

si,kδi,k ≤
1
2

s2
i,k +

1
2
‖δi,k‖2 (80)

si,k∆gi,k ≤
1
2

s2
i,k +

1
2

γ2
i,k‖ei,k‖2. (81)

Substituting (78)–(81) into (77), we can obtain

DαVk ≤DαVk−1 +
N

∑
i=1

[
si,k

(
x∗i,k+1 + θT

i,kψi,k + θ̃T
i,kψi,k − Dαvi,k

)
+

5
2

s2
i,k +

1
2
(
s2

i,k+1 + w2
i,k+1

)
+

1
2

k2
i,k‖ei,1‖2 +

1
2
‖δi,k‖2

+
1
2

γ2
i,k‖ei,k‖2 − 1

σi,k
θ̃T

i,kDαθi,k + wi,kDαwi,k

]
.

(82)

According to the Theorem 1, design the k-th virtual controller x∗i,k+1 and update laws
θi,k, as follows

x∗i,k+1 = −ci,ksi,k − 3si,k − θT
i,kψi,k +

x∗i,k − vi,k

λi,k
(83)

Dαθi,k = σi,kψi,k(X̂i,k)si,k − ρi,kθi,k (84)

where ρi,k is the designed parameter. Generally, by using the DSC technique, we have the
next fractal differential equation

λi,kDαvi,k + vi,k = x∗i,k, vi,k(0) = x∗i,k(0). (85)
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According to Equation (85), we have

Dαwi,k = Dαvi,k − Dαx∗i,k

= −
vi,k − x∗i,k

λi,k
− Dαx∗i,k

= −
wi,k

λi,k
+ Bi,k

(86)

where λi,k is the designed parameter and Bi,k = −Dαx∗i,k.
Substituting Equations (83), (84) and (86) into (82), then we have

DαVk ≤DαVk−1 +
N

∑
i=1

[
si,k

(
−ci,ksi,k − 3si,k − θT

i,kψi,k +
x∗i,k − vi,k

λi,k

+ θT
i,kψi,k + θ̃T

i,kψi,k − Dαvi,k

)
+

5
2

s2
i,k +

1
2
(
s2

i,k+1 + w2
i,k+1

)
+

1
2

k2
i,k‖ei,1‖2 +

1
2
‖δi,k‖2 +

1
2

γ2
i,k‖ei,k‖2 − 1

σi,k
θ̃T

i,k
(
σi,kψi,ksi,k

− ρi,kθi,k
)
+ wi,k

(
−

wi,k

λi,k
+ Bi,k

)]
.

(87)

According to Lemma 4, we have wi,kBi,k ≤ 1
2 w2

i,k +
1
2 M2

i,k. The following inequalities hold

DαVk ≤DαVk−1 +
N

∑
i=1

[
si,k

(
−ci,ksi,k − 3si,k − θT

i,kψi,k +
x∗i,k − vi,k

λi,k

+ θT
i,kψi,k + θ̃T

i,kψi,k − Dαvi,k

)
+

5
2

s2
i,k +

1
2
(
s2

i,k+1 + w2
i,k+1

)
+

1
2

k2
i,k‖ei,1‖2 +

1
2
‖δi,k‖2 +

1
2

γ2
i,k‖ei,k‖2 − 1

σi,k
θ̃T

i,k
(
σi,kψi,ksi,k

− ρi,kθi,k
)
−

w2
i,k

λi,k
+

1
2

w2
i,k +

1
2

M2
i,k

]
.

(88)

Combining (34), (54) and (70), we can obtain

DαVk−1 ≤− qk−1‖e‖2 + ηk−1 +
N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

[
k−1

∑
l=1

ρi,l

σi,l
θ̃T

i,lθi,l

−
k−1

∑
l=2

ci,ls2
i,l +

k−1

∑
l=2

(
1

λi,l
− 1

)
w2

i,l +
1
2

k−1

∑
l=2

M2
i,k−1 +

1
2

(
s2

i,k + w2
i,k

)]
.

(89)

Substituting (89) into (88), we have

DαVk ≤− qk‖e‖2 + ηk +
N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

[
k

∑
l=1

ρi,l

σi,l
θ̃T

i,lθi,l

−
k

∑
l=2

ci,ls2
i,l −

k

∑
l=2

(
1

λi,l
− 1
)

w2
i,l +

1
2

k

∑
l=2

M2
i,k +

1
2

(
s2

i,k+1 + w2
i,k+1

)] (90)
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where

qk = qk−1 −
1
2

N

∑
i=1

(
k2

i,k + γ2
i,k

)
ηk = ηk−1 +

1
2

N

∑
i=1
‖δi,k‖2.

