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Abstract: In this paper, we establish two approximation theorems for the multidimensional fractional
Fourier transform via appropriate convolutions. As applications, we study the boundary and initial
problems of the Laplace and heat equations with chirp functions. Furthermore, we obtain the general
Heisenberg inequality with respect to the multidimensional fractional Fourier transform.
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1. Introduction

The classical Fourier transform (FT) is one of the most influential tools in signal
processing. With the development of signal processing theory, some researchers realized
that the fractional Fourier transform (FRFT) is well suited to processing complicated signals.
It can reflect the information of signals in both the time domain and the frequency domain.
Therefore, it can deal with time-varying degradation models and non-stationary processes.
In recent decades, the FRFT has become an attractive tool and has various applications in
many fields of applied sciences, such as signal processing [1,2], image processing [3-5],
optics [6-8], communications [9-11], quantum mechanics [12,13] and so on.

Wiener first introduced the FRFT in his 1929 work [14]. Namias proposed the FRFT
in [12] using its eigenvalue equation. Since Namias” work in 1980, the FRFT has attracted a
lot of interest. Compared with FT, the FRFT contains one extra free parameter and is more
suited to process non-stationary signals, especially chirp signals. As a result, FRFT can
achieve effects that the classical Fourier transform or time-frequency analysis cannot.

Recall that for appropriate function f € R”, the nd-FT of f is defined by (see [15])

Ff(u) = an f(x)e 2mixudy,

For f € LY(R") and & = (ay,a,...,a,) € R", the nd-FRFT of f with order « is
defined by (see [16,17])

Faf(z) = [ Kalx2)f(x)dx, 1)

where Ky (x,z) = H};l K,xj(xj,z]-) and here for each j = 1,2,--- ,n, K,xj (x]-,z]-) is defined
as follows

Fractal Fract. 2022, 6, 625. https:/ /doi.org/10.3390/ fractalfract6110625

https:/ /www.mdpi.com/journal/fractalfract


https://doi.org/10.3390/fractalfract6110625
https://doi.org/10.3390/fractalfract6110625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://orcid.org/0000-0001-8562-9059
https://orcid.org/0000-0002-4257-5019
https://doi.org/10.3390/fractalfract6110625
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6110625?type=check_update&version=1

Fractal Fract. 2022, 6, 625 20f 13
\/m eirrcottxj[x]z+z]272szj secvcj], & ¢ n7Z,
Ktxj(xjrzj) = 6(x]- — z]-), aj € 2717, 2)
(S(Xj—i-Z]‘), Kj e2nZ + m,
where x = (x1,x2,- -+ ,xy).
Throughout this paper, we fix « € R" with & #km,j=1,2,...,n. Then,
Ky(x,z) = Aneq(z)en(x)eq(x, 2), (3)
where
n n
Ay =11 Aw. = T1 4/1 —iCOtDCj,
=1 =
n i i x]zcotocj
) = Teg(x)=e 70 )
n —2im i zZjxjcscu;
a(w2) = ey () =¢
It is obvious that
(Fuf)(z) = Anen(z) F (eaf)(za) @)

where z, = (21 csCaq,22CSCQy ..., 2y CSC Ry ).

For the 1-dimensional case, Chen et al. [18] studied the approximation theorem for
FRFT. A new 2d-FRFT was proposed by Zayed in [19], where the convolution theorem and
Poisson summation formula were proved. It is natural for us to investigate cases in high
dimensions. By combining the definitions provided by [18,20,21], the multidimensional
fractional convolution of order & can be defined as follows. For f,g € L!(R"),

(FE8)®) = eoal®) [ enlz)f(2)g0x — 2)dz. ©)

We establish the following two approximation theorems, where Theorem 1 is approxi-
mation in L? norm and Theorem 2 is almost everywhere approximation.

Theorem 1. Let ¢ € LY(R"), f € LP(R"),1 < p < coand [y, ¢p(x)dx = 1. Then
i (15) 1], o "

1
n

where ¢y = 7

2(i)

Theorem 2. Let ¢ € L'(R"), f € LF(R"),1 < p < oo and [z, ¢(x)dx = 1. Denote by
P(z) = sup|y >, |¢(x)| the decreasing radial dominant function of ¢. If ¢ € LY(R"), then for
almost all z € R",

lim (f$9y) (2) = £(2), ®

y—0
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where ¢y = yi,,(p(y)

The uncertainty principle is a principle of physics introduced by Heisenberg in 1927.
It points out that it is impossible to precisely determine the position and momentum of
a microscopic particle at the same time. It is one of the fundamental results in quantum
mechanics. The uncertainty principle is expressed mathematically as the Heisenberg
inequality. In this paper, we study the general Heisenberg inequality.

