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Abstract: The advantage of fractional‑order derivative has attracted extensive attention in the field
of dynamics. In this paper, we investigated the stability of the fractional‑order Mathieu equation
under forced excitation, which is based on a model of the pantograph–catenary system. First, we
obtained the approximate analytical expressions and periodic solutions of the stability boundaries
by the multi‑scale method and the perturbation method, and the correctness of these results were
verified through numerical analysis by Matlab. In addition, by analyzing the stability of the k’T‑
periodic solutions in the system,we verified the existence of the unstable k’T‑resonance lines through
numerical simulation, and visually investigated the effect of the systemparameters. The results show
that forced excitation with a finite period does not change the position of the stability boundaries,
but it can affect the expressions of the periodic solutions. Moreover, by analyzing the properties of
the resonant lines, we found that when the points with k’T‑periodic solutions were perturbed by
the same frequency of forced excitation, these points became unstable due to resonance. Finally,
we found that both the damping coefficient and the fractional‑order parameters in the system have
important influences on the stability boundaries and the resonance lines.

Keywords: fractional‑order derivative; Mathieu equation; forced excitation; resonance line

1. Introduction
Since the concept of fractional‑order derivative was first formulated by Hospital and

Leibnitz in 1695 [1], much research on the definition, operation, and application of fractional‑
order derivative has been conducted [2–6]. Gradually, Fractional‑order derivative was
used to deal with numerous engineering problems, due to its indispensable role in the re‑
search of dynamic behavior, system optimization, and other engineering problems [7–11].

The applications of fractional‑order derivative in engineering problems are mainly in
the fields of dynamics and control [12–16]. In the field of dynamics, fractional‑order deriva‑
tive is commonly used to model engineering materials with memory properties, such as
viscoelastic components. By defining more accurate constitutive relations of materials, the
vibration characteristics of nonlinear systems, such as air springs in the pantograph sys‑
tems, can be more reasonably analyzed. For instance, Qi et al. [12] used fractional‑order
derivative to describe the viscoelastic damping characteristics of rubber airbags and op‑
timized the aerodynamic model by analyzing the established fractional‑order‑modified
model. In addition, fractional‑order derivative can be very efficient in discrete systems.
Lu et al. [13] constructed a new fractional‑order discrete memristor model with prominent
nonlinearity and simulated the dynamical behaviors of the Ruelkov neuron under electro‑
magnetic radiation by introducing the proposed discrete memristor. Chen et al. [14] pro‑
posed a three‑dimensional fractional‑order discrete Hopfield neural network (FODHNN)
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within the left Caputo discrete delta’s sense and studied the dynamic behavior and syn‑
chronization of FODHNN.

In the field of control, the fractional‑order derivative is mainly used to influence the
closed‑loop control properties to improve the robustness of the system. Hou et al. [15]
established the dynamic model of a gear transmission system based on speed feedback
fractional‑order proportional–integral–derivative (PID) control and discussed the robust‑
ness of the fractional‑order PID controller inmeshing the stiffness coefficient and excitation
amplitude. Chang et al. [16] improved the traditional linear suspensionmodel, studied the
active control of the suspensionwith nonlinear stiffness and fractional‑order damping, and
verified the rationality of the model and the effectiveness of fractional‑order PID control.

The parametric excitation system has been widely used in engineering [17–20]. For
a parametrically excited system containing viscoelastic devices, such as the pantograph–
catenary system, the use of the Mathieu equation can adequately explain some resonance
phenomena in the system, and the Mathieu equation with a fractional‑order term can de‑
scribe the constitutive relation of the system more accurately. In recent years, there has
been a great deal of research on the fractional‑order Mathieu equation. For example, Li
et al. [21] constructed the fractional‑order Mathieu equation for viscoelastic simply sup‑
ported beams and analyzed the influence of the axial periodic excitation on the system
dynamics by the averaging method. Wen et al. [22] studied the dynamic characteristics
of the fractional‑order Mathieu equation with damping via the multiple‑scale method and
discussed the influence of the fractional‑order parameter on the stability boundaries. Guo
et al. [23] introduced fractional‑order derivative theory into the quasi‑periodic Mathieu
equation and studied the effects of fractional‑order term parameters on the stability of the
equation. In addition, several authors studied the influence of forced excitation factors on
parametric excitation systems. For example, Aurora et al. [24] discussed the stable bound‑
aries and unstable periodic solutions for the non‑homogeneous Hill equation.

Note that most of the existing studies focused on the stability analysis of the homo‑
geneous fractional Mathieu equation. However, due to the complexity of the actual engi‑
neering environment, the influence of external excitation must be considered. At the same
time, the forced excitationwill lead to someobvious changes in the stability of the fractional
Mathieu equation, and some newunstable resonance phenomenawill appear. Therefore, a
more comprehensive stability analysis of the inhomogeneous fractional Matheiu equation
is necessary. Motivated by the above considerations, the novelty and contribution of this
paper are summarized as follows: (1) Themulti‑scale method combinedwith the perturba‑
tion method to obtain analytical solutions for the stable boundaries and periodic solutions
was used; (2) Through theoretical analysis and numerical simulation by Matlab, we found
that under certain circumstances, the forced excitation can lead to the divergence of the
originally stable periodic solution in the stable region, which can constitute the resonance
line. (3) We found that the parameters of fractional‑order differential term affect the stabil‑
ity boundary and resonance line in the form of equivalent linear stiffness and damping.

