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Abstract: In the field of state estimation for the lithium-ion battery (LIB), model-based methods
(white box) have been developed to explain battery mechanism and data-driven methods (black box)
have been designed to learn battery statistics. Both white box methods and black box methods have
drawn much attention recently. As the combination of white box and black box, physics-informed
machine learning has been investigated by embedding physic laws. For LIB state estimation, this
work proposes a fractional-order recurrent neural network (FORNN) encoded with physics-informed
battery knowledge. Three aspects of FORNN can be improved by learning certain physics-informed
knowledge. Firstly, the fractional-order state feedback is achieved by introducing a fractional-order
derivative in a forward propagation process. Secondly, the fractional-order constraint is constructed
by a voltage partial derivative equation (PDE) deduced from the battery fractional-order model
(FOM). Thirdly, both the fractional-order gradient descent (FOGD) and fractional-order gradient
descent with momentum (FOGDm) methods are proposed by introducing a fractional-order gradient
in the backpropagation process. For the proposed FORNN, the sensitivity of the added fractional-
order parameters are analyzed by experiments under the federal urban driving schedule (FUDS)
operation conditions. The experiment results demonstrate that a certain range of every fractional-
order parameter can achieve better convergence speed and higher estimation accuracy. On the basis
of the sensitivity analysis, the fractional-order parameter tuning rules have been concluded and listed
in the discussion part to provide useful references to the parameter tuning of the proposed algorithm.

Keywords: physics-informed neural network; fractional-order gradient; fractional-order constraint;
partial differential equation; battery mechanism; backpropagation process

1. Introduction

As the main energy source and energy storage device, the lithium-ion battery (LIB) and
its management have drawn much attention recently. For battery management, safety [1],
durability [2], and heterogeneity [3] are the three aspects to be investigated, and the state
estimation is the basic function for the three aspects [4,5]. Among the state-of-art literature,
the estimation of the state of charge (SOC) [6], state of health (SOH) [7], and remaining
useful life (RUL) [8] have been realized by various model-based methods and data-driven
methods [9,10]. Model-based methods, especially the electrochemical model [11], can
describe inner reactions and lithium concentration changes, such as a loss of lithium
inventory (LLI) and loss of active material (LAM) [12,13]. The fractional-order element, also
called a Warburg element, has been introduced into the equivalent circuit model (ECM) to
construct a fractional-order model (FOM) [14,15]. The FOM can reflect diffusion dynamics
in the electrochemical impedance spectrum (EIS), such as the charge transfer reaction and
double layer effects in the mid-frequency, and the solid diffusion dynamics in the low-
frequency [16,17]. However, the computation burden and complexity of partial derivative
equations (PDEs) limit the application of model-based methods in realistic situations. The
data-driven method provides a new estimation pattern and replacement for the traditional
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model-based methods [18]. For realistic battery data with unstable quality [19], data-driven
methods are usually designed with a machine learning (ML) algorithm. Among the ML
algorithm, neural networks (NNs) are the mainly investigated direction [20], such as the
deep neural network (DNN) [21], long short term memory (LSTM) [22], and gated recurrent
unit (GRU) [23]. However, the inner battery knowledge cannot be mapped and learned
by the state-of-art algorithms due to the lack of interpretability. Hence, current algorithms
need to be enhanced to learn the battery’s inner information.

As presented above, model-based methods (white box) and data-driven methods
(black box) have been developed independently in two different directions. Hence, physics-
informed machine learning has been proposed to combine the advantages of the model-
based method and data-driven method, by encoding a physical law of the predicted object.
The embedded physics information in ML algorithms were mainly concluded into an
observational bias, inductive bias, and learning bias [24]. In this work, we take the ad-
vantages of the fractional-order recurrent neural network (FORNN) and fractional-order
gradients, which have been investigated theoretically to process time-series data [25,26]. A
fractional-order recurrent neural network encoded with physics-informed knowledge of
LIB is proposed, called FORNN with PIBatKnow. With encoding battery physical laws,
the neural network can be informed by battery knowledge, which acts as a part of the states
feedback, the network loss function, and the gradient in backpropagation. The proposed
algorithm applies the widely used PDEs to reflect battery physics meanings, which are in-
cluded in the modeling of LIBs, such as an electrochemical model and ECMs [27,28]. Then,
PDEs with physics meanings of the battery are embedded into the network framework;
thus, it serves as the representation of battery dynamic characteristic and convergence
constraints for network update. Enhanced by physics-informed battery knowledge, nine
key fractional-order parameters have been added, and this paper focuses on the sensitiv-
ity of the fractional-order parameters to the performance of the proposed FORNN with
PIBatKnow. Experiments under dynamic operation conditions are conducted to analyze
the sensitivity, and several conclusions have been made in the discussion part to provide
useful instructions to the parameter tuning of the proposed algorithm.

2. Preliminaries
2.1. Fractional-Order Derivative
2.1.1. Fractional-Order Derivative Definitions

Fractional calculus is generalized beyond integer calculus by introducing the fractional
order α, and many definitions of the fractional operator has been developed in the literature.
Three commonly used definitions for fractional derivatives are Riemann-Liouville (R-L),
Grünwald-Letnikov (G-L), and Caputo [29]. The R-L definition has too complicated initial
conditions to calculated in application, thus this work considers the G-L definition and
Caputo definition.

Definition 1 (Grünwald-Letnikov (G-L) Derivative [30]).

GLDα
t f (t) = lim

h→0
h−α

[
t−t0

h ]

∑
j=0

(−1)j
(

α
j

)
f (t− jh), (1)

where GLDα
t represents the fractional operator in G-L definition, f (t) is a certain integrable function

in [a, b], [ t−t0
h ] represents the approximate recursive terms of integer order parts,

(
α
j

)
=

α!/j!(α− j)! represents the coefficients of the approximate recursive terms.
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Lemma 1 (Finite form of Grünwald-Letnikov Derivative). If the infinite form in (1) is limited
as finite terms L, GLDα

t can be discretized as [31]

∆α f (x) =
L

∑
j=0

(−1)j
(

α
j

)
f (k− j), (2)

where the sum formula in the right side only selects L finite terms of f (k− j), j = 0, 1, . . . , L, which
are the discrete values in the L previous sampling moments.

Definition 2 (Caputo Derivative [30]).

CDα
t f (t) =

1
Γ(n− α)

t∫
t0

f (n)(τ)

(t− τ)α−n+1 dτ, t > t0, (3)

where CDα
x represents the fractional operator in Caputo definition, α ∈ (n − 1, n), Γ(·) is the

Gamma function.

Lemma 2. If f (x) is smooth with finite fractional-order derivative, Caputo derivative in (3) can be
discretized as [32]

C
x0

Dα
x f (x) =

∞

∑
i=n

f (i)(x0)

Γ(i + 1− α)
(x− x0)

i−α. (4)

Lemma 3. In (4), if f (x) = (x− x0)
λ, (4) can be deduced as [33]

C
x0

Dα
x(x− x0)

λ =
Γ(λ + 1)

Γ(λ− α + 1)
(x− x0)

λ−α, (5)

where λ− α + 1 > 0.

