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Abstract: This article develops a novel nonlocal theory of generalized thermoelastic material based
on fractional time derivatives and Eringen’s nonlocal thermoelasticity. An ultra-short pulse laser
heats the surface of the medium’s surrounding plane. Using the Laplace transform method, the basic
equations and their accompanying boundary conditions were numerically solved. The distribution
of thermal stress, temperature and displacement are physical variables for which the eigenvalues
approach was employed to generate the analytical solution. Visual representations were used to
examine the influence of the nonlocal parameters and fractional time derivative parameters on the
wave propagation distributions of the physical fields for materials. The consideration of the nonlocal
thermoelasticity theory (nonlocal elasticity and heat conduction) with fractional time derivatives may
lead us to conclude that the variations in physical quantities are considerably impacted.

Keywords: fractional time derivative; nonlocal thermoelastic theory; Laplace transform; eigenvalue
method

1. Introduction

The advantages of the generalized thermoelastic theory have recently been extended
to a variety of study domains, including nuclear reactors, rockets, and missile technologies,
shipbuilding, and huge steam turbine mechanisms, thanks to ongoing advancements
in this theory. Biot was the first to put forward the idea of the linked thermoelastic
theory being subjected to the conventional Fourier’s law [1]. However, since heat signals
travel at an unlimited speed, this idea ran into complications. Since thermal waves are
hyperbolic, several nonclassical heat conduction rules [2–4] have been developed to forecast
this. Eringen was the one who initially promoted the nonlocal elastic hypothesis [5].
After two years, Eringen [6] investigated the nonlocal thermoelasticity hypothesis. In
continuum mechanics, he addressed constitutive equations, laws of equilibrium, governing
equations, displacement equation and temperature under nonlocal elasticity theory. Under
the framework of elastic theory, Eringen [7] investigated nonlocal electromagnetic solids
and superconductivity. Eringen [8] has given a thorough explanation of the relationship
between nonlocal theories of field elasticity and continuum mechanics.

Fractional calculus describes the calculus of derivatives and integrals of any real or
complex order. The nonlocal quality of models with long memories, which is their heredi-
tary phenomenon, may be measured using fractional-order differential equations. Due to
its many applications in viscoelasticity, bioengineering, biophysics continuum mechanics,
signal and image processing, heat conduction, biology, diffusion, electrochemistry, and
control theory, fractional calculus has lately attracted a lot of interest. Furthermore, it is
challenging to describe the thermo-mechanical characteristics under the generalization
of thermoelastic models, making use of fractional-order differential equations crucial for
many biopolymers and physical processes with low temperature and transient loads. Other
approaches have been put forward to extend the notions of derivatives and integrals to non-
integral orders, and different definitions of fractional derivatives have also been developed.
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In the context of generalized thermoelastic theories, the authors of Refs. [9,10] proposed the
generalized fractional-order thermoelastic of low and high thermal conductivities. Another
model for a fractional order generalized thermoelastic model, based on a time-fractional
order Taylor expansion, has been put out by [11–13].

Hobiny et al. [14] investigated how the fractional time derivatives of the bio-heat
model affected skin tissue exposed to laser radiation. Abbas [15] applied the eigenvalue
approaches to study the fractional order model of thermoelastic diffusion problems for
unbounded elastic media with spherical cavities. Lotfy [16] discussed the analytical solu-
tions of the fractional time derivative heating equation with the effects of varying thermal
conductivity during the photothermoelastic excitation of a semiconducting material with
spherical cavities.