In this paper, the system modeling, the stability determination theorem, and the an‑
alytical solutions of the stability boundary are discussed in Section 2. The accuracy of the
analytical solutions result is verified byMatlab numerical analysis in Section 3. In Section 4,
the existence conditions and properties of the unstable periodic solutions (resonance line)
in the system are described, and the influence of fractional‑order parameters is analyzed.
Finally, some conclusions are provided in Section 5.

2. Stability Analysis of Fractional‑Order Parametrically Excited System
The vibration problem is common in a high‑speed vehicle system [25]. Because the

spring and damper in the vehicle have obvious fractional‑order characteristics, it is nec‑
essary to use a fractional‑order model instead of an integer‑order model to describe the
memory characteristics of suchmaterials. In this section, we take the pantograph–catenary
system model as an example to analyze the stability of the fractional‑order parametrically
excited system.
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2.1. The Fractional‑Order Model of the Pantograph–Catenary System
The fractional‑order model is shown in Figure 1. It contains an air spring with frac‑

tional characteristics [26].
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Figure 1. The fractional‑order model of the pantograph–catenary system.

In the simplification process of the pantograph–catenary system model, the panto‑
graph is equivalent to the mass block, m, and the catenary force applied to the pantograph
is equivalent to the variable stiffness spring, k(t), where

k(t) = k0[1 + γ cos(
2πvt

L
)]. (1)

In Equation (1), Fw(t) stands for the excitation of the train on the pantograph, c is the
damper, and KDp[x(t)] is the air spring with fractional characteristics. According to this
model, the fractional dynamic equationof thepantograph–catenary systemcanbe constructed:

m
..
x + c

.
x + k0[1 + γ cos(

2πvt
L

)]x + KDp[x(t)] = Fw(t). (2)

Substituting τ = πvt
L into Equation (2), yields

d2x
dτ2 +

cL
mvπ

dx
dτ

+
k0L2

mπ2v2 (1 + γ cos 2τ)x +
L2−p

mπ2−pν2−p Dpx =
Fw(t)L2

mv2π2 . (3)

Let cL
mvπ = 2ζ, k0L2

mπ2v2 = δ, L2−p

mπ2−pν2−p = K, Fw(t)L2

mv2π2 = f (t), and Equation (3) can be
transformed to

d2x
dτ2 + 2ξ

dx
dτ

+ (δ + 2ε cos 2t)x + KDp[x] = f (t). (4)

It is obvious that the Equation (4) is a fractional‑order Mathieu equation under forced
excitation, which is the object of the following analysis.

2.2. Extended Floquet Theory
Linear homogeneous differential equations with T‑periodic coefficients are given by

.
x = A(t)x, (5)

where A(t)
de f
= A(t + T), ∀t ∈ R1 is time‑periodic and T is the time period, which can be

evaluated by applying the Floquet–Lyapunov theorem [27].
According to the Floquet–Lyapunov theorem, any fundamental matrix X(t) with T‑

periodic coefficients in Equation (5) can be written as

X(t) = q(t)eµt, (6)

where q(t) is a continuous T‑periodic n × n matrix‑function, and µ represents the Floquet
characteristic exponents, which determine the stability of the trivial solution to Equation (5).
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In addition, Equation (6) satisfies X(t + T) = λ X(t), where λ represents the Floquet
multipliers, and the relationship between λ and µ can be expressed as

λ = eµT . (7)

In terms of the periodicity of X(t) and q(t), we can obtain the stability condition
for system (6):

1. If Re(µ) < 0, |λ| < 1, then lim
t→+∞

X(t) = 0, and the properties of the solution satisfy
the asymptotic stability.

2. If Re(µ) > 0, |λ| > 1, then lim
t→+∞

X(t) = +∞, and the properties of the solution
satisfy the instability.

3. If Re(µ) = 0, |λ| = 1, then the solution is stable without the interference of forced
excitation, and when there exists a positive integer m, also satisfying λk′ = 1, we can
obtain the solutions with k’T‑periodic.

If the linear system is inhomogeneous (with a forcing excitation), then Equation (5)
should be changed to

.
x = A(t)x + g(x), (8)

where g(x) = g(x + T) is a time‑varying forcing excitation.
If X(0) initial conditions are given and bounded, then the solutions to the inhomoge‑

neous system of Equation (8) can be expressed as follows

Z(t) = X(t)
[

X(0) +
∫ T

0
X(τ)−1g(τ) dτ

]
. (9)

When we analyze the inhomogeneous linear system, the stability conditions 1 and 2
mentioned above do not change. However, condition 3 requires further refinement
and adjustment:

3.1 Based on |λ| = 1, when λ1 = λ2 = ±1, the Floquet multipliers correspond to the π‑
periodic solutions and 2π‑periodic solutions (corresponds to the stability boundary).
For an inhomogeneous linear system, the forced excitationwith finite period does not
change the convergence of the stability boundary; only when the period of the forced
excitation is large enough will the stability boundary become unstable.