The G-L definition in (2) has a discrete implement form for application, and the Caputo
definition in (5) holds a simple form for quadratic function, which can apply the fractional-
order chain rule. As more general forms of the derivative than the integer-order one, both
the G-L definition and Caputo definition can transfer into the integer-order derivative
when α = 1. Hence, we employ G-L derivative for the fractional-order state feedback
and fractional-order constraints, then the Caputo derivative for backpropagation with the
fractional-order gradient in this work.

2.1.2. Fractional-Order Gradient

The gradient usually works as the iteration direction to search the optimal minimum
point of an unconstrained convex optimization problem [34].

min
x

f (x), (6)

where f (x) is a smooth convex function with a unique global extreme point x∗. Gradient in
continuous form can be presented as

ẋ = −ρ∇ f (x), (7)

where ρ > 0 is the iteration step size, and ∇ f (x) is the gradient of f (x) at x. Equation (7)
can be discretized as

xk+1 = xk − ρ∇ f (xk), (8)
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where k is the iteration step, and xk is the discrete value at step k. Fractional-order derivative
introduces a fractional order α with more flexible performance in fractional-order gradient.
The fractional-order gradient in the Caputo definition can be presented as

xk+1 = xk − ρ∇C
xk

Dα
xk+1

f (x), (9)

where 0 < α < 1. The convergence of the fractional-order gradient in (9) depends on
the fractional order α and the initial value x0, and (9) can converge to a global extreme
point x∗ if the Caputo definition is calculated by the discrete equation (4). In this work,
fractional-order gradients are embedded into the backpropagation of FORNN to accelerate
the training process and improve prediction accuracy with battery physics information.

2.2. Fractional-Order Equivalent Circuit Model

Compared to the electrochemical model, ECM for LIB holds simpler structure but
enough battery physics information for the application to NNs. The fractional order
constant phase element (CPE), or called the Warburg element, is introduced due to the
capacitance of LIBs in low frequency and mid-frequency, which are not ideal ones with the
first-order derivative, which should be modelled as a fractional-order element [30]. Hence,
in this work, FOM is employed to describe the three main parts (high-frequency inductive
tail, mid-frequency reaction, and low-frequency diffusion dynamics) of the battery EIS [16].

Warburg element or CPE can manifest the phenomenon of capacitance dispersion
instead of an ideal capacitor in LIBs [30]. The voltage-current relationship in time domain
and the impedance in the frequency domain of a CPE is presented as i(t) = CCPE

dαu(t)
dtα , 0 < α < 1, t ≥ 0

ZCPE(s) =
U(s)
I(s) = 1

CCPE ·sα = 1
CCPE(jω)α

, (10)

where ZCPE is the complex impedance, CCPE is the capacity coefficient, j is the imagi-
nary unit, α is the fractional order related to capacitance dispersion and ω is the angular
frequency.

Figure 1 presents the mainly used fractional-order ECM in four different forms. If
n = 1 in Figure 1a, ECM in Figure 1a becomes a fractional-order Thevenin model (also
called 1-RC model), which only considers high-frequency and mid-frequency reactions,
and ignores the Warburg element of diffusion effects [35]. Figure 1b and Figure 1c are
fractional-order Partnership for a New Generation of Vehicles (PNGV) and fractional-order
“Randles” model, respectively, and both of them are systems with two fractional orders.
Fractional-order Randles model in Figure 1c is proposed to mainly reflect the double layer
effect in mid-frequency, which shows like a semi-ellipse rather than a semi-circle due to
capacitance dispersion, while the fractional-order PNGV model in Figure 1b is a widely
used FOM due to the full-scale reflection of LIB dynamics in all frequency range. The
corresponding state-space model (SSM) of the fractional-order PNGV model is [16] dα1 UCPE1

dtα1

dα2 UCPE2
dtα2

 =

[
− 1

R1CCPE1
0

0 0

][
UCPE1
UCPE2

]
+

 1
CCPE1

1
CCPE2

I,

Ut = [ 1 1 ]

[
UCPE1
UCPE2

]
+ Rohm I + E,

(11)

where UCPE2 and UCPE1 are the voltages of Warburg element CPE2 and CPE1; CCPE2 and
CCPE1 are the capacitance of CPE2 and CPE1; α1 and α2 are the fractional orders of CPE2
and CPE1, respectively; I is the current. For higher modeling accuracy, some extended
high-order FOMs for LIB are proposed by adding low-frequency component and replacing
ideal capacitor with CPEs [15], which results in a high-order FOM with three fractional
orders, as shown in Figure 1d.
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Figure 1. Fractional-order equivalent circuit model of LIBs in various forms, (a) n-RCα Model,
(b) fractional-order PNGV model, (c) fractional-order Randles model, and (d) three-orders fractional-
order model (CPEi, i = 1, 2, . . . , n).

3. Fractional-Order Recurrent Neural Network with Physics-Informed Knowledge

To make algorithm informed by physics and mechanism, the fractional-order deriva-
tive is applied to the recurrent neural network to construct the fractional-order recurrent
neural network with physics-informed knowledge, simplified as FORNN with PIBatKnow
in the following. The integral architecture of FORNN with PIBatKnow is presented in
Figure 2. Three aspects of FORNN with PIBatKnow can be improved as fractional-order
state feedback for forward propagation, fractional-order constraints for loss function, and
fractional-order gradients for backpropagation, which are introduced in every subsection
of this part, respectively.

Figure 2. Fractional-order recurrent neural network encoding with physics-informed battery knowledge.

The basis of FORNN with PIBatKnow in Figure 2 is an RNN, which contains an input
layer with m neurons (first layer in Figure 2), several hidden layers (h1, . . . , hp−1, hp, . . . , hl)
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with np(p = 1, 2, . . . , l) neurons (middle part in Figure 2), and an output layer with q neu-
rons (last layer in Figure 2), respectively. Suppose the training input dataset is (xi, yi), (i =
1, 2, . . . , N), where xi = (xi1, xi2, . . . , xim)

T is the network input, and yi = (yi1, yi2, . . . , yiq)
T

is the network target (training label). To simplify expression, vectors xi and yi are presented
as x and y in the rest of this paper. The specific part of RNN is the chain structure inside
the hidden layers, which hold hidden states feedback in time series. Assume Wp and bp
be the weight and bias matrix connecting the (p− 1)th hidden layer to the pth hidden
layer, Whp be the weights for memory updates of the pth hidden layer in the chain structure
of RNN, g(·) be the activation functions, and L(g(x), y) be the loss function. Within the
pre-set epochs threshold of training process, RNN would go through forward propagation
and backpropagation with training data, and the forward propagation starting from the
input layer can be presented as{

ap(x) = Wphp−1(x) + bp,
hp(x) = g(ap(x)), p = 1, 2, . . . , l

(12)

where ap(x) and hp(x) are the input and the output of the pth hidden layer, respectively.
Equation (9) is the basic iterative equation of the proposed FORNN with PIBatKnow.