Step n.Define the n-th error variable and the output error of the filter, as follows

si,n = x̂i,n − vi,n (91)

wi,n = vi,n − x∗i,n. (92)

Then, we have

Dαsi,n =Dα x̂i,n − Dαvi,n

=ui + ki,nei,1 + θT
i,nψi,n + θ̃T

i,nψi,n + δi,n + ∆gi,n − Dαvi,n.
(93)

By using the DSC technique, we have the next fractal differential equation

λi,nDαvi,n + vi,n = x∗i,n, vi,n(0) = x∗i,n(0). (94)

By Equation (92), we have

Dαwi,n = Dαvi,n − Dαx∗i,n = −wi,n

λi,n
+ Bi,n (95)

where λi,n is the designed parameter and Bi,n = −Dαx∗i,n.
Construct Lyapunov function

Vn = Vn−1 +
N

∑
i=1

Vi,n

= Vn−1 +
1
2

N

∑
i=1

{
s2

i,n +
1

σi,n
θ̃T

i,n θ̃i,n + w2
i,n

} (96)

where σi,n is designed parameter. Then, we have

DαVn = DαVn−1 +
N

∑
i=1

{
si,nDαsi,n +

1
σi,n

θ̃T
i,nDα θ̃i,n + wi,nDαwi,n

}
. (97)

Substituting (93) into (97), we have

DαVn =DαVn−1 +
N

∑
i=1

[
si,n

(
ui + ki,mei,1 + θT

i,nψi,n + θ̃T
i,nψi,n + δi,n + ∆gi,n − Dαvi,n

)
+

1
σi,n

θ̃T
i,nDα θ̃i,n + wi,nDαwi,n

]
.

(98)

According to Lemma 4, we have

si,nki,nei,1 ≤
1
2

s2
i,n +

1
2

k2
i,n‖ei,1‖2 (99)

si,nδi,n ≤
1
2

s2
i,n +

1
2
‖δi,n‖2 (100)
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si,n∆gi,n ≤
1
2

s2
i,n +

1
2

γ2
i,n‖ei,n‖2. (101)

From (99)–(101), Equation (98) can be written as

DαVn ≤DαVn−1 +
N

∑
i=1

[
si,n

(
ui + θT

i,nψi,n + θ̃T
i,nψi,n − Dαvi,n

)
+

3
2

s2
i,n +

1
2

k2
i,n‖ei,1‖2

+
1
2
‖δi,n‖2 +

1
2

γ2
i,n‖ei,n‖2 − 1

σi,n
θ̃T

i,nDαθi,n + wi,nDαwi,n

]
.

(102)

Design the controller ui and update laws θi,n

ui = −ci,nsi,n − 2si,n − θT
i,nψi,n +

x∗i,n − vi,n

λi,n
(103)

Dαθi,n = σi,nψi,n(X̂i,n)si,n − ρi,nθi,n (104)

where ρi,n is designed parameter. According to (90), substituting Equations (95), (103) and (104)
into (102), then the following inequalities hold

DαVn ≤− qn−1‖e‖2 + ηn−1 +
N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

[
n−1

∑
l=1

ρi,l

σi,l
θ̃T

i,lθi,l

−
n−1

∑
l=2

ci,ls2
i,l +

n−1

∑
l=2

(
1

λi,l
− 1
)

w2
i,l +

1
2

n−1

∑
l=2

M2
i,l +

1
2

(
s2

i,n + w2
i,n

)]

+
N

∑
i=1

[
si,n

(
−ci,nsi,n − 2si,n − θT

i,nψi,n +
x∗i,n − vi,n

λi,n
+ θT

i,nψi,n

+ θ̃T
i,nψi,n − Dαvi,n

)
+

3
2

s2
i,n +

1
2

k2
i,n‖ei,1‖2 +

1
2
‖δi,n‖2 +

1
2

γ2
i,n‖ei,n‖2

− 1
σi,n

θ̃T
i,n

(
σi,nψi,nsi,n − ρi,nθi,n

)
+ wi,n

(
−wi,n

λi,n
+ Bi,n

)]
.