The solutions to the inhomogeneous system after nT time periods can be expressed
as follows:

Z(nT) = X(T)nX(0)︸ ︷︷ ︸
Homogeneous

+
[

X(T)n + . . . + X(T)2 + X(T)
]

︸ ︷︷ ︸
summation

∫ T

0
X(τ)−1g(τ) dτ︸ ︷︷ ︸

Λ︸ ︷︷ ︸
Inhomogeneous

. (10)

In this case, the stability of the solutions depends on the convergence characteristics
of the summation when it exists in the Cesaro [28] limit

lim
n→∞

1 + X + . . . + Xn−1

n
= G. (11)

In the limit, the summation term becomes a diverging algebraic series increasing by
G with each additional term. Therefore, the summation term causes the result to diverge.
The solution is given by

lim
n→∞

Z(nT) = X(0) +
⌊

X(T)n + . . . + X(T)2 + X(T)
⌋

Λ, (12)

where Λ is the integral term and is a constant vector.
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3.2 When the Floquet multipliers are λ1 = λ2, |λ1| = |λ2| = 1, they correspond to the
periodic solutions in the system. Under the forced excitation with the same period,
such k’T‑periodic solution will become unstable due to resonance [28]. This will be
described in more detail in Section 4.1.

3.3 When there are multiple eigenvalues, not semisimple, the solutions of the system are
unbounded in both homogeneous and inhomogeneous cases.

2.3. The Analytical Study of Stability Boundaries
In this section, the analytical solution of the stability boundary of Equation (4) is dis‑

cussed. When the forced excitation f (t) is a harmonic excitation, such as F cos(wt), Equa‑
tion (4) can be transformed into

d2x
dτ2 + 2ξ

dx
dτ

+ (δ + 2ε cos(2t))x(t) + KDp[x(t)] = F cos(wt), (13)

where ξ(0 ≤ ξ << 1) is the linear damping of the system, 2ε cos(2t) is the time varying
stiffness of the system, KDp[x(t)] is the p derivative of x(t)with respect to t, and K(K > 0)
is the coefficient of the fractional‑order derivative.

There are several definitions for fractional‑order derivative, such asRiemann‑Liouville
and Caputo definitions [1–3,29] and some newly proposed definitions, such as the general‑
ized fractional derivative (GFD) definition [30,31]. Under wide senses, they are equivalent
for most mathematical functions. Without generality, Caputo’s definition is adopted in
Equation (13) with the following form:

Dp[x(t)] =
1

Γ(1 − p)

∫ t

0

x′(u)
(t − u)pdu, (14)

where Γ(y) is the Gamma function, satisfying the relation: Γ(z + 1) = zΓ(z).
Inserting ξ = εµ, K = εk, F = ε f1, k = O(1), µ = O(1), f = O(1) into Equation (13),

we obtain
..
x(t) + 2εµ

.
x(t) + (δ + 2ε cos 2t)x(t) + εkDp[x(t)] = ε f1 cos(wt). (15)

According to themulti‑scalemethod [22], introducing timevariables of different scales,

Tr
de f
= εrt, r = 1, 2, 3 . . . n, defining: Dh = ∂/∂Th, h = 0, 1, 2, we can obtain the

following expansions

d
dt =

+∞
∑

r=0
εrDr = D0 + εD1 + ε2D2 + . . .

d2

dt2 =
+∞
∑

r=0
εrDr(

+∞
∑

s=0
εsDs) = D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + . . . .

(16)

The approximate solutions of Equation (13) can be set as

x = x0(T0, T1, . . . Tn) + εx1(T0, T1, . . . Tn) + ε2x2(T0, T1, . . . Tn) + . . . + εnxn(T0, T1, . . . Tn) + o(xn). (17)

Combined with the perturbation method, δ is assumed to have the following form:

δ = δ0 + εδ1 + ε2δ2 + ε3δ3 + . . . + εnδn + o(δn). (18)

If Equations (16) – (18) are substituted into Equation (15) and the coefficients ε of the
same power are compared, a system of equations can be obtained:

O(ε0) : D2
0x0 + δ0x0 = 0, (19)

O(ε1) : D2
0x1 + δ0x1 = −2D0D1x0 − 2µD0x0 − δ1x0 − 2 cos 2T0x0 − kDp

0 x0 + f1 cos wT0, (20)
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O(ε2) : D2
0x2 + δ0x2 = −2D0D2x0 − 2D0D1x1 − D2

1x0 − 2µD0x1 − 2µD1x0 − δ2x0−
δ1x1 − 2 cos 2T0x1 − kDp

0 x1 − kDp
1 x0.