3.1. Fractional-Order State Feedback

Fractional-order derivative can be introduced into the state feedback in the chain
structure of the proposed FORNN, resulting in fractional-order state feedback, as shown in
Figure 3b. Figure 3a is the integer-order state feedback, which can be presented as

t0 Dthp(t) = −Whphp(t) + W ′pg(hp−1(t)) + dp, p = 1, 2, . . . , l (13)

where W ′p is a coefficient related with weights Wp, dp is a constant related with bias bp,
and memory weights Whp are shared among all the moments in the time series.

Figure 3. Fractional-order state feedback in the forward propagation of recurrent neural network,
(a) integer-order state feedback, and (b) fractional-order state feedback.

Fractional-order state feedback in Figure 3b is extended from the integer-order one in
Figure 3a, thus fractional-order state feedback can be presented as

t0 Dα
t hp(t) = −Whphp(t) + W ′pg(hp−1(t)) + dp, p = 1, 2, . . . , l (14)

where t0 Dα
t is the fractional-order derivative of hp(t) in [t0, t], and (14) includes the integer-

order derivative (13) when α = 1. Equation (14) can be discretized by the G-L definition in
(2), which is

∆αhp(t) =
L

∑
j=0

(−1)j
(

α
j

)
hp(k− j) (15)

Take (15) into (14), we obtain that
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L

∑
j=0

(−1)j
(

α
j

)
hp(k− j) = −Whp(k)hp(k− 1) + W ′p(k)g(hp−1(k)) + dp (16)

Note that hp(k) is included in the first item (j = 0) of (15), and the second item of (15)
is −hp(k − 1) when j = 1. Hence, expanding the first item and the second item in (15),
then normalizing the coefficients, the discrete form of fractional-order state feedback can
be deduced as

hp(k) =(1−Whp(k))hp(k− 1) +
L

∑
j=2

(−1)j+1
(

α
j

)
hp(k− j)

+ W ′p(k)g(hp−1(k)) + dp

(17)

The upper limit L of the finite discrete form in (17) should be selected as a suitable
constant when realistic application. From (17), fractional-order state feedback is essentially
a fractional-order differential of the hidden states hp(k). Before discretization, the fractional-
order system presented by (14) still has a Mittag-Leffler stable problem, which would
influence the embedding into the network and the training process of the proposed FORNN
with PIBatKnow.

3.2. Fractional-Order Constraints

As provided in the introduction Section 1, the embedded physics information in ML
algorithms were mainly concluded into observational bias, inductive bias, and learning
bias [24]. A typical example of learning bias is that physics are enforced via soft penalty
constraints into the loss function of NNs. In this subsection, the soft penalty constraint is
realized by a fractional-order PDE reflecting battery knowledge and embedded into the
loss function of RNN, as shown in Figure 4. Except for the common loss of the supervised
measurement of outputs, a fractional-order PDE driven by physics-informed knowledge
is added as an unsupervised fractional-order loss, constructing the final loss for training
backpropagation.

Figure 4. Fractional-order partial differential equation constraint.

3.2.1. Constraint in Fractional-Order PDE Form

As shown in Figure 4, the unsupervised constraint is in a fractional-order PDE form,
which can include various types of fractional-order derivatives, such as PDE loss, initial
condition (IC) loss, and boundary condition (BC) loss. The fractional-order PDE constraint
is firstly presented in this part, then the specific fractional-order PDE for LIB is presented
in the following part. The general form of a PDE with initial condition and boundary
condition is given in Definition 3.



Fractal Fract. 2022, 6, 640 8 of 24

Definition 3. PDE with initial and boundary conditions [36].

L[y](x) = f (x), x ∈ Ω× [0, T],

B[y](x) = yb(x), x ∈ ∂Ω× [0, T],

y(x, 0) = y0(x), x ∈ Ω,

(18)

where L and B represents the differential operators, Ω is the spatio-temporal domain, y is the
solution, yb and y0 are the boundary and initial functions.

The exact solution y∗ of the PDE in Definition 3 usually lies in an infinite dimensional
space, and the FORNN with PDE constraint in this work would parameterize the solution
y∗ of as y (18) to approximate the ground truth in a numerical way. If the differential
operator in Definition 3 is chosen as integer-order derivative, it can obtain an integer-order
PDE constraint as stated in Lemma 4.

Lemma 4. If the differential operators in (18) is an integer-order derivative, a simple physics-
informed PDE constraint can be presented as

fPDE(x, t) =
∂y
∂t

+ a1
∂y
∂x

+ a2
∂2y
∂x2 , (19)

where a1 and a2 are the coefficients of boundary condition loss (BC loss) and initial condition loss
(IC loss). The PDE constraint in (19) satisfies a certain physics-informed law of the object, and (19)
can be extended to a complex form with extra information by adding other types of derivatives more
than IC loss or BC loss.

Remark 1. The PDE constraint in Lemma 4 could be integer-order PDEs, integro-differential
equations, fractional-order PDEs, or stochastic PDEs [24].

As stated in Remark 1, the PDE constraint in Lemma 4 may vary from different
physical equations according to the investigated object in different problems, such as the

viscous Burgers’ equation ∂y
∂t + y ∂y

∂x = v ∂2y
∂x2 with a initial condition and Dirichlet boundary

conditions. Considering the embedding battery knowledge represented by FOMs in this
work, the integer-order PDE constraint in Lemma 4 would be extended to a fractional-order
one, as stated in Lemma 5.

Lemma 5. Combining with the various forms of fractional-order derivatives in Figure 4, and if the
differential operators in (18) is a fractional-order derivative, the fractional-order PDE constraint
with physics-informed knowledge can be presented as

fFOPDE(x, t) =
∂αy
∂tα︸︷︷︸

PDE loss

+ a1
∂αy
∂xα

1
+ a2

∂αy
∂xα

2︸ ︷︷ ︸
condition loss

+ b1
∂αx1

∂tα
+ b2

∂αx2

∂tα︸ ︷︷ ︸
input constraint

+ c1
∂αx1

∂xα
2︸ ︷︷ ︸

coupled rate

, (20)

where ai, i = 1, 2, bi, i = 1, 2, and c1 are the coefficients of condition loss (such as IC loss and
BC loss), input constraint, and coupled rate, respectively. The fractional-order PDE constraint
fFOPDE(x, t) in (20) normalizes the coefficient of PDE loss (∂αy/∂tα) as 1, and sets the fractional
order α as the same, which can be various in application. The fractional-order PDE constraint
fFOPDE(x, t) in (20) satisfies a certain fractional-order physics-informed law of the object.