(105)

According to Lemma 4, we obtain wi,nBi,n ≤ 1
2 w2

i,n +
1
2 M2

i,n, then we have

DαVn ≤− qn‖e‖2 + ηn +
N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

[
n

∑
l=1

ρi,l

σi,l
θ̃T

i,lθi,l

−
n

∑
l=2

ci,ls2
i,l −

n

∑
l=2

(
1

λi,l
− 1
)

w2
i,l +

1
2

n

∑
l=2

M2
i,l

] (106)

where

qn = qn−1 −
1
2

N

∑
i=1

(
k2

i,n + γ2
i,n

)
ηn = ηn−1 +

1
2

N

∑
i=1
‖δi,n‖2.

According to Lemma 4, we can obtain

θ̃T
∗,lθ∗,l ≤ −

1
2

θ̃T
∗,l θ̃∗,l +

1
2

θ∗T∗,l θ∗∗,l . (107)
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Then, we have

DαVn ≤− qn‖e‖2 + ηn +
N

∑
i=1

n

∑
l=1

1
2

θ̃T
i,l θ̃i,l +

N

∑
i=1

[
−

n

∑
l=1

ρi,l

2σi,l
θ̃T

i,l θ̃i,l

+
n

∑
l=1

ρi,l

2σi,l
θ∗Ti,l θ∗i,l −

n

∑
l=2

ci,ls2
i,l −

n

∑
l=2

(
1

λi,l
− 1
)

w2
i,l +

1
2

n

∑
l=2

M2
i,l

]
.

(108)

Define

ζ = ηn +
N

∑
i=1

(
n

∑
l=1

ρi,l

2σi,l
θ∗Ti,l θ∗i,l +

1
2

n

∑
l=2

M2
i,l

)
. (109)

Then, according to Equation (108), the following inequalities hold

DαVn ≤− qn‖e‖2 +
N

∑
i=1

[
−

n

∑
l=2

ci,ls2
i,l −

n

∑
l=1

(
ρi,l

2σi,l
− 1

2

)
θ̃T

i,l θ̃i,l −
n

∑
l=2

(
1

λi,l
− 1
)

w2
i,l

]
+ ζ (110)

where ci,l > 0, (l = 2, · · · , n),
(

ρi,l
2σi,l
− 1

2

)
> 0, (l = 1, · · · , n),

(
1

λi,l
− 1
)
> 0, (l = 2, · · · , n).

Define

C = min

{
2

qn

λmin(P)
, 2ci,l , 2

(
ρi,l

2σi,l
− 1

2

)
, 2
(

1
λi,l
− 1
)}

. (111)

Then, Equation (110) becomes

DαVn(t, x) ≤ −CVn(t, x) + ζ. (112)

According to (112) and Lemma 5, we have

Vn ≤ V(0)Eα(−Ctα) +
ζµ

C
t ≥ 0. (113)

Then, we have

lim
t→∞
|Vn(t)| ≤

ζµ

C
. (114)

Since 1
2 |si,1|2 ≤ Vn(T), we have

lim
t→∞
||si,1|| ≤

√
2ζµ

C
. (115)

Then, we can conclude that all the signals of system (9) remain bounded in the closed-
loop system and converge to the optimal solution x∗. The output errors and the consensus
tracking errors converge to close to zero.

Remark 5. The algorithm proposed in this paper represents two kinds of protocols in the existing
literature. For example, if the reference signal is time-invariant, it becomes the algorithm solving
the distributed time-invariant convex optimization [12–17]. If we set the reference signal as a time-
varying signal, it becomes the algorithm solving the distributed time-varying convex optimization
[52–55].

4. Simulation

In this section, two examples are given to verify the validity of the proposed method.
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Example 1. Consider the following fractional Duffing-Holmes chaotic system [56].
Dαxi,1 = xi,2 + gi,1(xi,1)