A nonlocal elastic rod’s thermoelastic reaction to nonlocal heat conduction was studied
by Sarkar [17]. The nonlocal thermoelasticity media with voids and fractional derivative
heat transmissions were researched by Bachher and Sarkar [18]. Sarkar et al. [19] applied
the LS model for the propagation of the photothermal wave in semiconductor nonlo-
cal elastic media. Sarkar [20] studied the thermoelastic response of a finite rod under
nonlocal thermal conduction. Lata and Singh [21] studied the deformations in a nonlo-
cal magneto-thermoelastic solid with hall currents caused by normal forces. The effects
of changing the heating source on a magneto-thermoelastic rod were investigated by
Bayones et al. [22] under Eringen’s nonlocal model with TPL and memory-dependent
derivatives. Biswas [23] studied the propagations of plane waves in nonlocal viscother-
moelastic porous media based on a nonlocal strain gradient model. Abouelregal et al. [24]
investigated the temperature-dependent physical characteristics of the rotating nonlocal
nanobeam under varying thermal sources and mechanical loading. Sheoran et al. [25]
studied the thermomechanical interaction in nonlocal transversely isotropic materials with
rotations. Abbas et al. [26] studied the generalized thermoelastic interactions in a plane
under a nonlocal thermoelastic model. Hobiny et al. [27] studied the analytical solution
of nonlocal thermoelastic interactions on a thermoelastic medium with ramp-type heating.
Several researchers, including [28–42], also conducted studies using the thermoelastic theory.

The purpose of this article was to study the impacts of the fractional order derivative
and nonlocal parameter in an elastic medium. The Laplace and eigenvalues methodology,
which is based on numerical and analytical techniques, was used to address the governing
equations. The numerical results for the relevant physical quantities were generated and
visually represented.

2. Materials and Methods

Following the Eringen [6] and Lord and Shulman models [2], based on Ezzat et al. [43],
the constitutive relations for a fractional-nonlocal, isotropic thermoelastic material are
given as:

ρ
(

1− β2∇2
)∂2ui

∂t2 = µui,jj + (λ + µ)uj,ij − γtT,i, (1)

K∇2T =
(

1− β2∇2
)(

1 +
τα

o
Γ(α + 1)

∂α

∂tα

)(
ρce

∂T
∂t

+ γtTo
∂ui,i

∂t

)
, 0 < α ≤ 1, (2)(

1− β2∇2
)

σij = (λuk,k − γtT)δij + µ
(
ui,j + uj,i

)
, (3)

where ρ is the density of material, β is the parameter of nonlocal model, K is the heat
conductivity, σij are the components of stresses, T = T∗ − To, T∗ is the temperature
variations, ui is the displacements, λ, µ are the Lame’s constants, t is the time, τo is the
thermal relaxation time, γt = (3λ + 2µ)αt, αt is the linear thermal expansion coefficient, ce
is the specific heat at constant strain and To refers to the reference temperature. Considering
the previous definitions, we may say:
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∂αg(r, t)
∂tα

=



g(r, t)− g(r, 0), α→ 0,

Iα−1 ∂g(r,t)
∂t , 0 < α < 1,

∂g(r,t)
∂t , α = 1,

(4)

where Iα is the integral fraction of Riemann–Liouville, which are natural extensions of the
well-known integral Iαg(r, t), for which a convolution type may be used to represent it.

Iαβ(r, t) =
∫ t

0

(t− s)α

Γ(α)
g(r, s)ds, α > 0, (5)

where Γ(α) is the gamma function and g(r, t) is the Lebesgue integral function. In the case
when it is unquestionably continuous, it is possible to write:

lim
α→1

∂αg(r, t)
∂tα

=
∂g(r, t)

∂t
, (6)

where the different values of the fractional parameter cover two types of conductivity,
0 < α ≤ 1, α = 1 for normal conductivity and 0 < α < 1 for low conductivity as in
Equations (4)–(6). Consider now a half-space (x ≥ 0) in which the x-axis points into the
medium. Consideration of the one-dimensional problem simplifies the analysis. The
following are the displacement components for a one-dimensional medium:

ux = u(x, t), uy = 0, uz = 0. (7)

From Equation (7) in Equations (1)–(3), the basic equations can be expressed by

ρ

(
1− β2 ∂2

∂x2

)
∂2u
∂t2 = (λ + 2µ)

∂2u
∂x2 − γt

∂T
∂x

, (8)

