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Abstract: In this paper, we address the finite-time stability problem of Caputo nabla fractional-order
switched linear systems with α ∈ (0, 1). Firstly, the monotonicity of the discrete Mittag-Leffler
function is proposed. Secondly, under the per-designed switching rules, the form of the solution for
Caputo nabla fractional-order switched linear systems is obtained by using the discrete unit step
function. On the above basis, some sufficient conditions of finite-time stability for Caputo nabla
fractional-order switched linear systems are proposed, according to the discrete Grönwall inequality
and the monotonicity of the discrete Mittag-Leffler function. Finally, simulation verification is carried
out via three numerical examples.
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1. Introduction

Switched systems are a class of hybrid dynamical systems, which consist of finite sub-
systems and corresponding switching signals; switching signals coordinate the switching
between the subsystems. In the past few decades, the switched systems have drawn a lot
of attention and interest in the field of system control, such as network control [1], robot
control [2], vehicle control [3], and so on.

Fractional-order dynamical systems can be described by non-integer order differential
equations or non-integer difference equations [4]. Numerous analyses, real-world problems,
and numerical methods have been solved by fractional derivatives, integrals and differences
over the last few decades. For example, fractional-order modeling of the Gemini Virus in
Capsicum by fractional calculus obtained optimal control methods for biological control [5];
extensions and additions to image encryption via fractional calculus [6]; and numerous
analyses of the controllability results of the non-dense Hilfer neutral fractional derivative [7].
Fractional calculi were developed by Grünwald–Letnikov, Riemann–Liouville, and Caputo
in the past epoch. Fractional-order differential equations were proposed in 1695, while
fractional-order difference equations were introduced in 1974 [8]. Furthermore, fractional-
order discrete-time dynamics systems have also emerged with affluent results. For example,
the stability of fractional-order difference systems have been discussed in [9–11], and
many researchers have handled a lot of contents about different types of fractional-order
difference operators [9,12].

With the maturity of fractional calculus theory, the research on fractional-order systems
has become more and more perfect. For example, Wei et al. proposed the Mittag-Leffler
stability of fractional difference dynamic systems [13], and Wu et al. proposed the finite-
time stabilization of fractional-order discrete time-delay systems [14]. Fractional calculus
theory has been widely used in heat conduction [15], capacitance [16] and other fields,
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especially in the field of systems control, and outstanding results based on fractional
calculus theory have appeared.

Recently, some researchers have combined fractional-order theory with switched
systems, and established fractional-order switched system models to solve multiple prob-
lems that cannot be solved by using integer-order switched systems, such as viscoelastic
systems [17], circuit models [18], quantum mechanics [19], economics system [20], electrode-
electrolyte polarization [21], etc. At present, the majority of the research on fractional-order
switched systems is focused mainly on stability, such as finite-time stability [22], asymp-
totic stability [23], exponential stability [24], external stability [25], and so on. However,
it is noteworthy that most of research results stay on fractional-order continuous-time
switched systems, and there are few results on the stability of fractional-order discrete-time
switched systems.

It is well-known that the stability of integer-order discrete-time switched systems is
frequently discussed by using the common Lyapunov method [26], the multi-Lyapunov
method [27], and the dwell time method [28]. In comparison, the multi-Lyapunov method
is generally less conservative than the common Lyapunov method. The dwell time method
is further divided into the average dwell time method [29], the mode-dependent average
dwell time method [28], and the weighted average dwell time method [30]. Lyapunov
asymptotic stability describes the steady-state behavior of the system in the infinite-time
domain, but in some actual conditions, many systems run in a finite-time domain or
the transient behaviors of the systems in a finite-time domain need to be considered in
practice [31]. Therefore, in this paper, we study the finite-time stability for fractional-order
discrete-time switched systems.