The fractional-order PDE constraint in Lemma 5 contains PDE loss, condition loss,
input constraint, and coupled constraint. Among the four parts, input constraint may
be the input derivative in time series, and coupled constraint may be the coupled rate or
coupled relationships among inputs, which usually exists in physical systems. Note that the
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fractional-order PDE in (20) covers the integer-order one in (19) when the fractional-order
is set as 1.

Lemma 6. According to [24], and referring to the fractional-order PDE constraint in (20), the final
loss function can be deduced as

L = wdataLdata + wPDELPDE, (21)

where
Ldata =

1
Ndata

∑Ndata
i=1 (y(xi, ti)− yi)

2 (22)

is the supervised loss of data output error, and

LPDE = 1
NPDE

∑NPDE
j=1 [ fFOPDE(x, t)]2|(xj ,tj)

= 1
NPDE

∑NPDE
j=1 ( ∂αy

∂tα + ai
∂αy
∂xα

m
+ bi

∂αxm
∂tα + ci

∂αxm
∂xα

n
)

2
|(xj ,tj ,m=1,2,m 6=n,n=1,2)

(23)

is the unsupervised loss of fractional-order PDE constraint fFOPDE(x, t).
In (21)–(23), wdata and wPDE are the weights to balance the two loss Ldata and LPDE; yi are

values of y at (xi, ti); (xi, ti) and (xj, tj) are two sets of points sampled at the initial/boundary
locations and in the entire domain, respectively.

With Lemmas 5 and 6, the general form of a fractional-order PDE constraint is proposed
to encode physics-informed knowledge into the loss function of FORNN. For a specific
object, the physics-informed PDE in (20) should be extracted from certain equations by
object modeling.

3.2.2. Constraint of Battery Terminal Voltage Derivative Equation

As introducing in Section 2.2, the physics-informed laws of LIBs can be described by
fractional-order elements in battery FOM, which is a suitable choice to be transferred to
the fractional-order PDE constraint as stated in Lemma 5. A second-order FOM is firstly
considered in this work as shown in Figure 5 [37,38].

Figure 5. Simplifie FOM of LIBs as fractional-order PDE constraint.

In Figure 5, the impedance of the second-order FOM in the left side can be presented as

Z = Rohm + ZARC + ZWarburg = Rohm +
Rct

RctC1sα1 + 1
+

1
C2sα2

(24)

where E is the open circuit voltage (OCV), Ut is the terminal voltage, and Rohm, RC tank
ZARC (Rct and CPE1), and ZWarburg (CPE2) represent the ohmic resistance in high-frequency,
double layer effects and charge transfer reactions in mid-frequency, and solid diffusion
dynamics in low-frequency of EIS of LIBs, respectively. Specifically, the time constant of
Rohm and RC tank ZARC is less than 0.05 s and ZWarburg is longer than 50 s in the time
scale [37], while the sampling frequency of general BMS is about 1∼10 Hz, which cannot
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accurately identify the transient response of Rohm and the dynamic response of ZARC.
Considering Rohm and RC tank ZARC as one process, the second-order FOM is simplified
as a RC tank as shown in the right side of Figure 5, which has the impedance as

Ut(s)− E(s)
I(s)

= R0 + ZWarburg = R0 +
1

Csα
, (25)

where R0 = Rohm + ZARC. Equation (25) acts as the basis of the fractional-order constraints
for the loss function of PIRNN, which is furtherly deduced in the latter part.

Take the simplified FOM in Figure 5, and the corresponding voltage-current equa-
tion (25) can be presented as

Ut(s)− E(s) = (R0 +
1

Csα )I(s)

⇒ Csα(Ut(s)− E(s)) = (R0Csα + 1)I(s),
(26)

where Ut is the terminal voltage, E is the OCV, and I is the current; R0 and C are the
resistance part and capacity value of the FOM in Figure 5, respectively.

Applying inverse Laplace transform, transfer (26) into time domain as

C · Dα(ut(t)− E(t)) = (R0C · Dα + 1)i(t), (27)

where ut(t), E(t), and i(t) are the time-series terminal voltage, OCV, and current in time
domain. Rewrite (27) as

C
∂αut(t)

∂tα
= C

∂αE(t)
∂tα

+ R0C
∂αi(t)

∂tα
+ i(t), (28)

In (28), the terminal voltage ut(t) and current i(t) can be directly obtained from
realistic sampled EV data, while OCV E(t) is an inside variable of the battery that can be
hardly measured in real operation conditions. However, SOC have a relationship with
OCV, which can be approximately calculated as [39]

E(t) = f (SOC) = ∑∞
k=0 dkSOCk(t), (29)

where dk is the coefficients of SOCk(t). Considering (28) as the fractional-order PDE
constraint and a finite terms k in (29), some certain assumptions are proposed to replace
OCV in (28) by SOC, as stated in Lemma 6.

Lemma 7. According to the measured SOC-OCV curves in literature, let k in (29) holds k = 1
and assume OCV E(t) is monotonic with SOC(t), so that the fractional-order derivative of E(t)
holds the relationship with the fractional-order derivative of SOC(t) as

∂αE(t)
∂tα

= dsoc
∂αSOC(t)

∂tα
, (30)

where dsoc is the ratio of (∂αE(t)/∂tα) to (∂αSOC(t)/∂tα).

Take (30) into (28), we obtain the fractional-order PDE constraint from the FOM of
battery as

C
∂αut(t)

∂tα
= dsocC

∂αSOC(t)
∂tα

+ R0C
∂αi(t)

∂tα
+ i(t). (31)

For FORNN with PIBatKnow, the inputs and outputs should be carefully selected
and combined with the fractional-order constraint (31). Moreover, it should consider the
available variables from realistic data, the influence of temperature, and the aim of the pro-
posed FORNN. For example, taking state estimation as target, then the inputs are defined
as x(t) = [x1(t), x2(t), x3(t)]T = [ut(t), i(t), Ttemp(t)]T, and the output as y(t) = SOC(t),
thus the fractional-order PDE constraint can be deduced as
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fSOC(x, t) = dsocC
∂αy(t)

∂tα
+ R0C

∂αx2(t)
∂tα

+ x2(t)− C
∂αx1(t)

∂tα
, (32)

Combining (32) with (23), the loss of fractional-order PDE constraint can be calculated
in the form of a mean sum of square (MSS), and embedded into the loss function as
a fractional-order unsupervised loss. G-L definition can be employed to discrete the
fractional-order derivatives in (32) for calculation. Select finite terms L = 5 in (2), and the
fractional-order derivatives of inputs x(t) and output y(t) in (32) can be deduced as

∆α M(t) =
5

∑
j=0

(−1)j
(

α
j

)
M(k− j), (33)

where M(t) = x1(t), x2(t), or y(t), and k is the discrete step. Note that the discrete equation
in (33) requires the history data in previous {5− j, (j = 0, 1, . . . , 5)}moments, which can
be found in the time-series data of the realistic sampled voltage, current, and the output
SOC. With (32) and (33), a FORNN with a fractional-order PDE constraint is constructed
and encoded by battery voltage equation, then the proposed FORNN can be applied to
conduct SOC estimation or further life prediction.