K
∂2T
∂x2 =

(
1− β2 ∂2

∂x2

)(
1 +

τα
o

Γ(α + 1)
∂α

∂tα

)(
ρce

∂T
∂t

+ γtTo
∂2u
∂t∂x

)
, (9)(

1− β2 ∂2

∂x2

)
σxx = σ = (λ + 2µ)

∂u
∂x
− γtT. (10)

3. Initial and Boundary Conditions

Using the appropriate beginning and ending positions, the problem may be solved.
The initial conditions are assumed to be:

T(x, 0) = 0, u(x, 0) = 0,
∂T(x, 0)

∂t
= 0,

∂u(x, 0)
∂t

= 0. (11)

In contrast, the thermal and the mechanical boundary conditions may be expressed as:

σxx = 0. (12)

Heat flux with an exponentially decaying pulse causes the surface x = 0.0 [44].

K
∂T(x, t)

∂x

∣∣∣∣
x=0

= −qo
t2e
− t

tp

16t2
p

, (13)

in which tp represents the characteristic time of pulse heat flux and qo is a constant. To
obtain the main fields in nondimensional formats, use the nondimensional variables
listed below.
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(
x′, u′, β′

)
= ηc(x, u, β), T′ =

γtT
ρc2 ,

(
t′, t′p, τ′o

)
= ηc2(t, tp, τo

)
, σ′ =

σ

ρc2 , (14)

where c2 = λ+2µ
ρ , η = ρce

K . If the dashes are ignored and nondimensional types are used for
the variables, the governing equations may be shown as follows:(

1− β2 ∂2

∂x2

)
∂2u
∂t2 =

∂2u
∂x2 −

∂T
∂x

, (15)

∂2T
∂x2 =

(
1− β2 ∂2

∂x2

)(
1 +

τα
o

Γ(α + 1)
∂α

∂tα

)(
∂T
∂t

+ ε
∂2u
∂t∂x

)
, (16)

σ =
∂u
∂x
− T, (17)

T(x, 0) = 0,
∂T(x, 0)

∂t
= 0, u(x, 0) = 0,

∂u(x, 0)
∂t

= 0, (18)

σ = 0 ,
∂T
∂x

= −qo
t2e
− t

tp

16t2
p

on x = 0, (19)

where ε =
γ2

t To
(λ+2µ)ρce

.

4. Analytical Method

Applying the Laplace transform for Equations (15)–(19) can be expressed as:

f (x, p) = L[ f (x, t)] =
∞∫

0

f (x, t)e−ptdt. (20)

Hence, the following systems are obtained:(
1− β2 d2

dx2

)
p2u =

d2u
dx2 −

dT
dx

, (21)

d2T
dx2 =

(
1− β2 d2

dx2

)(
p + p1+α τα

o
Γ(α + 1)

)(
T + ε

du
dx

)
, (22)

σ =
du
dx
− T, (23)

σ = 0,
dT
dx

=
−qotp

8
(

ptp + 1
)3 on x = 0. (24)

Equations (21) and (22) can be rewritten in the following forms:

d2u
dx2 = a31u + a34

dT
dx

, (25)

d2T
dx2 = a41u + a42T + a43

du
dx

, (26)

where a31 = p2

g , a34 = 1
g , a41 =

−β2
(

p+p1+α τα
o

Γ(α+1)

)
a31

h , a42 =

(
p+p1+α τα

o
Γ(α+1)

)
h ,

a43 =

(
p+p1+α τα

o
Γ(α+1)

)
ε

h , g = 1 + β2 p2, h = 1 + β2
(

p + p1+α τα
o

Γ(α+1)

)
(1 + εa34).
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Now, the suggested eigenvalues techniques may be applied to obtain the solutions of
coupled differential Equations (25) and (26) as in [45–48]:

dV
dx

= AV, (27)

where V=
[
u T du

dx
dT
dx

]T
and A =


0 0 1 0
0 0 0 1

a31 0 0 a34
a41 a42 a43 0

.