(21)

The periodic solution of Equation (19) is

x0 = A(T1, T2)ei
√

δ0T0 + cc, (22)

where δ0 = n2, n = 0, 1, 2, . . ., and cc represent the complex conjugation of its preceding
terms. The stability boundaries and periodic solutions for δ0 = 0, 1, 4 are discussed below.

1. Let δ0 = 0

Substitute δ0 = 0 into Equation (19), which yields

x0 = a = const, (23)

Substitute Equation (23) into Equation (20), and one can obtain
..
x1 = −a(δ1 + 2 cos 2T0) + f1 cos wT0, (24)

To avoid the secular term, aδ1 must be 0, so

δ1 = 0. (25)

Thus, the particular solution of Equation (21) can be written as follows:

x1 =
a
2

cos 2T0 −
f1

w2 cos wT0 , w ̸= 0. (26)

Use Equation Dp
t eiλt = (iλ)peiλt and Euler formula, and the fractional‑order differen‑

tial term can be transformed into the following:

kDp
0 x1 =

ka
4

[
(2i)pei2T0 + (−2i)Pe−2iT0

]
− k f1

2w2

[
(wi)peiwT0 + (−wi)Pe−iwT0

]
. (27)

Consequently, by substituting Equations (23), (25), and (26) into Equation (21), we can
obtain the following:

..
x2 = −a(δ2 +

1
2 ) + 2µa sin 2T0 − a

2 cos 4T0−
2µ f1

w sin wt + f1
w2 cos(2 + w)T0 +

f1
w2 cos(2 − w)T0−

1
4 ka

[
(2i)pei2T0 + (−2i)pe−2iT0

]
+ k f1

2w2

[
(wi)peiwT0 + (−wi)pe−iwT0

]
.

(28)

By eliminating the secular term in Equation (28), one would arrive at δ2 = − 1
2 and

the particular solution that is

x2 = − µa
2 sin 2T0 +

a
32 cos 4T0 +

2µ f1
w3 sin wT0 − f1

w2(2+w)2 cos(2 + w)T0−
f1

w2(2−w)2 cos(2 − w)T0 +
1

16 ka
[
(2i)pei2T0 + (−2i)pe−2iT0

]
−

k f1
2w4

[
(wi)peiwT0 + (−wi)pe−iwT0

]
.

(29)

Therefore, the stability boundary near δ0 = 0 is given by

δ(ε) = − ε2

2
+ O(ε3). (30)
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There is a periodic response with a period of 2π in this boundary, and it is

x = a − F
w2 cos wt + εa

2

[
cos 2t − ξ sin 2t + 2PK

4 cos( pπ
2 + 2t)

]
+ 2ξF

w3 sin wt−
KF
2 wp−4 cos( pπ

2 + wt)− Fε
w2

[
1

(2+w)2 cos(2 + w)t + 1
(2−w)2 cos(2 − w)t

]
+

ε2a
32 cos 4t + O(ε3) , ◦w ̸= 0,±2.

(31)

In order to find the relationship between fractional‑order parameters and the stability
boundary, we need to carry out higher‑order approximate calculation, as follows:

O(ε3) : D2
0x3 + δ0x3 = −2D1D0x2 − 2D1D2x0 − D2

1x1 − 2D2D0x1 − δ3x0 − 2µD0x2−
2µD1x1 − 2µD2x0 − δ2x1 − δ1x2 − 2 cos 2T0x2 − kDp

0 x2 − kDp
1 x1 − kDp

2 x0.
(32)

Similarly, by eliminating the secular term, we will have

δ3 = −2pk
8

cos(
pπ

2
). (33)

Hence, the stability boundary for this case can be written as

δ(ε) = − ε2

2
− ε2 2pK

8
cos(

pπ

2
) + O(ε4). (34)

2. Choose δ0 = n, (n = 1, 4)

Substitute δ0 = 1 into Equation (19) and it could yield

x0 = AeiT0 + cc. (35)

By substituting δ0 and x0 into Equation (20), we arrive at

D2
0x1 + x1 = (−2iD1 A − 2iµA − δ1 A − A − kip A)eiT0 − Aei3T0 +

f1

2
eiwT0 + cc. (36)

where D1 A is the partial derivative of Awith respect to T1 and A is the conjugate of A.
In order to obtain a periodic solution, we must let

(−2iD1 A − 2iµA − δ1 A − A − kip A) = 0. (37)

To solve Equation (37), set A = a
2 − b

2 i, separate the real and imaginary parts, and it
can be obtained: {

[1 + δ1 + k cos( pπ
2 )]a + [2µ + k sin( pπ

2 )]b = 0,
[2µ + k sin( pπ

2 )]a + [1 − δ1 − k cos( pπ
2 )]b = 0.