Dαxi,2 = ui + gi,2(xi,1, xi,2)

yi = xi,1

(116)

with i = 1, 2, 3, 4, 5 and the initial states are selected as x1(0) = [0.1, 0.1], x2(0) = [0.2, 0.2],
x3(0) = [0.3, 0.3], x4(0) = [0.4, 0.4], x5(0) = [0.5, 0.5]. In this paper, a communication graph
for five agents is given by Figure 1. The phase portrait depicting such behavior is shown in
Figures 2 and 3. xd = sin t is defined as the reference signal. Define the unknown functions in
system (116) as

g1,1(X1,1) =g2,1(X2,1) = g3,1(X3,1) = g4,1(X4,1) = g5,1(X5,1) = 0

g1,2(X1,2) =x1,1 − 0.25x1,2 − x3
1,1 + 0.3 cos(t)

g2,2(X2,2) =x2,1 − 0.25x2,2 − x3
2,1 + 0.1

(
x2

2,1 + x2
2,2

)1/2
+ 0.3 cos(t)

g3,2(X3,2) =x3,1 − 0.25x3,2 − x3
3,1 + 0.2 sin(t)

(
x2

3,1 + 2x2
3,2

)1/2
+ 0.3 cos(t)

g4,2(X4,2) =x4,1 − 0.25x4,2 − x3
4,1 + 0.2 sin(t)

(
2x2

4,1 + 2x2
4,2

)1/2
+ 0.3 cos(t)

g5,2(X5,2) =x5,1 − 0.1x5,2 − x3
5,1 + 0.2 sin(t)

(
x2

5,1 + x2
5,2

)1/2
+ 0.3 cos(t).

The local objective functions of (15) of each of the five agents are given as follows

f1(x1,1) = 3x2
1,1 − 6xdx1,1 + 3x2

d + 0.1

f2(x2,1) = 4.6x2
2,1 − 9.2xdx2,1 + 4.6x2

d + 0.2

f3(x3,1) = 3.5x2
3,1 − 7xdx3,1 + 3.5x2

d + 1

f4(x4,1) = 2.5x2
4,1 − 5xdx4,1 + 2.5x2

d + 0.3

f5(x5,1) = 2.3x2
5,1 − 4.6xdx5,1 + 2.3x2

d + 0.4.

Figure 1. Communication graph.
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Figure 2. Fractional order Duffing-Holmes chaotic systems trajectories.

Then, define the penalty function

P(x1) =
5

∑
i=1

fi(xi,1) + xT
1 Lx1. (117)

Base on the penalty function (117), the necessary condition for the optimal solution x∗1
to the distributed optimization problem is as follows

∂P(x∗1)
∂x∗1

= 0 (118)

where x∗1 =
[

x∗1,1, x∗2,1, · · · , x∗5,1

]T
.

The virtual controller, the parameters update laws and the control input are developed
by the observer. For the observer, the design parameters are selected as k1,1 = k2,1 = k3,1 =
k4,1 = k5,1 = 50, k1,2 = k2,2 = k3,2 = k4,2 = k5,2 = 1000 and the initial states for 5 agents
are selected as x̂1 = [0.2, 0.2], x̂2 = [0.3, 0.3], x̂3 = [0.4, 0.4], x̂4 = [0.5, 0.5], x̂5 = [0.6, 0.6].
For the RBFNNs, eleven nodes are selected as q = 11. We design two different centers
of the receptive field. c1,1 and c2,1 are evenly space in [−1, 1]. c1,2 and c2,2 are selected as
1
5

(
−5 −4 −3 −2 −1 0 1 2 3 4 5

−6 −4.8 −3.6 −2.4 −1.2 0 1.2 2.4 3.6 4.8 6

)
. The width of the Gaussian function is selected as

b1,1 = b1,2 = b2,1 = b2,2 = 5.
According to Theorem 1 and Equations (52), (53), (103) and (104), the virtual control

law, the parameters update laws and the control input are designed, as follows

x∗i,2 = −ci,1

[
2ai(xi,1 − xd) + ∑

j∈Ni

aij(xi,1 − xj,1)

]
− θT

i,1ψi,1 (119)
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Dαθi,1 = σi,1

[
2ai(xi,1 − xd) + ∑

j∈Ni

aij(xi,1 − xj,1)

]
− ρi,1θi,1 (120)

ui = −ci,2si,2 − 2si,2 − θT
i,2ψi,2 +

x∗i,2 − vi,2

λi,2
(121)

Dαθi,2 = σi,2ψi,2si,2 − ρi,2θi,2. (122)

Choose design parameters as c1,1 = c3,1 = c4,1 = c5,1 = 5, c2,1 = 4, ci,2 = 2,
σi,1 = σi,2 = 1, ρi,1 = 40, ρi,2 = 80, λi,2 = 0.05.