Generally speaking, the lower bounds of the Caputo fractional difference operator and
the fractional sum operator must be consistent when taking the sum of fractional-orders on
both sides of the Caputo fractional difference equation. However, the lower bound of the
fractional-order switched system cannot be updated with the occurrence of switching due
to the memory [32], hereditary [33], and non-locality [34] of the fractional-order system.
As a result, the state trajectory of Caputo fractional-order discrete-time switched systems
cannot follow the expression of integer-order discrete-time switched systems, which is also
the most essential difference between fractional-order switched systems and integer-order
switched systems. Because a fractional-order switched system has a different system
matrix after each switching, its solution also cannot be obtained directly through the
system equation and Mittag-Leffler function as in [35], and the study of its finite-time
stability cannot be obtained simply through the Riemann–Liouville nabla properties and
the generalized Grönwall inequality as in [36]. To our best knowledge, there are few
systematic results on the stability of fractional discrete-time switched systems due to the
above essential differences. Therefore, it is very meaningful and challenging to study the
stability of fractional-order discrete-time switched systems.

This paper discusses the finite-time stability problem of Caputo nabla fractional-order
switched linear systems. The main contributions of this paper are summarized as follows:

i. In order to overcome the above-mentioned problems, we provide the monotonicity
of the discrete Mittag-Leffler function, and obtained the expression of a solution for
a Caputo nabla fractional-order switched linear system by using the discrete unit
step function.

ii. The sufficient conditions of finite-time stability for a Caputo nabla fractional-order
switched linear system are provided based on the discrete Grönwall inequality and
the monotonicity of the discrete Mittag-Leffler function.

The structure of this paper is as follows: in Section 2, we recalled some important
definitions and lemmas; we re-describe the Caputo nabla fractional-order switched linear
system; we propose the finite-time solution and finite-time stability conditions of the Caputo
nabla fractional-order switched linear system in Section 3; in Section 4, the feasibility of
finite-time stability conditions is verified by using three numerical examples; and finally,
the article is summarized in Section 5.
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Notations: Na = {a, a+ 1, a+ 2, . . .},Nb = {. . . , b− 2, b− 1, b},Nb
a = {a, a+ 1, a+ 2, . . . , b− 1, b}

represents the time set,
(

p
q

)
= Γ(p+1)

[Γ(q+1)Γ(p−q+1)] is the generalized binomial coefficient,

pq = Γ(p+q)
Γ(p) is the rising function. For a given vector x ∈ Rn, ‖x‖ stands for the Euclidean

norm, where ‖x‖ =
√

∑n
i=1 x2

i . For a given matrix A ∈ Rn×s, AT represents the transpose of

the matrix A, ‖A‖ represents the spectral norm, which is defined by ‖A‖ =
√

λmax(AT A).

The discrete unit step function is described by H(k) =
{

0, k ∈ N−1

1, k ∈ N0
.

2. Preliminaries

Some important definitions, lemmas, and the discrete Mittag-Leffler function are
introduced in this section.

Definition 1 ([8]). For the function f (·) : Nb+1−n → R , its nth integer order backward difference
is defined by:

∇n f (k) =
n

∑
i=0

(−1)i
(

n
i

)
f (k− i).

Its αth Grünwald–Letnikov difference is defined by:

G
b ∇

α
k f (k) =

k−b−1

∑
i=0

(−1)i
(

α
i

)
f (k− i).

Its αth Caputo fractional difference is defined by:

C
b∇

α
k f (k) = G

b ∇
α−n
k (∇n f (k)),

where α ∈ (n− 1, n), n ∈ N0, k ∈ Nb+1 and b ∈ R.

Remark 1. In general, there are three widely-used definitions of the fractional difference operators,
i.e., the Grünwald–Letnikov operator, the Riemann–Liouville operator, and the Caputo operator. The
Caputo operator can be seen as an improvement on the Grünwald–Letnikov fractional-order operator;
this type definition is convenient for solving the problem of the initial edge value of fractional-order
difference equations, and this expression can also be interpreted in the frequency domain through the
Laplace or Fourier transform, to describe the practicality of the interpretations for initial conditions.
It thus lays solid foundations for the effective applications of fractional calculus in the field of
engineering. In this paper, considering the numerous Caputo operator’s advantages, the Caputo
nabla operator is adopted.

Definition 2 ([37]). The αth fractional sum of the function f (·) : Nb+1−n → R is defined by:

b∇
−α
k f (k) =

1
Γ(α)

k

∑
s=b+1

(k− s + 1)α−1 f (s),

where α ∈ (n− 1, n), k ∈ Nb+1, s ∈ Nk
b+1 and b ∈ R. Γ(α) :=

∫ +∞
0 tα−1e−tdt represents the

gamma function.