Theorem 3 (General Heisenberg inequality). Let f € L2(R") and &« = (ay,ap,..., ),
B = (B1,B2,--- Bn) € R Foranyy = (y1,y2,..-,Yyn), v = (01,02,...,0x) € R", ifay —
Br=0ay—Bor=...=ay— By, then

= atimnera [ [ 1ol Pae] > TR e - g, 0
where
¥ = (y1sinay + v cosay, Yo sinay + vy cosay, ..., Yu Sinay, + v, cOs iy ),
0 = (y18inB1 + vy cos By, y2sin 2 + v2 €08 By, . . ., Yn SIN Py + Uy COS Br).

In Section 2, we prove the above theorems. As applications, we investigate the Laplace
and heat equations with boundary and initial conditions for chirp functions in Section 3.
Furthermore, we demonstrate the effectiveness of our method through graphs in Section 4.

2. The Proof of Theorems

Firstly, we prove two approximation theorems. Before proving Theorem 1, we need
the following lemma.

Lemma1. Let f € LF(R"),1 < p < co. Then, for every x € R"

=

n p
Y imcota; (z-fyx-)zfzz

lim / el ’]f(z—yx>—f<z> dzp =0. (10)
y—0 | JR"

Proof. Since the space of continuous functions with compact support C.(R") is dense in
LP(IR"), for an arbitrary € > 0, there exists g € C.(R"), satisfying

€
If=gll, < 5
Because g is uniformly continuous, we have

lim |¢(z —yx) — g(z)| = 0. (11)
y—0

We can write



Fractal Fract. 2022, 6, 625 40f 13

N
dz}
p

dz}

no. 2 p
EEJ”““”‘J[(ZFWJ‘) ] dz} (12)

i i cota; {(zjfyxj)zfzz]

Jy(x) = {fR” . Yfz—yx) - f(2)

IN
==

[f(z —yx) — g(z — yx)]

1 2
)y incotaj{(zjfyx]v) 7212]
Jrn |

+{fRn

{ faulg(z — yx) — g(2)IPdz}7 + If gl

5 incotuc]-[ ]Zf(szryx]—)z] :
dz

==

g(z—yx) —g(z —yx)

=

o=t -1

< 2|f—g||p+||g||w{fsuppg

1
H{ Jalg(z = yx) — g(z)[Pdz} 7.
According to Lebesgue’s dominated convergence theorem and Equation (11), we obtain

1

p p
dz}
(13)

i i cota; {zjz—(z]-—i-yxj)z]

fim, o Jy(x) < ¢+ Hg||oolimy_>o{fsuppg o -1

Ty o{ e l8(2 — yx) — g(2)[Pdz} 7

= &
This proves the lemma. O

Proof of Theorem 1. By assumption,

(Fi) (=) - f(2)
=e-al2) [ ea()f(x)gy(z—)dx— [ g(x)f(z)dx

fj intcota; [(z]-—x]-)z—z]z]

- R{ f(z—x) —f(Z)}ny(x)dx-
Using Minkowski’s integral inequality, we can obtain

Hfi’ﬁ%—f(\p

_{/n /n{ejglmcmj[(zjxj)zZ%]f(z—x)—f(z)}"’y(x)dx

<[, {/ Jeame e e

N
dz}

’ [
dz} |y (x) |dx

i i cota; (Z],, xj)zfzjz
_ {/ R N

_Rn

N
dz} 9 (x)|dx
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= [ Jy(x)|¢(x)|dx,

R)Z

where [, (x) is in Equation (12). It is clear that

Jy(x) < 2IIf,.

From Lemma 1 and the Lebesgue dominated convergence theorem, we get

im(r5,) ], =0

y—0
This proves Theorem 1. [

Proof of Theorem 2. Since ¢, f € LP(R"), using the Lebesgue differentiation theorem, we have

i incotzxj {(zjfx]-)Zfz]Z]

e flz—x) = f(z)

1
lim—/ dx =0, ae. xcR".
10" Jx|<y

Let

E = zeR”:hmi/ dx = 0.
=0 Y Jix|<y

Assume z is any fixed point in E. For any € > 0, there exists § > 0 such that

)y i7t cot a; [(zjij)zfz]z]

e flz=x) = f(z)

i ircota; {(zjij)Zf ﬂ

1 ,
e=!