As a result, the characteristic relationship of matrix A is assumed to be:

m4 −m2(a34a43 + a31 + a42) + ma34a41 + a42a31 = 0. (28)

The four roots of Equation (28) that are designated here as m1, m2, m3 and m4 are the
eigenvalues of matrix A. Thus, the corresponding eigenvector X = [X1, X2, X3, X4] can be
calculated as:

X1 = ma34, X2 = m2 − a31, X3 = m2a34, X4 = m
(

m2 − a31

)
. (29)

So, the analytical solution of Equation (27) can be given by:

V(x, p) = ∑4
i=1 BiXiemix, (30)

where B1, B2, B3 and B4 are constants which are determined using the problem boundary
conditions. The numerical inversion approaches used the final solutions of the temperature,
displacement and stress distributions. The Stehfest method [49] may be provided by

f (x, t) =
ln(2)

t ∑G
n=1 Vn f

(
x, n

ln(2)
t

)
, (31)

with

Vn = (−1)(
G
2 +1)

min(n, G
2 )

∑
p= n+1

2

(2p)!p(
G
2 +1)

p!(n− p)!
(

G
2 − p

)
!(2n− 1)!

, (32)

where G is the number of terms.

5. Results

The numerical data on the physical properties of copper-like materials were used to
illustrate the behaviors of nondimensional field variables, viz. the displacement variation,
the temperature increment and the stress distributions through several graphical represen-
tations. The physical statistics for the copper material, whose material qualities were taken
into consideration by the writers, are supplied below.

αt = 1.78× 10−5
(

k−1
)

, λ = 7.760× 1010(N)
(

m−2
)

, t = 0.5, β = 0.3

µ = 3.86× 1010(N)
(

m−2
)

, ρ = 8954(kg)
(

m−3
)

, To = 293(k)

τo = 0.05, tp = 0.3, K = 386(N)
(

k−1
)(

s−1
)

, ce = 383.1
(

m2
)(

k−1
)

.

Numerical calculations were carried out for two different cases: the impacts of nonlocal
parameter and the fractional time derivative parameter. In the first case, as in Figures 1–3,
we considered four different values of nonlocal parameter β, when the fractional time
derivative α = 0.5 and the thermal relaxation time τo = 0.05. In the second case, as in
Figures 4–6, we considered three different values for fractional time derivative parameter
α under nonlocal thermoelastic model β = 0.3 and the thermal relaxation time τo = 0.05.
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The fluctuations in temperature, the displacement and the stress distributions for the first
case are shown in Figures 1–3. From these figures, it was obtained that the temperature
decreased with the increase in distances x, as in Figure 1. Figure 2 shows the variations of
displacement along distances x. The magnitudes of displacement reduced with increasing
distance until they were near to zero. Figure 3 depicts the stress fluctuations along the
x-axis. It is evident that the magnitudes of stress began with zero values that fulfilled the
boundary conditions of the problem, then dropped with increasing x to achieve maximum
values, then rose again to reach zero values. Figures 4–6 show the effects of the fractional
time derivative on the variation of temperature, the variation of displacement and the stress
variations with respect to the distance x. In Figures 4–6, it is seen that the dotted line ( . . . )
refers to the Lord and Shulman nonlocal thermoelastic model when α = 1, the dashed line
(—) points to the fractional nonlocal thermoelastic model when α = 0.5, while the solid
line (—) points to the fractional nonlocal thermoelastic model when α = 0.1. As expected,
the fractional time derivative parameter had a great effect on the distributions of all
field quantities.
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6. Conclusions

This present work explored the effects of fractional time derivatives in a thermoelastic
material under a nonlocal thermoelastic model. The basic equations were applied under
the model of Lord and Shulman with one relaxation time. The analytical expressions for
the material’s displacement, temperature, and stress were derived. We can conclude that
the variations in the physical quantities are significantly influenced by considering the
nonlocal thermoelasticity theory (nonlocal heat conduction and elasticity) with fractional
time derivatives.
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