Lemma 1 ([38]). Let 0 < α < 1 and f (·) : Nb → Rn . Then for arbitrary b ∈ R:

b∇
−α
k

(
C
b∇

α
k f (k)

)
= f (k)− f (b).
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Lemma 2 ([39]). (Discrete Grönwall inequality) Let f (k), g(k) be non-negative, non-decreasing
real value functions over the set J = [b + 1, b + T] ∩Nb+1. Let h(k) be a non-negative function on
J and g(k) < 1 for k ∈ J. Suppose 0 < α < 1, the following nabla fractional inequality holds:

h(k) ≤ f (k) + g(k)
(

b∇
−α
k h(k)

)
, k ∈ J,

Then

h(k) ≤ f (k)
∞

∑
j=0

gj(k)Hjα(k, b), k ∈ J,

where Hjα(k, b) = (k− b)jα/Γ(jα + 1) denotes the fractional discrete Taylor monomial.

Remark 2. Since some of the conditions of the original version of the generalized Grönwall
inequality do not need to be considered in this paper, they are discarded and modified in this paper,
resulting in a slightly different citation from the original version, but this does not affect the validity
of the inequality, and for a similar citation we can see ([36], lemma 2.6).

Definition 3 ([40]). The discrete Mittag-Leffler function is defined as:

Fα,β(λ, k) =
+∞

∑
i=0

λi kiα+β−1

Γ(iα + β)
,

where α > 0, β ∈ R, λ ∈ R and k ∈ Nb(b ∈ R).

Lemma 3. With two fixed parameters α ∈ (0, 1) and λ ∈ (0, 1), the discrete Mittag-Leffler
function Fα,1(λ, k) is monotonically increasing with respect to k ∈ Nb(b ∈ R).

Proof of Lemma 3. By view of Γ(α) =
∫ +∞

0 tα−1e−tdt and pq = Γ(p + q)/Γ(p), we have

∇kα = kα − (k− 1)α = Γ(k+α)
Γ(k) −

Γ(k−1+α)
Γ(k−1) = Γ(k+α)−(k−1)Γ(k−1+α)

Γ(k)

= (k+α−1)Γ(k+α−1)−(k−1)Γ(k−1+α)
Γ(k) = αΓ(k+α−1)

Γ(k) = αkα−1.

According to the Definition 3 and the above equality, we can obtain the follow equality:

∇Fα,1(λ, k) = Fα,1(λ, k)− Fα,1(λ, k− 1) = ∑+∞
i=0 λi kiα

Γ(iα+1) −∑+∞
i=0 λi (k−1)iα

Γ(iα+1)

= ∑+∞
i=0

λi

Γ(iα+1)∇kiα = ∑+∞
i=0

λi

Γ(iα+1) iαkiα−1 = ∑+∞
i=1

λi(
Γ(iα+1)

iα

) kiα−1

= ∑+∞
i=1

λi

Γ(iα) kiα−1 = ∑+∞
i=0

λi+1

Γ((i+1)α) k(i+1)α−1 = λ∑+∞
i=0

λi

Γ(iα+α)
kiα+α−1

= λFα,α(λ, k).

It is obvious that the discrete Mittag-Leffler function Fα,α(λ, k) is strictly positive
with respect to k ∈ Nb(b ∈ R) for the two parameters α ∈ (0, 1) and λ ∈ (0, 1) (see [41],
Remark 1). As a result, ∇Fα,1(λ, k) = λFα,α(λ, k) > 0 for all k ∈ Nb(b ∈ R). Therefore,
the function Fα,1(λ, k) is monotonically increasing with respect to k ∈ Nb(b ∈ R). This
completes the proof. �

Now, a simple number is given to verify the Lemma 3.