Figures 2–12 show the simulation results. The trajectory of the system can be observed
in Figure 2, where it clearly shows that the system is unstable. In Figure 3 it can be observed
as well. Figure 4 shows the trajectories of xd and xi,1. Figure 5 displays the trajectories of the
tracking error si,1, which demonstrates that the tracking error si,1 can quickly converge to
near zero. Figures 6 and 7 give the trajectories of x̂i,1 and x̂i,2. Figure 8 shows the trajectories
of xi,2. In Figures 9 and 10, we use x1,1 and x1,2 for examples to compare the true value
with the estimated value. Figure 11 gives the trajectories of ui, from which it can be clearly
observed that the control input can converge quickly. The value of penalty function is
shown in Figure 12, from which we can draw the conclusion that the algorithm successfully
minimizes the value of the penalty function.
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Figure 3. Trajectories of system states without control input.



Fractal Fract. 2022, 6, 642 23 of 35

0 5 10 15

time

-1

-0.5

0

0.5

1

1.5

A
m

pl
itu

de

x
d

x
1,1

x
2,1

x
3,1

x
4,1

x
5,1

0 0.2 0.4

0

0.2

0.4

0.6

7.5 7.9 8.3
0.92
0.94
0.96
0.98

1

Figure 4. The trajectories of xd and xi,1(i = 1, · · · , 5).
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Figure 5. The trajectories of error si,1(i = 1, · · · , 5).
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Figure 6. The trajectories of xi,1(i = 1, · · · , 5) estimation values.
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Figure 7. The trajectories of xi,2(i = 1, · · · , 5) estimation values.
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Figure 8. The trajectories of xi,2(i = 1, · · · , 5).
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Figure 9. The trajectories of x1,1 and its estimation.
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Fractal Fract. 2022, 6, 642 27 of 35

0 5 10 15

time

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

V
al

ue

penalty function

Figure 12. The value of penalty function.

Based on the above simulation results, it is demonstrated that the proposed control
method can ensure that the consensus tracking error converges to a small area of the
origin quickly, and all agents can synchronize to the reference trajectory with good control
performance. Meanwhile, the value of the penalty function converges to the minimum
successfully. The controller designed by this method can not only guarantee good tracking
performance of all agents, but consider the distributed optimization problem as well.

Example 2. Consider the following agent dynamics [16]

Dαxi(t) = ui(t) + gi,1(t), i = 1, 2, . . . , N (123)

with α = 0.98, i = 1, 2, 3, 4, 5 and the initial states are selected as x1(0) = 0.1, x2(0) = 0.2,
x3(0) = 0.3, x4(0) = 0.4 and x5(0) = 0.5. Define xd = sin t as the reference signal. Define the un-
known functions g1,1(t) = −0.1 sin t, g2,1(t) = 0.2 sin t, g3,1(t) = 0.1 sin t, g4,1(t) = 0.2 cos t
and g5,1(t) = −0.1 cos t in system (123) as the local disturbance signals . A communication graph
for five agents is given by Figure 1.

Define the local objective functions of each of the five agents, as follows

f1(x1,1) = 4x2
1,1 − 8xdx1,1 + 4x2

d + 1.8

f2(x2,1) = 4.6x2
1,1 − 9.2xdx1,1 + 4.6x2

d + 2.2

f3(x3,1) = 3.5x2
1,1 − 7xdx1,1 + 3.5x2

d + 1.4

f4(x4,1) = 2.5x2
1,1 − 5xdx1,1 + 2.5x2

d + 6.6

f5(x5,1) = 2.2x2
1,1 − 4.4xdx1,1 + 2.2x2

d + 9.

(124)
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Define the penalty function

P(x1) =
5

∑
i=1

fi(xi,1) + xT
1 Lx1. (125)

Design the necessary condition for optimal solution to the distributed optimization
problem, as follows

∂P(x∗1)
∂x∗1

= 0 (126)

where x∗1 =
[

x∗1,1, x∗2,1, · · · , x∗5,1

]T
.