3.3. Fractional-Order Descent Methods

Besides fractional-order state feedback and fractional-order constraint, the FORNN
can also be enhanced in the backpropagation process by fractional-order gradients. In the
opposite direction of forward propagation, backpropagation starts from the output layer
to the input layer, mainly updating weights Wp, Whp, and bias bp, (p = 1, 2, . . . , l) in the
gradient descent direction, which is called the gradient descent (GD) method, as shown in
Figure 6a. It always makes the weights Wp = Whp in a realistic application, and the bias bp
holds the same update with weight Wp, thus only weight Wp is discussed in the following.
During backpropagation, the layer state gradients are calculated, then weight gradients are
based on the layer gradients to update weight Wp. The gradients of the pth hidden layer
for the kth, (k = 1, 2, . . . , N) input sample are presented as

∂L(g(x), y)
∂hk

p(x)
= Wk

p+1
∂L(g(x), y)
∂ak

p+1(x)

∂L(g(x), y)
∂ak

p(x)
=

∂L(g(x), y)
∂hk

p(x)
· g′(ak

p(x)) = Wk
p+1

∂L(g(x), y)
∂ak

p+1(x)
· g′(ak

p(x)),

(34)

where ∂L(g(x), y)/∂hk
p(x) and ∂L(g(x), y)/∂ak

p(x) are the gradients of the output hk
p(x) and

the input ak
p(x) of the pth hidden layer, respectively. Since the backpropagation starts from

the output layer, it supposes that the gradients ∂L(g(x), y)/∂hk
t (x) and ∂L(g(x), y)/∂ak

t (x)
of the tth, (t = p + 1, p + 2, . . . , l, l + 1) layer are already known. With layer gradients
in (34), fractional-order derivative is introduced from the output layer to calculate the
fractional-order gradients of loss function L(g(x), y); then, all the weights gradients of
hidden layers are transferred to fractional-order ones, which turns out to be a fractional-
order gradient descent (FOGD) method, as shown in Figure 6b. For time-series battery
dataset as the inputs of the proposed FORNN, if considering the gradient descent method
with momentum (GDm) shown in Figure 6c, the FOGD method can be extended to the
FOGD method with momentum (FOGDm), as presented in Figure 6d.
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Figure 6. Fractional-order gradient descent methods, (a) integer-order GD method, (b) fractional-
order GD method (FOGD), (c) integer-order GD method with momentum (GDm), and (d) fractional-
order GD method with momentum (FOGDm).

3.3.1. Fractional-Order Gradient Descent

FOGD employs the fractional-order gradients of the loss function and weights Wp
instead of the integer-order gradients. Based on the fractional-order gradient in (9), the
FOGD for the updates of weight Wp is presented as

Wk+1
p = Wk

p − η ·W0
p

Dα
Wk

p
L( f (x), y) = Wk

p − η · ∂αL( f (x), y)

∂
(

Wk
p

)α (35)

According to ap(x) = Wphp−1(x) + bp in (12) and the chain rule, (35) is deduced as

Wk+1
p = Wk

p − η · ∂L(g(x), y)
∂ak

p(x)
·

∂αak
p(x)

∂
(

Wk
p

)α (36)

where ∂L(g(x), y)/∂(Wk
p)

α is the fractional-order gradients of weight Wp to the loss function
L(g(x), y), and η is the learning rate (iteration step size). It should be noted that, according
to Lemma 3 in Section 2.1.1, the chain rule in (36) for fractional-order partial derivatives
only validates when the loss function L(g(x), y) holds an exponential form as the function
f (x) in (5). In (36), the gradient of the input ak

p(x) to the loss function (∂L(g(x), y)/∂ak
p(x))

can be obtained by (34), and ∂αak
p(x)/∂(Wk

p)
α can be calculated by (5). Hence, combining

(34) and the discrete Caputo definition in (5), the fractional-order gradients of weight Wp
to the loss function L(g(x), y) can be deduced as

∂αL(g(x), y)
∂(Wk

p)
α

=
hk

p−1(x)

Γ(2− α)
· ∂L(g(x), y)

∂ak
p(x)

(
Wk

p −W0
p

)1−α
(37)

where W0
p is the initial values of weight Wp. Take (37) into (36), we can obtain the FOGD

method for backpropagation as

Wk+1
p = Wk

p − η ·
hk

p−1(x)

Γ(2− α)
· ∂L( f (x), y)

∂ak
p(x)

(
Wk

p −W0
p

)1−α
(38)

where α is a fractional order that may be related to battery knowledge and sensitive to the
training results. The sensitivity of the fractional order α and the corresponding influence
on network output is discussed in the experimental part.
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3.3.2. Fractional-Order Gradient Descent with Momentum

FOGDm method is extended from FOGD method by adding momentum, which
demonstrates the changing direction of the fractional-order gradients. Given the integer-
order gradient descent (GD) method with momentum as

Vk+1
p = µ ·Vk

p − η · ∂L(g(x), y)
∂Wk

p

Wk+1
p = Wk

p + Vk+1
p

(39)

where µ is the momentum factor, which is the proportion of history gradient data, and Vp
is the weight momentum. Then the weight update by FOGDm method can be presented as

Vk+1
p = µ ·Vk

p − η · ∂αL(g(x), y)

∂
(

Wk
p

)α

Wk+1
p = Wk

p + Vk+1
p

(40)

Take the fractional-order gradients of weight Wp to the loss function L(g(x), y) in (37)
into (40), we obtain the discrete updating equation of weight Wp by the FOGDm method as

Vk+1
p = µ ·Vk

p − η ·
hk

p−1(x)

Γ(2− α)
· ∂L(g(x), y)

∂ak
p(x)

(
Wk

p −W0
p

)1−α

Wk+1
p = Wk

p + Vk+1
p

(41)

With (41) to encode the momentum of fractional-order gradient into the backpropa-
gation process, the FOGDm method accelerates the convergence of the proposed FORNN
with faster updates of weight Wp and bias bp, and adjusts fractional-order gradients more
rapidly than the FOGD method.

4. Experiment Setups
4.1. Battery and Operation Conditions

The proposed FORNN with PIBatKnow in this work may contain fractional-order
state feedback, fractional-order loss constraint, and fractional-order gradient for backprop-
agation, which bring more parameters for algorithm tuning. Hence, the sensitivity analysis
is necessary to identify suitable values and maximize the effectiveness for the practical
estimation of LIB. For sensitivity analysis, experiments under five temperatures (5 ◦C,
15 ◦C, 25 ◦C, 35 ◦C, 45 ◦C) are conducted for a 18650 cell to collect battery data, and FUDS
operation condition is employed to simulate the dynamic working condition. The param-
eters of the 18650 cell is shown in Table 1. The experimental data is sampled by a BTS-4
battery tester, and the cell is put in an incubator to control the testing temperature. The
cell is fully charged by constant-current constant-voltage (CC-CV) method before applying
FUDS, then fully discharged to the cut-off voltage 2.75 V under cycling FUDS periods.