Y Jlx| <y

flz—x)— f(z)|dx < e (14)

whenever 0 < ¢ < 6.
Consider

(F2ey)(2) - £(2)
i incottx]- Zj—Xj 2—2]2
= e {eil [< ) ]f(z —x) — f(z) }(])y(x)dx

]i incota; {(z]-—x]-)z—z]z]
|x| <6

e

flz=x) = f(z) }%(X)dx

§1 imcota [ (zj-x;)" 2]
+ /MZ(S{eJ flz—x) —f(Z)}4>y(x)dx

:211 + Ip.

We set o(7) = ¢(x), where |x| = v, then ¢y is decreasing. Denoting by ), the
volume of unit sphere in R”, we get

2" —1
Q " < x)dx — 0
(B )< [ e
as v — 0 or v — co. Thus, there exists a positive constant A, such that "¢ (y) < A, for
0 <9< oo
Set

Sy ={TER": |7| =1}
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and
): zncotoc]{( ]‘—'YT]')Z—ZZ]
s =[ |7 " fz=17) - () |dr, (15)
n—1
where dt is the surface measure on X,,_1. Then Equation (14) is equivalent to
1 1 7,
G = 5 [T g(s)as < e,
whenever 0 < v < §. Then,
): irmcota; {(zj—xj)Z—z]Z]
LIS fyole™ flz— %)~ F(2)|| 2gp(2)|dx
i int cota; {(zj—xj)z—z]g]
< frgesle flz—x) — f(2)| B p(2)dx
= J3 Grsly ( )dr (16)
)
= G (2)[ - K ECs)dp(s)
< A filYesndpo(s)
< e(A— [y s"dyo(s))

=: €A1.

Denote by x;s the characteristic function of the set {x € R" : |x| > ¢}. Using the
Holder inequality, we have

Z intcota; [(z]-—x]-)z—zjz]

|| < f||>5eJ* flz—x) — f(z)||py(x)|dx
(17)
< Szl fz = 00wy (O)]dx + [£(2)] fly55 ()
< A1, sz H UG D)y ey P >dHo

as y — 0, which completes the proof of Theorem 2.

Similar to definitions of means of 1d-FRFT and 2d-FRFT [18,22], we can define means
for nd-FRFT as follows.

Definition 1. Let ® € L'(R") and ®(0) = 1. For y > 0, the ®, means of the multidimensional
frational Fourier integral is defined by

Myo,(N(2) = [ (Faf)(0K-a(x,2)@a(yr)dx, 2 € R, (18)

where
Dy (x) := D(xy),

Xy = (X1 CSC07, XpCSC A ..., Xy CSC Uy )

Proposition 1. Let f,® € L'(R"). Then,
My, (f) = f* @y, forally >0, (19)

where ¢ := FO, (py(x) = y%w(f) and §(z) = ¢(—z).
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Proof. Using the multiplication formula of the classical Fourier transform and Equation (5),
we get

My, (=) = [ (Faf)()Koa(x2)Pu(yx)dx
=Acae-al2) [ (Faf)(x)e-a(®)e-u(x,2)0a(yr)dx
~A-afoe-a(2) [ Flenf) (e alx,2)0(yra)dx
=e-a(2) [ Flenf)(x)e =D (yx)dx
—e-a(2) [ (@) F[2=00(y())] (x)dx
=e-a(2) [, ex(®)f(x)gy(x — 2)dx
=(f¥,)(2).

This completes the proof. [

Next, we study the general Heisenberg inequality. Before proving this inequality, we
introduce the following two lemmas.

Lemma 2 ([17]). Let f € L?(R"). Then

Fu (‘Fﬂf) = }—(al,az,...,a,,) [f(ﬁl,ﬁz,...ﬁn)f} = f(alﬁl,azﬁg,...,an‘,Bn)f/'

. (20)
Fof € LR and [ [Faf(z)Pdz = [ |f(x)Pdx

The second equality in Lemma 2 is the Parseval equality associated with nd-FRFT;
thatis, Fof € L2 for f € L2 and || Fuf||l, = ||f||,- From this lemma, we get

[P Pdz = [ 7P

and
F-u(Fuf) =1,

which means F_, is the inverse transform of F, on L?(R").