(38)

If the system of equations has a non‑zero solution, we can obtain the following:

δ1 = ±
√

1 − [2µ + k sin(
pπ

2
)]

2
− k cos(

pπ

2
). (39)

Hence, the particular solution of Equation (36) is

x1 =
A
8

ei3T0 +
f1

2(1 − w2)
eiwT0 + cc, w ̸= 1. (40)

Similarly, eliminating the secular terms of Equation (21), we obtain

δ2 = −1
8

. (41)
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x2 = [i 3µ
32 A + δ1

64 A + (3i)pk
64 A]ei3T0 + A

192 ei5T0 − f1[(wi)p+δ1+2µwi]
2(1−w2)

2 eiwT0+

f1

2(1−w)(w+3)(w+1)2 e(w+2)iT0 + f1

2(1+w)(3−w)(w−1)2 e(w−2)iT0 + cc.
(42)

Using the above equations, the stability boundaries near δ0 = 1 can bewritten as follows:

δ(ε) = 1 ±
√

ε2 − C1
2 − K cos(

pπ

2
)− 1

8
ε2 + O(ε3). (43)

where the equivalent linear damping is C1 = 2ζ + K sin( pπ
2 ).

Its corresponding periodic response is

x = a cos t + b sin t + ε
8

[
(a + 3ξb

4 ) cos 3t + (b − 3ξa
4 ) sin 3t

]
+

3PKε
64

{[
cos( pπ

2 )a + sin( pπ
2 )b

]
cos 3t +

[
cos( pπ

2 )b − sin( pπ
2 )a

]
sin 3t

}
+

ε
64

[
±
√

ε2 −
[
2ξ + K sin( pπ

2 )
]2 − K cos( pπ

2 )

]
(a cos 3t + b sin 3t)+

ε2

192 (acos5t+ bsin5t) + F
2(1−w2)

cos wt+
ε[− F

2(1−w2)
2 (wpip + δ1 + 2µiw) cos wt + F

2(w+3)(1−w)(w+1)2 cos(w + 2)t+
F

2(w+1)(3−w)(w−1)2 cos(w − 2)t] + O(ε3), w ̸= ±1,±3.

(44)

Using a similar procedure, we can obtain the stability boundaries near δ0 = 4, which are

δ(ε) = 4 +
1
6

ε2 − 2PK cos(
pπ

2
)±

√
ε4

16
− 4C22 + O(ε3). (45)

where the equivalent linear damping is C2 = 2ξ + 2P−1K sin( pπ
2 ).

Its corresponding periodic solution is presented:

x = a cos 2t + b sin 2t + F
2(4−w2)

cos wt − ε( a
4 − a

12 cos 4t − b
12 sin 4t)+

ε2

384 (a cos 6t + b sin 6t) + O(ε3), w ̸= ±2.
(46)

The accuracy of the above analytical results is verified through the analysis of special
cases. First, when the forced excitation F = 0, the calculated results of stability boundaries
and periodic solutions are the same as those of the homogeneous fractional‑order Mathieu
equation [22]. Second, when the fractional ‑order derivative terms are removed from the
results, the calculation results are consistent with those of the typical Mathieu equation.

According to the above results of δ0 = n2, n = (0 , 1, 2), it can be found that both
damping and fractional‑order derivative in Equation (4) affect the stable boundaries and
periodic solutions of the system, and their change affects the position of the stable bound‑
aries and the form of the periodic solutions at the same time. Meanwhile, the magnitude
and frequency of the forced excitation with a definite period do not affect the stability of
the stable boundaries, but they will change the properties of the periodic solutions of the
stable boundaries.

3. The Numerical Simulation of Stability Boundaries
3.1. Comparative Analysis of Numerical Results and Analytical Results

To verify the accuracy of the analytical results, we numerically tested the influence
of forced excitation on the stability boundaries of Equation (4) by the numerical method.
First, the stability boundaries were drawn according to Equations (34), (43), and (45),
as shown in Figure 2. The three shaded parts in Figure 2 represent the unstable region
near δ0 = 0 , 1, 4 respectively, and the blank region represents the stable region of the
system. The boundaries of the intersection of the two regions are the stability boundaries
of parametric excitation resonance.
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Figure 2. Stability chart of system (4), marked with the positions of randomly selected points A–F.

When the system parameters change, the change of the stability boundaries near
δ0 = 1 and δ0 = 4 are more obvious than the change near δ0 = 0, and the stability
of the parameter points near the bottom of the stability boundaries is more sensitive and
easy to change. Therefore, some typical points for numerical simulation were selected in
the bottom area of the stability boundaries and near the boundary lines of δ0 = 1 or δ0 = 4,
The positions of these points are shown in Figure 2, and they are marked as points A, B,
C, and D. In order to verify the relationship between the periodic solutions on the stability
boundaries and the forced excitation, two points E and F on the boundary lines near δ0 = 1
or δ0 = 4 were selected to simulate randomly, as shown in Figure 2.