Example 1. Consider the discrete Mittag-Leffler function Fα,1(λ, k) with λ = 0.5. Figure 1 shows
how discrete Mittag-Leffler functions F0.25,1(0.5, k), F0.5,1(0.5, k), F0.75,1(0.5, k), and F0.9,1(0.5, k)
have increased over the set N10

0 . Furthermore, it is obvious that the larger parameter α ∈ (0, 1), the
faster Fα,1(0.5, k) increases.
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3. Main Results

Consider the following Caputo nabla fractional-order switched linear system:{
C
k0
∇α

k x(k) = Aσ(k)x(k),
x(k0) = x0,

(1)

where 0 < α < 1; x(k0) = x0 is the initial state; x(k) ∈ Rn denotes the system state. The
function σ(k) : Nk0 → N = {1, 2, · · · , N} represents the switching signal, which is a right
continuous piecewise constant function, and N denotes the total number of systems (to
avoid unnecessary situations, we assumed that N ≥ 2). Ai ∈ Rn×n(i ∈ N

)
stands for

the known system matrices. Suppose that {(i0, k0), (i1, k1), · · · , (im, km), · · ·} is a switching
signal σ(k) over the interval Nk0 , where {k0, k1, · · · , km, · · · } denotes a switching time

sequence. That is to say, σ(k) = im as k ∈ Nkm+1−1
km

, in another words, the km-th subsystem
C
k0
∇α

k x(k) = Aim x(k) is active in the interval Nkm+1−1
km

.
Our objective is to find some sufficient conditions that the Caputo nabla fractional-

order switched linear system (1) is finite-time stable under pre-constructed switching
rules. As a result, the definition of finite-time stability and lemmas are used in discussing
finite-time stability conditions.

Definition 4. (Finite-time stable). For three given finite positive scalars T, c1 and c2(> c1), the
Caputo nabla fractional-order switched linear system (1) is said to be finite-time stable with respect
to (c1, c2, T), if ‖x0‖ ≤ c1 implies ‖x(k)‖ < c2 for all k ∈ NT

k0
.

Let {(σ(k0), k0), (σ(k1), k1), · · · , (σ(km), km)} stand for the switching sequence of σ(k)
over the set NT

k0
, where 0 ≤ k0 < k1 < · · · < km ≤ T < ∞. Then the system (1) can be

re-described as follows under the above switching sequence:
C
k0
∇α

k x(k) = Aσ(kl)
x(k), k ∈ Nkl+1−1

kl
(l = 0, 1, · · · , m− 1),

C
k0
∇α

k x(k) = Aσ(km)x(k), k ∈ NT
km

,
x(k0) = x0.

(2)

Now, the existence of a solution over the set NT
k0

for the system (2) is provided by
using the discrete unit step function H(k).
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Lemma 4. For α ∈ (0, 1) and k ∈ NT
k0

, the solution of the Caputo nabla fractional-order switched
linear system (2) is given by:

x(k) =



x0 +
1

Γ(α)

k
∑

s=k0+1
(k− s + 1)α−1 Aσ(k0)

x(s), k ∈ Nk1−1
k0

,

...

x0 +
1

Γ(α)

k
∑

s=k0+1
(k− s + 1)α−1 Aσ(k0)

x(s) +
l

∑
i=1

[
1

Γ(α)

k
∑

s=ki+1
(k− s + 1)α−1

(
Aσ(ki)

− Aσ(ki−1)

)]
x(s), k ∈ Nkl+1−1

kl
,

...

x0 +
1

Γ(α)

k
∑

s=k0+1
(k− s + 1)α−1 Aσ(k0)

x(s) +
m
∑

i=1

[
1

Γ(α)

k
∑

s=ki+1
(k− s + 1)α−1

(
Aσ(ki)

− Aσ(ki−1)

)]
x(s), k ∈ NT

km
.

Proof of Lemma 4. For k ∈ Nk1−1
k0

, according to (2), we have:

C
k0
∇α

k x(k) = Aσ(k0)
x(k). (3)

Taking the fractional sum on both sides of Equation (3) from k0 to k, and in view of
Lemma 1 and Definition 2, it is obvious that the following equality holds:

x(k) = x0 +
1

Γ(α)

k

∑
s=k0+1

(k− s + 1)α−1 Aσ(k0)
x(s). (4)

For k ∈ Nk2−1
k1

, by means of Equation (2), the following equality holds by using the
discrete unit step function H(k):

C
k0
∇α

k x(k) = Aσ(k0)
x(k)×

[
H(k)− H(k− k1)

]
+ Aσ(k1)

x(k)× H(k− k1). (5)