Lemma 3 (General Multiplication formula, [22]). Let f, g € L?>(R"). Then,
| Faf@ls@)dz = [ [Fag(2)f(2)dz. @

Proof of Theorem 3. (i) Let f € C7°(R"), y=v =0anda—B =5 = (7,7,...,7). We
assume siny # 0, and define

G(x) = Faf(x)e—y(x), (22)

3(z) = (F716)(2) = / G(x)@ . 23)

It follows from the classical Heisenberg inequality in [23] that

2 4
[ E1EgwPax] x| [ 1Plg(aPaz] = IS, @
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By Equations (22) and (23), we obtain

o170 = [Pl (7726) 0 o
- /Rn|x|2|}—“f<x)ew(x)|2dx
:/Rn|x|2|]:wf(x)|2dx.

z
§ sin 7y

As a result of changing variables, we have

[ =Pls(z)Pdz = s

According to the definition of nd-FRFT,

z
J siny

2 2

dz. (25)

n
z

siny

siny

2 2

/ ) G(x)e_(x,z)dx

2

R Fuf(x)e—q(x)e—y(x,z)dx

2
= lsingl"| [, A-aFaf ey (x)es ey (3, )0
= [siny|"| Fy (Fuf)(2) [
= [sin7|"| Fpf(2)[*.
Then
2
[ =PIz =] [ 1P iFas e Pt 26

Actually, we have

Igll2 = IFGllz = IGll2 = [Ifll2-
Since &« — = v, by Equation (24), we obtain

|:/R"|x|2]:'xf( zdx] [/ |z | Fpf(2) |d ] z 1gf2|4 sin?(a; — B1).

(i) Let f € L2(R"), y = v = 0. If || |-[| Faf(-)|ll, < coor || |-||[Fgf(-)]]|, < o holds
for at least one, then the conclusion can be drawn. Assume that both || |-||Faf ()|, and
| [-[|Fpf ()], are finite. As C5°(R") is dense in L*(R"), i.e., for each f € L*(R"), we can
choose {fi} C C§°(R") satisfying

fr EU[/
| Fefi ()] 5 (2] Fuf ()],

2| Fpfe(z)] 5 |2l Faf (2)

as k — oo. Then, we obtain

4
{/Rn|x|2]:,x 2dx] [/ 2| Fpf(z) 2)|’dz| > 1gf! sin? (a1 — B1).
(iii) Let f € L2(R"), y, v € R". We define

g(x) = e_zmx'yf(x + ). (27)
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Using the time-shift property of nd-FRFT, we obtain

|]-",,¢g(x)|2 = |(Faf)(x1 + y1sinag + v1cosay, ..., Xy + Ynsina, + v, cosocn)|2,

|J’:ﬁg(x)|2 = [(Fgf)(x1 +y1sin By 4+ vy cos By, ..., Xn + Yusin By + vy cos Bn)|?.

By changing variables and using (ii), we have

2 2 2 2 ”2||f\|% .2
/Rn|x| | Faf(x)|"dx| x /R”|Z| |.7-"ﬂf(z)‘ dz| > o2 sin” (a1 — B1)-
This proves Theorem 3. [

3. Application in Partial Differential Equations

In this section, we present applications of approximation theorems for FRFT to Laplace
and heat equations.

Example 1. For f € LP(R"), consider the Laplace equation with the Dirichlet boundary condition
in the upper half-space R = {(x,y) : x € R",y > 0}:

{ Alea(x)u(x,y)] =0, (x,y) € RI™,

u(x,0) = f(x), x € R™.

(28)

Let g = Py(")(z) in Equation (6). We have

u(xy) = ua(y) = (FER) () = [ (Faf)(@Ka(xz)e?nlaz, @9)

where

I'(n+1)/2] y
(n+1)/2 (|z\2 + y2)(n+1)/2

py(”)(z) — ]:[efhyl-l] (z) =
is the n-dimensional Poisson kernel. By calculation, we obtain

Alew(x)ug(x,y)] :/Rn e,x(x)(]-",xf)(z)K,“(x,z)e*ZW‘z"“ (47rz|z,x|2)dz

+ /]R (V) (Faf) (DK, ) (—are?|z, ) dz
=0.