The responses of each typical point were compared and verified by the numerical
method. The system parameters were selected as ξ = 0.005, K = 0.005, p = 0.5, and w = 1.
Figures 3–6 show the time–domain response of points A, B, C, andD respectively, inwhich
sub‑graph (a) is the response without forced excitation and sub‑graph (b) is the response
with forced excitation. It can be seen from the comparison diagrams in Figures 3–6 that
whether the point is in the stable region or the unstable region, the forced excitation did
not change the stability of each point, but changed the speed of system convergence and
divergence. This is consistent with the analytical results obtained in this paper, and the
results confirmed the correctness of this paper’s conclusions.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 3. Response of point A, with F=0 (left) and F=1 (right). 

 

Figure 4. Response of point B, with F=0 (left) and F=1 (right). 

 

Figure 5. Response of point C, with F=0 (left) and F=1 (right). 

 

Figure 6. Response of point D, with F=0 (left) and F=1 (right). 

 

Figure 7. Response of point E, with F=0 (left) and F=1 (right). 

Figure 3. Response of point A, with F=0 (left) and F=1 (right).

Fractal Fract. 2022, 6, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 3. Response of point A, with F=0 (left) and F=1 (right). 

 

Figure 4. Response of point B, with F=0 (left) and F=1 (right). 

 

Figure 5. Response of point C, with F=0 (left) and F=1 (right). 

 

Figure 6. Response of point D, with F=0 (left) and F=1 (right). 

 

Figure 7. Response of point E, with F=0 (left) and F=1 (right). 

Figure 4. Response of point B, with F=0 (left) and F=1 (right).



Fractal Fract. 2022, 6, 633 10 of 18

Fractal Fract. 2022, 6, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 3. Response of point A, with F=0 (left) and F=1 (right). 

 

Figure 4. Response of point B, with F=0 (left) and F=1 (right). 

 

Figure 5. Response of point C, with F=0 (left) and F=1 (right). 

 

Figure 6. Response of point D, with F=0 (left) and F=1 (right). 

 

Figure 7. Response of point E, with F=0 (left) and F=1 (right). 

Figure 5. Response of point C, with F=0 (left) and F=1 (right).

Fractal Fract. 2022, 6, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 3. Response of point A, with F=0 (left) and F=1 (right). 

 

Figure 4. Response of point B, with F=0 (left) and F=1 (right). 

 

Figure 5. Response of point C, with F=0 (left) and F=1 (right). 

 

Figure 6. Response of point D, with F=0 (left) and F=1 (right). 

 

Figure 7. Response of point E, with F=0 (left) and F=1 (right). 

Figure 6. Response of point D, with F=0 (left) and F=1 (right).

Figures 7 and 8 are the time–domain response of points E and F respectively; sub‑
graph (a) is the response without forced excitation; and sub‑graph (b) is the response with
forced excitation with a frequency equal to the frequency of the corresponding periodic
solutions. By comparison, it was found that when there was no forced excitation, the sys‑
tem responses corresponding to the E and F parameter points were periodic, but became
divergent when the forced excitation was loaded. This phenomenon proved that when the
forced excitation frequency was close to the periodic solutions frequency of the stability
boundaries, those points on the stability boundaries became unstable. This result is con‑
sistent with the conclusion that the forced excitation frequency did not meet the definition
domain in the analytical deduced process.
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3.2. Effects of Damping and Fractional‑Order Parameters on the Stability Boundaries
In this section, the effect of system parameters on stability boundaries is analyzed.

The basic parameters were selected as K = 0.005, p = 0.5, and F = 0; ξ was selected as 0,
0.03, and 0.05, respectively The stability boundaries are shown in Figure 9. It can be seen
that the increase in the damping ξ made the stability boundaries move upward and the
range of the stable region expanded gradually.
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Figure 9. Stability chart of Mathieu equation:
..
x + 2ξ

.
x + (δ + 2ε cos 2t)x + KDP[x] = 0.

When the damping and the order of the fractional‑order derivative were selected as
ξ = 0.005, p = 0.5 and the coefficients of the fractional‑order derivative K were selected as
0, 0.005, and 0.01, respectively, the stability boundaries near δ0 = 4 were as shown in
Figure 10. As the coefficient K increased, the stability boundaries moved to the left and
gradually moved upward. The main reason for this phenomenon was that the equivalent
stiffness and the equivalent damping of the fractional‑order derivativewere both gradually
increasing. In addition, when the fractional‑order differential coefficient K was selected as
0.005 and the fractional‑order differential order p was selected as 0, 0.5, and 0.8, respec‑
tively. The stability boundaries were as shown in Figure 11. It can also be seen that with
the increase in p, due to the equivalent stiffness decreasing and the equivalent damping in‑
creasing, the stability boundaries moved upward and the position obviously shifted to the
right. In short, we found that the fractional‑order derivative not only affects the position
of the stability boundaries but also changes the range of the stability region.
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4. Stability Analysis of Periodic Solutions
4.1. Periodic Solutions in the Mathieu Equation

The Mathieu equation is a special case of Hill’s equation, and Hill’s equation can be
expressed as

..
x + [α + β f (t)]x = 0, (47)

where α and β are two independent parameters,
√

α is the natural frequency of the system,
β is the parametric excitation coefficient, f (t) = f (t + T), and T is the least period of f (t).