According to Theorem 1 and Equations (52) and (53), the control input and the param-
eters update laws are developed, as follows

ui = −ci,1

[
2ai(xi,1 − xd) + ∑

j∈Ni

aij(xi,1 − xj,1)

]
− θT

i,1ψi,1 (127)

Dαθi,1 = σi,1

[
2ai(xi,1 − xd) + ∑

j∈Ni

aij(xi,1 − xj,1)

]
− ρi,1θi,1. (128)

Choose design parameters as ci,1 = 3, σ1,1 = 9.5, σ2,1 = 40, σ3,1 = 8, σ4,1 = 28, σ5,1 = 5,
ρ1,1 = ρ4,1 = 20 and ρ2,1 = ρ3,1 = ρ5,1 = 40.

A communication graph for five agents is given by Figure 1. Figure 13 shows the
simulation results of the protocol designed in this paper, from which we can find that the
output signals xi,1 can track the reference signal xd. Figure 14 displays the trajectories of
tracking error si,1. Figure 15 shows the trajectories of control input ui, where it can be
demonstrated that all the control input are smooth in the whole time. The value of the
penalty function is shown in Figure 16.

In [16], a finite-time distributed optimized algorithm is proposed, as follows

ui = uo
i + ur

i , i = 1, 2, . . . , N

uo
i = −sigα

(
5 fi(xi) + γ

N

∑
j=1

aij(xi − xj)

)
ur

i = −k1isig
1
2 (si) + φi

φ̇i = −k2isign(si)

si = xi − xi(0)−
∫ t

0
uo

i (τ)d(τ).

(129)

Choose design parameters as γ = 15, α = 0.13, k1i = 3 and k2i = −5.
A communication graph for five agents is given by Figure 1. The simulation results

are displayed in Figure 17. The trajectories of the tracking error si,1 are shown in Figure 18.
In Figure 19, all the trajectories of the control input ui are displayed. The value of the
penalty function is shown in Figure 20, from which we can conclude that the algorithm
successfully solves the distributed optimization problem.
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Figure 13. The trajectories of xd and xi,1(i = 1, · · · , 5) based on the algorithm proposed in this paper.
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Figure 14. The trajectories of tracking error si,1(i = 1, · · · , 5) based on the algorithm proposed in
this paper.
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Figure 15. The trajectories of control input ui based on the algorithm proposed in this paper.
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Figure 16. The value of penalty function based on the algorithm proposed in this paper.
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Figure 17. The trajectories of xd and xi,1(i = 1, · · · , 5) based on the finite-time distributed algorithm.
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Figure 18. The trajectories of error si,1(i = 1, · · · , 5) based on the finite-time distributed algorithm.
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Figure 19. The trajectories of control input ui based on the finite-time distributed algorithm.
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Figure 20. The value of penalty function based on the finite-time distributed algorithm.

From Figures 13 and 17, we found that both the methods proposed in this paper and
in [16] achieve the goal of tracking the reference signal xd. In Figures 14 and 18, the tracking



Fractal Fract. 2022, 6, 642 33 of 35

error between two algorithms is very close, in the range of −0.1 to 0.1. In Figure 15,
it is clearly observed that based on the algorithm proposed in this paper, the control
input is smooth in the whole process of simulation. However, the control input shown
in Figure 19 is found to be not smooth at some times, from which we conclude that the
method proposed in [16] is not extraordinarily suitable for the fractional-order distributed
optimization consensus problem. Based on the simulation results, it is demonstrated that
the algorithm designed in this paper makes sure that all agents can be synchronized to the
optimal solution x∗, while rejecting local disturbance signals gi,1(t).

5. Conclusions

This article has investigated the distributed optimization problem of FOMASs with
nonlinear uncertain dynamics. Each agent is described by the fractional-order nonlinear
system containing unmeasured states, unknown nonlinear functions, and is constrained
by a local objective function denoted by a quadratic polynomial function. To estimate the
unmeasured states, we construct the NN state observer, and exploit RBFNNs to approxi-
mate unknown nonlinear functions, respectively. The distributed optimization problem
of FOMASs is transformed into an optimization problem with equality constraints, and a
corresponding penalty function is constructed. Example and simulation results demon-
strate that all the agents’ outputs are steered to the optimal solution of the global objective
function based on the observer-based adaptive NNs backstepping DSC algorithm proposed
in this paper. Compared with the traditional distributed algorithm developed for the
integer-order MASs, our protocol is feasibility and effectiveness due to its smoother inputs.
Future research will focus on the adaptive distributed optimized NNs control algorithm
design for the distributed optimization containment problem of FOMASs on the basis of
this paper’s results.
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