From [15] (Chapter 1, Lemma 1.17), we can see
P e LY(RM), /R P,(z)dz =1

Using Theorem 1, we have

lim g () = £(x)

in LP norm. Consequently, u, (x,y) is a solution to the Equation (28).
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Example 2. For f € LP(R"), consider the heat equation with the initial value condition in the
upper half-space R

(& — 3 ) lea@poxy)] =0, (xy) R,
(30)
v(x,0) = f(x), x € R
Let g = Wy(")(z) in Equation (6). We have

o(vy) = valry) = (FH) () = [ (FehEK el 2)e ™ dz, @)
where

(). —4n2y|-[* — 1 —|z[?/4y
Wy (z): ]—'{e } (2) (47‘(y)"/2€

is the n-dimensional Gauss—Weierstrass kernel. By calculation, we get

82[ea (x)va(x, y)] _ / ) ea(x)(]:af) (2)K_n(x, z)e—4n2y\z.x\2 (—47T2|Za|2>d2

0x?
d[ex (x)su (%, )]
dy ’

Similarly, by [15] (Chapter 1, Lemma 1.17), we have

Wy(z)dz = 1.

n

W e tiry), |
Using Theorem 1, we obtain
lim o4 (x,4) = £(x)

in LV norm. Therefore, vy (x, ) is a solution of Equation (30).

4. Simulations

In this section, we give a specific function to illustrate the initial problem of heat
equation with chirp function. In Example 2, let

] _1
e—zn(X%COtDC]+X%COtDCz) (x% _'_x%) 6, 0< x| <1,
flx) =

efjn(x%coth]‘l’x%COt’XZ) (x% —+ x%)iB, |x‘ 2 1

It is obvious that
fx) € P(E), limoy(x,y) = f(2)
y%

Let
8u(%,y) = en(x)va(x,y).

On the one hand, by fixing y = 0.01, we investigate the effect of a1, ap. We take
w1 = &y = {5, % and 7, respectively. Then, we can describe g, (x, y) in Figures 1-3. In fact,
when ay = ay = 7, we have e(z,x) (x) =1, which is the case of classical heat equation. From
Figures 1-3, it is clear that the smaller oy, «; are, the stronger the vibration of g, (x, y) is.

On the other hand, by fixing a1 = a; = %, we investigate the effect of y in the
approximation. we take different y = 1, 0.1 and 0.01. Asy — 0, v4(x, y) tends to f(x) and
this trend can be seen clearly from the sectional views in Figure 4.
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(a) (b)

c d
(©) ) (@)
4
E1
E o
2 Py
o
5 g0
: 2
0 E 1
-2 -2

]
[
'
-y
(=)
-
[
'
[a]
'
-y
Y
a%]

Figure 1. (a) Real part graph of g, (x,y) with &y = ap = {5, (b) Imaginary part graph of g, (x,y) with
a; = ap = {5, (c) Section view of real part, (d) Section view of imaginary part.

(a) (b)

d
5 © e (@)

4

E 1

3 a
E = 05
o
= 2 ®
o [
i @ 0

0 — -0.5

-1 -1

-2 -1 0 1 2 -2 -1 0 1 2
t t

Figure 2. (a) Real part graph of g, (x,y) with &y = ay = &, (b) Imaginary part graph of g, (x,y) with
a; = ap = %, (c) Section view of real part, (d) Section view of imaginary part.
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(a) (b)
5 0.5
2 0
1 -0.5
” -
2 2 )

0 0
2 2
(c) (d)
0.5

real part
ra w R ()]

imaginary part
S
w

]
[
'
-y
(=)
-
[
'
[a]
'
-y
o
Y
a%]

Figure 3. (a) Real part graph of g, (x,y) with &y = ay = 5, (b) Imaginary part graph of g, (x,y) with
a1 = ay = 7, (c) Section view of real part, (d) Section view of imaginary part.

5 ‘ ‘ @ ‘ 15 ‘ ‘ )

<
O«
2

real part
imaginary part

Figure 4. (a) Real part graph for comparison, (b) Imaginary part graph for comparison.

5. Conclusions

This paper gives two approximation theorems in L”(R") via the multidimensional
fractional convolution related to the FRFT. The first one is that the multidimensional
fractional convolution of an L? function f and a regular L! function can approximate f
in LP norm. The second one is that the multidimensional fractional convolution of an L?
function f and an L! function satisfying certain conditions can approximate f point by
point. As applications of the second approximation theorem, we verify solutions to the
Laplace equation with the Dirichlet boundary condition and the heat equation with the
initial value condition in the upper half-space. In addition, through a specific initial value
function, we illustrate both the influence of the Chirp function’s index on the smoothness
of the solution, and the approximation speed of the solution to the initial value.
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