Table 1. LIB 18650 cell parameters.

Parameters Values Parameters Values

Rated capacity (0.5C5A) 2000 mAh Rated voltage 3.7 V
Max charge voltage 4.2 V Discharge cut-off voltage 2.75 V
Working temperature (charge) 0 ◦C–45 ◦C Working temperature (discharge) −20 ◦C–60 ◦C

4.2. Dataset and Initialization

With the collected data, SOC is set as the estimation target of the proposed FORNN
with PIBatKnow, so that the relationship between the input and the output can be con-
structed and analyzed clearly. The real SOC values are calculated by the ampere-hour
integral method. Take the influence of temperature into consideration, this work for
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the sensitivity analysis takes the current, voltage, and temperature as the three main di-
mensions related to SOC. Hence, the inputs are selected as x(t) = [x1(t), x2(t), x3(t)]T =
[ut(t), i(t), Ttemp(t)]T, and the output as y(t) = SOC(t). Figure 7 is the current and voltage
data after preprocess. The total amount of data is 27,213 points, which can support the
big-data learning during training process for the proposed algorithm. The collected data is
divided according to the five temperatures, that is, 45 ◦C is selected as the testing data, and
data under 5 ◦C, 15 ◦C, 25 ◦C, and 35 ◦C is divided into training data and validation data.
The division ratio is 0.75:0.048:0.202, resulting in training data (20,410 points), validation
data (1306 points), and testing data (5497 points). Since the aim of this work is the sensitivity
analysis of parameters, only the data of one cell is enough, and any one of five temperatures
(not specific 45 ◦C) can be selected as testing data. Moreover, some unchanged parameters
are initialized and listed in Table 2.

Figure 7. Collected dataset, (a) current in FUDS operation condition; (b) voltage in FUDS operation
condition.

Table 2. Unchanged parameters of the proposed FORNN with PIBatKnow.

Name Value/Range Name Value/Range

Hidden layers 1 Hidden neurons 12
max epoch Emax 300 Performance function MSE
train:valid:test 0.75:0.048:0.202 Training goal 1.6 × 10−4

5. Sensitivity Analysis and Estimation Results

After the dataset division and initialization of the proposed algorithm, the sensitivity
of the main parameters related to the fractional-order knowledge are investigated in this
work. According to Section 3, nine fractional-order parameters are investigated and divided
into three categories, as shown in Table 3, that is, parameters’ sensitivity in the FOGD and
FOGDm method (fractional-order gradient sensitivity), parameters’ sensitivity in fractional-
order PDE constraint (impedance sensitivity), and weights in loss calculation (loss weight
sensitivity). A certain possible range of the parameters are also provided in Table 3, in which
only capacitance Cbat and ohm resistance R0 have physic units, that is, C and Ω, respectively,
and other seven fractional-order parameters hold the unit 1. For example, the parameter
range in impedance sensitivity is determined according to the battery FOM in (25) and
Figure 5. With the three categories in Table 3 and other initialized network parameters in
Table 2, the sensitivity analysis is conducted in the following sections, respectively.
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Table 3. Sensitivity categories of the fractional-order constraint and the fractional-order gradient in
the proposed algorithm.

Type Name Value/Range Attribution

Fractional-order
Gradient sensitivity

Fractional order α1 [0.1, 1]
FOGDm in (41)Momentum weight µ [0.1, 1]

Learning rate η [0.08, 0.26]

Impedance sensitivity

Fractional order α2 [0.1, 1]

FO PDE fSOC(x, t) in (32)Ratio of OCV-SOC dsoc [5, 50]
Capacitance Cbat (unit: C) [2.5, 25]
ohm resistance R0 (unit: Ω) [5 × 10−3, 6 × 10−3]

Loss weight sensitivity Loss weight wdata [0.1, 1] final loss L in (20)Loss weight wPDE 1− wdata

5.1. Estimation with Fractional-Order Gradient Sensitivity

The first sensitivity category is the fractional-order gradient sensitivity, which contains
the fractional order α1, the momentum weight µ, and the learning rate η in the FOGD and
FOGDm method. Fractional order reflects and embeds battery fractional-order character-
istics. In this section, only fractional order α1, momentum weight µ, and learning rate η
change in the range provided in Table 3, respectively. Other parameters stay unchanged as
shown in Table 4, and the default values of fractional order α1, momentum weight µ, and
learning rate η are also provided when acting as the unchanged values in the other two
sensitivity categories.

Table 4. Default values of the nine main fractional-order parameters.

α1 µ η α2 dsoc Cbat R0 wdata wPDE

0.9 0.75 0.18 0.9 40 20 0.005 0.8 0.2

To verify the estimation effects, SOC is taken as the output of the proposed FORNN
with PIBatKnow. Figure 8 presents the SOC estimation results under the sensitivity of the
fractional order α1 (α1 = 0.1:0.1:1) in FOGD and FOGDm methods. Expression variable =
a:interval:b denotes that variable changes from a to b in the range [a, b] and takes the values
in every interval interval, then this expression is applied to all the parameter sensitivity in
the following part. Combined with Section 4.2, Figure 8b contains five discharging snippets
under FUDS condition in five temperature (5 ◦C, 15 ◦C, 25 ◦C, 35 ◦C, 45 ◦C). Snippet
in 45 ◦C is the testing dataset, whose outputs and errors are enlarged in Figure 8c and
Figure 8e, respectively.

The testing loss in Figure 8a shows that loss decreases and converges faster with larger
α1, but the training process turns unstable when α > 0.5, especially α = 1. Moreover,
the outputs of all dataset (training, validation, and testing) and errors (errors = target −
outputs) are presented in Figure 8b and Figure 8d, respectively. Figure 8b,d also show the
unstable accuracy performance. For fractional order α1, there exists a trade-off between
performance and stability. With the outputs and the corresponding errors, it proves that
the training dataset and testing dataset have similar performance, and the network does
not overfit or underfit.

Similarly, the sensitivity of momentum µ and learning rate η are provided in Figure 9
and Figure 10, respectively. Since the testing prediction is the main point, and performance
of the training or validation datasets are consistent with the testing dataset, only the testing
outputs and testing errors are provided to focus on the testing performance, which is
different from Figure 8.
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Figure 8. Sensitivity of the fractional order α1 in FOGD and FOGDm method, α1 = 0.1:0.1:1, (a) testing
loss, (b) outputs of all dataset including training, validation, and testing data, (c) outputs of testing
dataset, (d) errors of all dataset, (e) errors of testing dataset.