According to the Floquet theory, the k’T‑periodic solutions of Equation (47) can be
obtained when λk′ = 1. To find the value of λ for the k’T‑periodic solutions, we used its
polar form, i.e.:

x(t + k′T) = λk′x(t) = rk′ ejk′θ x(t). (48)

According to rk′ = 1, ejk′θ = cos(k′θ) + j sin(k′θ) = 1, the angle conditions for k’T‑
periodic solutions is as follows:

θ = ±2π

k′
. (49)

From the angle conditions [24], we determined that the unit circle shows the eigenval‑
ues’ positions of k’T‑periodic solutions, as shown in Figure 12.
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Consequently, the eigenvalues λ corresponding to any k’ can be obtained:

k′ = 1, θ = 2π ⇒ λ1,2 = {1, 1}
k′ = 2, θ = π ⇒ λ1,2 = {−1,−1}
k′ = 3, θ = 2π

3 ⇒ λ1,2 =
{
− 1

2 + j
√

3
2 ,− 1

2 − j
√

3
2

}
k′ = 4, θ = π

2 ⇒ λ1,2 = {j,−j}
. . .

(50)

From the unit circle diagram, the corresponding eigenvalues of different periods can
be clearly defined. Therefore, when the value of (δ, ε) is fixed and the Floquet multiplier
satisfies Equation (49), the k’T‑periodic solution can be obtained. As k’ is increased, the an‑
gle condition θ gradually approached zero, and the k’T‑periodic solutions were gradually
closer to T‑periodic solutions, thus affecting the stability of the stability boundary.

Next, we considered the homogeneous Mathieu equation:
..
x + (δ + 2ε cos(2t))x = 0. (51)

In Equation (51), the least period T = π, and the f (t) = cos 2t satisfies the following
equation: ∫ T

0
f (t)dt = 0. (52)
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The stability‑chart of Equation (51) is shown in Figure 13. There, exitπ‑period solutions
or 2π‑period solutions are shown on the stability boundaries. In addition, there were stable
periodic solutions of k’π‑period distributed in the stable region (i.e., the blank region).
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Then, we analyzed the non‑homogeneous Mathieu equation, as follows:

..
x + (δ + 2ε cos(2t))x =

r

∑
i=1

F cos(wit), (53)

where the angular frequency of the forced excitation iswi, and the least period of the forced
excitation satisfies Ti = 2π/wi.

When therewas no forced excitation, the k’T‑periodic solutions remained stable in the
stable region. However, when the forced excitation was loaded and the least period of the
forced excitation was the same as the least period of the k’T‑periodic solutions, those pa‑
rameter points corresponding to the k’T‑periodic solutions in δ‑ε plane became divergent.
Meanwhile, the angular frequency and the coefficient k’ satisfies k′ = 2/wi.

4.2. Numerical Simulation
In this section, the stability of k’T‑periodic solutions is analyzed through numerical

simulation to verify the correctness of the theoretical research.
When δ = 3, ε = 1, the system response of the Mathieu equation without the forced

excitation is as shown in Figure 14. It is a steady periodic motion. The spectrum diagram
of this response is shown in Figure 15. We found that the frequency of this periodic motion
was 0.053 Hz, meaning the angular frequency was 6π. We selected wi = 1/3, and this tim,
the forced excitation frequency was 6π. The response of the non‑homogeneous Mathieu
equation is shown in Figure 16. It became divergent. From the results of these three figures,
it was obvious that when the points with k’T‑periodic solutions in the stable region were
affected by the same frequency of forced excitation, their stability changed from stable to
divergent, due to resonance.

To analyze the distribution law of such unstable points more carefully, five kinds of
forced excitation with different angular frequencies (wi = 1/n , n = (3, 4 . . . 7)) were se‑
lected. The simulated results are shown in Figure 17. As can be seen from the figure, a large
number of unstable points appeared in the stable region, due to the influence of forced
excitation, and these points formed multiple linear regions with extremely thin widths
(hereinafter referred to as the resonance line). The positions of these resonance lines were
affected by forced‑excitation frequency, but these resonance lines had a similar trend. In
addition, we found that as the value of n increased, the position of the k’T‑resonance lines
gradually approached the stability boundaries. These results were consistent with the the‑
oretical results in Section 4.1.
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4.3. Effects of Damping and Fractional‑Order Parameters on Resonance Lines
To analyze more intuitively the influence of the system parameters on the resonance

line in Equation (4), we selected the parameter points of the 6T‑resonance line in δ = 2.7~3.1
and ε = 0.5~0.8 for local amplification analysis. The system parameters were selected as
K= 0.075, p = 0.5, ξ = 0, wi = 1/3, and F = 1; the step size of ε was 0.002, and the step size of
δ was 0.001. The local chart of the 6T‑resonance line of the Mathieu equation with forced
excitation is shown in Figure 18. The red points represent unstable points, and the blue
points represent stable points. It can be seen that the resonance line was in the shape of a
long strip in the case of local magnification, and its width gradually increased as the value
ε became larger.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 17 of 20 
 