In fact, according to the definition of the discrete unit step function, it is obvious for
arbitrary k ∈ Nk2−1

k1
that H(k− k1) = 1 and H(k)− H(k− k1) = 0. That is to say, Equation

(5) is equivalent to Equation (2) as k ∈ Nk2−1
k1

. Furthermore, Equation (5) can be rewritten

as Equation (3) when k ∈ Nk1−1
k0

.
Taking the fractional sum on both sides of Equation (5) from k0 to k, and in view of

Lemma 1 and Definition 2, we can get:

x(k)− x0 = 1
Γ(α)

k
∑

s=k0+1
(k− s + 1)α−1 Aσ(k0)

x(s)− 1
Γ(α)

k
∑

s=k1+1
(k− s + 1)α−1 Aσ(k0)

x(s)+

1
Γ(α)

k
∑

s=k1+1
(k− s + 1)α−1 Aσ(k1)

x(s).

That is:

x(k) = x0 +
1

Γ(α)

k

∑
s=k0+1

(k− s + 1)α−1 Aσ(k0)
x(s) +

1
Γ(α)

k

∑
s=k1+1

(k− s + 1)α−1(Aσ(k1)
− Aσ(k0)

)x(s). (6)

Using a similar technique to that mentioned above, extending to k ∈ Nkl+1−1
kl

, gives us:

x(k) = x0 +
1

Γ(α)

k

∑
s=k0+1

(k− s + 1)α−1 Aσ(k0)
x(s) +

l

∑
i=1

[
1

Γ(α)

k

∑
s=ki+1

(k− s + 1)α−1
(

Aσ(ki)
− Aσ(ki−1)

)]
x(s).

and by extending to k ∈ NT
km

, it is obvious that:
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x(k) = x0 +
1

Γ(α)

k

∑
s=k0+1

(k− s + 1)α−1 Aσ(k0)
x(s) +

m

∑
i=1

[
1

Γ(α)

k

∑
s=ki+1

(k− s + 1)α−1
(

Aσ(ki)
− Aσ(ki−1)

)]
x(s).

Therefore, the conclusion of this lemma holds. This completes the proof. �

Remark 3. The steps described above refer to firstly using the discrete unit step function to
re-describe each interval of the fractional difference equation to ensure that it satisfies the form
represented by (5), and then the fractional-order sum k0

∇−α
k on both sides of equations by using

Lemma 1 and Definition 2. The initial moment of its fractional-order sum is always taken as k0,
which even accounts for the initial moment of the current interval when it does not start from k0,
the state of the current system is still affected by the specific parameters in the previous interval.

Now, we use Lemma 4 to give the finite-time stability condition of a Caputo nabla
fractional-order switched linear system (1).

Theorem 1. The Caputo nabla fractional-order switched linear system (1) is finite-time stable with
respect to the triplet (c1, c2, T). For two positive finite real numbers c1, T, there exist a positive
finite real number c2(> c1) such that the following conditions hold:

2(m + 1)r < 1, (7)

c2 > c1Fα,1(2(m + 1)r, T − k0), (8)

where r = max{‖A1‖, ‖A2‖, · · · , ‖AN‖}, and m denotes the switching number of σ(k) over the
set NT

k0
.

Proof of Theorem 1. Suppose that{(σ(k0), k0), (σ(k1), k1), · · · , (σ(km), km)} is a switching sequence
of σ(k) over the set NT

k0
, that is to say, NT

k0
= Nk1−1

k0
∪Nk2−1

k1
∪ · · · ∪Nkm−1

km−1
∪NT

km
and:

σ(k) =

{
σ(ki), k ∈ Nki−1

ki
, i = 0, 1, · · · , m− 1,

σ(km), k ∈ NT
km

.
(9)

Then system (1) can be described as system (2) under switching rule (9).
For k ∈ Nk1−1

k0
, in view of Lemma 4, the following equality is obvious:

x(k) = x0 +
1

Γ(α)

k

∑
s=k0+1

(k− s + 1)α−1 Aσ(k0)
x(s). (10)

Taking the norm on both sides of (10), the following inequality is obvious according to
the definition of the fractional sum (Definition 2):

‖x(k)‖ ≤ ‖x0‖+
∥∥∥Aσ(k0)