From Figure 9, larger momentum weight µ would cause lower convergence speed and
more instability, especially when µ = 1.0, in which the network cannot converge, but the
accuracy is enhanced by a larger µ. It should be noted that only the FOGDm method has
the momentum weight µ, which determines the ratio of the previous momentum Vp, as
shown in (40). As to the learning rate η in Figure 10, it is very sensitive to the convergence
speed and algorithm stability but not so sensitive to the accuracy, because the testing loss
in Figure 10a varies a lot with different η, while the outputs and errors in Figure 10b,c do
not show too much difference. A value of η larger than 0.2 is not suitable for the proposed
FORNN with PIBatKnow.
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Figure 9. Sensitivity of the momentum of fractional-order gradient, µ = 0.1:0.1:1, (a) testing loss,
(b) testing outputs, and (c) testing errors.

Figure 10. Sensitivity of the learning rate, η = 0.08:0.02:0.26, (a) testing loss, (b) testing outputs, and
(c) testing errors.

5.2. Estimation with Impedance Sensitivity

The second sensitivity category is the impedance sensitivity. For the fractional-order
PDE constraint in loss function of the proposed FORNN with PIBatKnow, the main pa-
rameters include α2, dsoc, Cbat, and R0 of the battery FOM, and the sensitivity of the four
impedance parameters are investigated in this section.

Figures 11–14 are the testing loss, testing outputs, and corresponding errors under the
four impedance parameters α2, dsoc, Cbat, and R0, respectively. To better illustrate the loss
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value, the testing loss is enlarged within the early stage of epochs, and a subfigure enlarging
the stable loss in later epochs is added in every figure of testing loss, like Figure 11a. Part
of the training process would be terminated before the max epoch (300) when reaching the
training goal (1.6 × 10−4) or other validation conditions. For example, in the subfigure of
Figure 11a, the training process with α2 = 0.1 stopped at 159th epoch. From the accuracy
aspect, the outputs and errors in Figures 11–14 do not show large fluctuations when the
impedance parameters change. Most of the errors with various α2, dsoc, Cbat, and R0
maintain the magnitude within 0.15.

Figure 11. Sensitivity of the fractional order α2 in PDE constraint encoded into loss function,
α2 = 0.1:0.1:1, (a) testing loss, (b) testing outputs, and (c) testing errors.

Figure 12. Sensitivity of the ratio dsoc between OCV and SOC in battery FOM for fractional-order
PDE constraint, dsoc = 5:5:50, (a) testing loss, (b) testing outputs, and (c) testing errors.
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Figure 13. Sensitivity of the capacitance Cbat in battery FOM for fractional-order PDE constraint,
Cbat = 2.5:2.5:25, (a) testing loss, (b) testing outputs, and (c) testing errors.

Figure 14. Sensitivity of the ohm resistance R0 in battery FOM for fractional-order PDE constraint,
R0 = 5.1 × 10−3:1 × 10−4:6 × 10−3, (a) testing loss, (b) testing outputs, and (c) testing errors.

From Figure 11, the testing loss decreases and becomes more stable with larger frac-
tional order α2, and the errors also decrease to within 0.05, as shown in Figure 11c. From
Figure 12, the testing loss and outputs accuracy do not show certain sensitive pattern when
the ratio dsoc between OCV and SOC changes, but the testing loss becomes more unstable
with larger dsoc. From Figure 13, the testing loss converges faster when the capacitance
Cbat is in the middle value (such as 15, 17.5, 20). The stable loss becomes flatter and the
errors become smaller with larger Cbat. From Figure 14, a large resistance R0 would cause
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unstable convergence process and large testing loss, but the estimation accuracy in high
SOC range may be improved.

5.3. Estimation with Loss Weight Sensitivity

The third sensitivity category is the loss weight sensitivity. The loss weight wdata and
wPDE can determine the ratio of the supervised measurement loss and the unsupervised
fractional-order loss calculated by physics-informed PDE in Figure 4. Since loss weight
wdata and wPDE hold the relationship wPDE = 1−wdata, the two parameters may be consid-
ered as one parameter sensitivity, as presented in Figure 15. wdata = 0.1:0.1:1 corresponds
to wPDE = 0.9:0.1:0. The testing loss in Figure 15a demonstrates that larger wdata makes
the network process converge faster and more stable, which reflects the relative instability
of the physics-informed knowledge embedding. However, the algorithm can achieve a
trade-off with sensitivity analysis and suitable tuning. As to the estimation accuracy, the
outputs and errors in Figure 15b,c do not show much improvement both in the small value
and large value of wdata.

Figure 15. Sensitivity of the loss weights wdata and wPDE in loss function calculation, wdata = 0.1:0.1:1,
(a) testing loss, (b) testing outputs, and (c) testing errors.

5.4. Correlation Analysis

Correlation analysis is provided in this section to present the dynamic relationship
between parameters and the proposed algorithm performance. Based on the possible range
in Table 3, the three categories (nine parameters) are sampled as ten groups of values
randomly, as shown in Table 5. Mean square error (MSE) is selected as the evaluation
function in this work, thus the change of MSE is considered as the indicator of the algorithm
performance, marked as per f and presented in Table 5. Despite the total MSE per f , the
performance of training dataset, validation dataset, and testing dataset can be calculated as
trper f , vper f , and tper f , respectively.
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Table 5. Ten groups of radom values of the nine parameters in the three categories for correlation
analysis.

No. α1 µ η α2 dsoc Cbat R0 wdata wPDE per f trper f vper f tper f

1 1 0.72 0.125 0.5 11.75 22.75 5.24 × 10−3 0.89 0.11 0.001349 0.001158 0.002434 0.001799
2 0.47 0.6 0.251 0.23 39.2 18.025 5.34 × 10−3 0.66 0.34 0.001327 0.001177 0.001309 0.001889
3 0.54 0.98 0.152 0.16 23.45 24.325 5.45 × 10−3 0.38 0.62 0.218343 0.232547 0.005316 0.216220
4 0.08 0.66 0.1484 0.32 33.35 11.725 5.12 × 10−3 0.3 0.7 0.002358 0.002098 0.003900 0.002954
5 0.97 0.15 0.2186 0.6 8.15 23.425 5.52 × 10−3 0.29 0.71 0.029044 0.032181 0.003943 0.023360
6 0.62 0.13 0.1088 0.47 36.95 9.925 5.85 × 10−3 0.89 0.11 0.010673 0.009013 0.011097 0.016737
7 0.45 0.91 0.233 0.78 45.5 3.625 5.67 × 10−3 0.15 0.85 0.004387 0.004279 0.000754 0.005652
8 0.91 0.92 0.1394 0.82 16.25 16.675 5.93 × 10−3 0.91 0.09 0.000861 0.000894 0.000692 0.000782
9 0.81 0.14 0.1934 0.28 45.5 6.775 5.45 × 10−3 0.52 0.48 0.024046 0.025149 0.003720 0.024783
10 0.12 0.04 0.0854 0.66 12.2 2.95 5.19 × 10−3 0.34 0.66 1.044450 1.235187 0.046351 0.573336