 

4.3. Effects of Damping and Fractional-Order Parameters on Resonance Lines 

To analyze more intuitively the influence of the system parameters on the resonance 

line in Equation (4), we selected the parameter points of the 6T-resonance line in  =  

2.7~3.1 and  =  0.5~0.8 for local amplification analysis. The system parameters were se-

lected as K= 0.075, p = 0.5, 0 = , wi = 1/3, and F = 1; the step size of   was 0.002, and the 

step size of   was 0.001. The local chart of the 6T-resonance line of the Mathieu equation 

with forced excitation is shown in Figure 18. The red points represent unstable points, and 

the blue points represent stable points. It can be seen that the resonance line was in the 

shape of a long strip in the case of local magnification, and its width gradually increased 
as the value   became larger. 

 

Figure 18. Local chart of the 6T-resonance line:  2 ( 2 cos2 ) cos( / 3)Px x t x KD x F t  + + + + = .
 

Next, the effects of linear damping and fractional-order parameters on resonance 

lines were analyzed. The basic parameters of Equation (4) were selected as F = 1, wi = 1, K 

= 0.005, and p = 0.5, and the linear damping was selected as 0, 0.001, and 0.005, respectively. 

The 6T-resonance line is shown in Figure 19. As can be seen from Figure 19, the resonance 

line gradually shrank upward and narrowed in width as the damping increased. There-

fore, the damping changed the position of the resonance line, and the increase in damping 

not only reduced the influence of forced excitation, but also enlarged the range of the sys-

tem stability region. 

 

Figure 19. The effects of   on the 6T-resonance line. 

The effects of fractional parameters on resonance lines are discussed below. The basic 

parameters of Equation (4) were selected as 0 = , F = 1, wi = 1/3, and p = 0.5, and K  was 

0.01, 0.075, and 0.005, respectively. The 6T-resonance lines are shown in Figure 20. It can 
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x + 2ξ

.
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Next, the effects of linear damping and fractional‑order parameters on resonance lines
were analyzed. The basic parameters of Equation (4) were selected as F = 1,wi = 1, K = 0.005,
and p = 0.5, and the linear damping was selected as 0, 0.001, and 0.005, respectively. The
6T‑resonance line is shown in Figure 19. As can be seen from Figure 19, the resonance line
gradually shrank upward and narrowed in width as the damping increased. Therefore,
the damping changed the position of the resonance line, and the increase in damping not
only reduced the influence of forced excitation, but also enlarged the range of the system
stability region.
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The effects of fractional parameters on resonance lines are discussed below. The basic
parameters of Equation (4) were selected as ξ = 0, F = 1, wi = 1/3, and p = 0.5, and K was
0.01, 0.075, and 0.005, respectively. The 6T‑resonance lines are shown in Figure 20. It can
be seen that the change in the fractional‑order derivative coefficientK changed the position
and range of the resonance line. When K increased gradually, the position of the resonance
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line shifted to the left, due to the increase in the equivalent stiffness of the system caused
by the fractional‑order derivative term. In addition, the resonance line moved upwards
and became narrower, due to the gradual increase in the equivalent damping.
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When K was 0.005 and p was 0, 0.5, and 1, the 6T‑resonance lines were as shown in
Figure 21. It also can be seen that as p increased, the resonance line gradually moved to the
right. This was because the equivalent stiffness of the system decreased gradually, due to
the fractional‑derivative term. In addition, as p increased, the equivalent linear damping
gradually increased, and the resonance line gradually moved upward. In sum, both the
damping and the fractional‑order parameters had important effects on the position and
range of the resonance line, caused by forced excitation.
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5. Conclusions
On the basis of the model of the pantograph–catenary system, the stability analysis

of the non‑homogeneous fractional‑order Mathieu equation was concluded by the pertur‑
bation method and numerical simulation. We proved that forced excitation with a finite
period does not change the convergence of the stability boundary. Only when the period
of the forced excitation is large enough will the stability boundary become unstable. We
verified that k’T‑periodic solutions in the stable region of the non‑homogeneous Mathieu
equation are unstable under the influence of forced excitation. When the frequency of
forced excitation is close to the frequency of the k’T‑periodic solutions, unstable resonance
lines appear in the stable region. Finally, by analyzing the influence of system parame‑
ters on the resonance line, we found that both the damping and fractional‑order derivative
term in the system affect the position and range of the resonance line region. These results
reveal the complex dynamic behavior of fractional‑order parametric excitation systems un‑
der the influence of forced excitation, information that can be used to guide system design
and optimization.



Fractal Fract. 2022, 6, 633 17 of 18

In addition, based on this paper’s research results, the following extensions can be at‑
tempted: (1) Due to the complexity of the external influence of the vehicle, the pantograph–
catenary system with random excitation will be carried out; (2) The stability changes will
be further investigated under the influence of the dropper spacing in the pantograph–
catenary system; and (3) The study of the periodic and chaotic dynamical behavior of the
pantograph—catenary system will be further explored.
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