To quantize the dynamic trend between the nine fractional-order parameters and
algorithm performance, the Pearson correlation coefficients are calculated with Table 3
and listed in Table 6. From the correlation coefficients in Table 6, the fractional order α1 in
gradients and learning rate η have a strong influence on the algorithm, while the momentum
weight µ in the gradient method mainly contributes to the validation performance. The
impedance (mainly dsoc, Cbat, and R0) of battery FOM (25) have strong correlations with the
validation performance and testing performance, while the fractional order α2 has weaker
influence on the testing dataset. The loss weight wdata and wPDE have weaker influence
on training performance than the other parameters, but the two of them have the same
correlation coefficients due to the relationship wPDE = 1− wdata. The total performance
per f and training performance trper f have very close values because the division ratio is
0.75:0.048:0.202, which demonstrates that training performance constructs the main part of
the total performance.

Table 6. Correlation coefficients of performance with nine main fractional-order parameters.

MSE α1 µ η α2 dsoc Cbat R0 wdata wPDE

per f 0.5103 0.3907 0.5173 0.1686 0.3843 0.3870 0.3737 0.2855 0.2855
trper f 0.5104 0.3977 0.5161 0.1794 0.3839 0.3957 0.3744 0.2821 0.2821
vper f 0.5108 0.5532 0.5948 0.1963 0.3357 0.4748 0.3196 0.1887 0.1887
tper f 0.5019 0.3272 0.5174 0.0812 0.3818 0.3115 0.3632 0.3091 0.3091

The numbers are in bold to highlight the strong correlation coefficients larger than 0.5 or near 0.5 (smaller than 0.5
but within 0.05).

6. Discussion

Combined with the estimation results under the three sensitivity categories and the
correlation analysis, the sensitivity and correlation of the nine main fractional-order param-
eters to the algorithm performance can be concluded as shown in Table 7.

Table 7. Positive and negative correlation of the nine main fractional-order parameters to the
algorithm performance.

index α1 µ η α2 dsoc Cbat R0 wdata wPDE

speed 1 ↗ ↘ ↘ ↘ ↗ middle 4 ↘ ↗ ↘
loss 2 ↗ ↗ - ↗ - - ↘ - -

accuracy 3 ↗ ↗ - ↗ - ↗ ↗ - -
stability ↘ ↘ ↘ ↗ ↘ ↗ ↘ ↗ ↘

1 speed means convergence speed. 2 loss means testing loss. 3 accuracy means estimation accuracy. 4 middle
means that the algorithm achieves faster convergence speed in the middle values of Cbat. The direction of arrows
means postive (upward arrow) or negative (downward arrow) correlation trends.

Take convergence speed, testing loss, estimation accuracy, and stability as the algo-
rithm performance indexes, several notes can be listed as references and instructions for
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the tuning of the nine main fractional-order parameters in the proposed FORNN with
PIBatKnow as follows.

• For the convergence speed, it would be boosted by a larger value of α1, dsoc, and wdata,
and by a smaller value of µ, η, α2, R0, and wPDE;

• For the testing loss, it would be improved by a larger value of α1, µ, and α2, and by a
smaller value of R0, but does not show sensitivity to η, dsoc, Cbat, wPDE, and wdata;

• For the estimation accuracy, it would be improved by a larger value of α1, µ, α2, Cbat,
and R0, but does not show sensitivity to η, dsoc, wPDE, and wdata;

• For the algorithm stability, it would be enhanced by a larger value of α2, Cbat, and
wPDE, and by a smaller value of α1, µ, η, dsoc, R0 and wPDE;

• According to the correlation analysis, if the nine fractional-order parameters can be
tuned adaptively, the fractional order α1, the learning rate η, and the capacitance Cbat
have the most dynamic correlation to the performance;

• For the fractional order α1 in FOGD and FOGDm methods, a value in range (0.5, 1) is
suitable and a trade-off would be made between performance and stability;

• The ratio of the previous momentum Vp, larger µ means larger inertia of the previous
convergence, which makes the speed slow but improves the learning ability to achieve
higher accuracy;

• The proposed algorithm achieves faster convergence speed in the middle values of
the capacitance Cbat in battery FOM;

• The loss weight wPDE has opposite tuning direction to the loss weight wdata.

7. Conclusions

This paper presents the sensitivity analysis of a fractional-order recurrent neural
network (FORNN) with physics-informed knowledge of lithium-ion battery. A recurrent
neural network is physics-informed by encoding with fractional-order battery knowledge,
resulting in the proposed algorithm, called FORNN with PIBatKnow. Three types of
physics-informed patterns are proposed as the fractional-order state feedback for forward
propagation, the fractional-order PDE constraint for loss function, and the FOGD methods
for backpropagation. Then, the sensitivity of nine main fractional-order parameters from
the FOGD and FOGDm methods, the battery FOM, and the loss calculation are taken
into consideration. Both SOC estimation experiment under parameter sensitivity and
correlation analysis are conducted. Several notes and discussions are presented to provide
possible instructions for the tuning of the fractional-order parameters in the proposed
FORNN with PIBatKnow. The discretization of fractional-order derivatives is the key point
to embed fractional-order dynamics into neural network. For example, the fractional-order
state feedback can be achieved by changing the discrete state calculating equations of the
hidden layer; the fractional-order constraints need to rewrite the loss function code with
the GL discrete form; the FOGD methods need to rewrite the training function code to
introduce fractional-order gradients in the discrete form. As presented in the theoretical
section Section 3, the fractional-order state feedback, the fractional-order constraints, and
the FOGD methods can also be applied to other objects more than batteries. It only needs to
transfer the fractional-order constraints related to the fractional-order physics knowledge
of the other objects, and all methods in this work can be easily employed.

In future research, an enhanced FORNN can be furtherly investigated by improving
fractional-order dynamics of the RNN system. The Caputo and GL derivatives used in this
work can partly capture the battery mechanism dynamics to achieve faster convergence
speed or higher estimation accuracy, and further discussion about the employed fractional-
order definitions in the FORNN can be conducted in our future work. Specifically, the
fractional-order derivatives can be furtherly improved, such as employing the fractional-
order Caputo-Fabrizio or Atangana-Baleanu-Caputo derivative instead of the Caputo and
GL derivative, the explanations of fractional-order derivative in the FORNN, and so on.
Moreover, the fractional-order neural network is the combination of battery fractional-order
modeling with machine learning; thus, more fractional-order information may be added
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into the network design to develop a physics-informed system. Hence, the fractional-order
neural network can be enhanced by designing a specialized architecture of RNN. For
example, FORNN with physics embedded in the loss function can be extended into multi-
task learning algorithms, by introducing a set of physical constraints from various LIBs.
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