∥∥∥
Γ(α)

k
∑

s=k0+1
(k− s + 1)α−1‖x(s)‖

≤ ‖x0‖+ r
Γ(α)

k
∑

s=k0+1
(k− s + 1)α−1‖x(s)‖

≤ ‖x0‖+ 2rk0
∇−α

k ‖x(k)‖,

(11)

where r = max{‖A1‖, ‖A2‖, · · · , ‖AN‖}.
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According to condition (7), 2r < 1. Furthermore, based on the discrete Grönwall inequal-
ity (Lemma 2) and 2r < 1, it can be obtained easily that (11) implies the following inequality:

‖x(k)‖ ≤ ‖x0‖
∞

∑
j=0

(2r)j Hjα(k, k0) = ‖x0‖Fα,1(2r, k− k0) = ‖x0‖Fα,1(2(0 + 1)r, k− k0) (12)

For k ∈ Nk1+1−1
kl

(l = 1, 2, · · · , m− 1), by means of Lemma 4, we have:

x(k) = x0 +
1

Γ(α)

k

∑
s=k0+1

(k− s + 1)α−1 Aσ(k0)x(s) +
l

∑
i=1

[
1

Γ(α)

k

∑
s=ki+1

(k− s + 1)α−1
(

Aσ(ki) − Aσ(ki−1)

)]
x(s). (13)

Taking the norm on both sides of (13), the following inequality can be obtained
according to the definition of the fractional sum (Definition 2):

‖x(k)‖ ≤ ‖x0‖+
∥∥∥Aσ(k0)

∥∥∥
Γ(α)

k
∑

s=k0+1
(k− s + 1)α−1‖x(s)‖+

l
∑

i=1

[ ∥∥∥Aσ(ki)

∥∥∥+∥∥∥Aσ(ki−1)

∥∥∥
Γ(α)

k
∑

s=ki+1
(k− s + 1)α−1

]
‖x(s)‖

≤ ‖x0‖+ r 1
Γ(α)

k
∑

s=k0+1
(k− s + 1)α−1‖x(s)‖+

l
∑

i=1

[
2r 1

Γ(α)

k
∑

s=ki+1
(k− s + 1)α−1

]
‖x(s)‖

≤ ‖x0‖+ 2(l + 1)r 1
Γ(α)

k
∑

s=k0+1
(k− s + 1)α−1‖x(s)‖

≤ ‖x0‖+ 2(l + 1)r
(

k0
∇−α

k ‖x(k)‖
)

,

(14)

where r = max{‖A1‖, ‖A2‖, · · · , ‖AN‖}.
According to condition (7), 2(l + 1)r < 1. Furthermore, based on the discrete Grönwall

inequality (Lemma 2) and 2(l + 1)r < 1, it can be obtained easily that (14) implies the
following inequality:

‖x(k)‖ ≤ ‖x0‖
∞

∑
j=0

[2(l + 1)r]j Hjα(k, k0) = ‖x0‖Fα,1(2(l + 1)r, k− k0). (15)

Following the same steps, and based on Lemma 3, and extending to k ∈ NT
km

, it can be
obtained that:

‖x(k)‖ ≤ ‖x0‖Fα,1(2(m + 1)r, k− k0) ≤ ‖x0‖Fα,1(2(m + 1)r, T − k0). (16)

Based on condition (8), and the inequalities (12), (15) and (16), it is obvious that
‖x0‖ ≤ c1 implies ‖x(k)‖ < c2 for all k ∈ NT

k0
. That is to say, the Caputo nabla fractional-

order switched linear system (1) is finite-time stable with respect to the triplet (c1, c2, T).
This completes the proof. �

4. Numerical Examples

Example 2. Consider the following Caputo nabla fractional-order switched linear system.

C
k0
∇0.5

k x(k) =


0.08x(k), 0 ≤ k < 3,
0.06x(k), 3 ≤ k < 5,
0.04x(k), 5 ≤ k ≤ 8,

(17)

where k0 = 0, x(k0) = 0.125.

Select c1 = 0.125, c2 = 2, and T = 8, and it is obvious for system (17) that r = 0.08 and
m = 2. It can be checked that:

2(m + 1)r = 0.48 < 1,c2 > c1Fα,1(2(m + 1)r, T − k0) = 0.125× F0.5,1(0.48, 8) = 1.987025 < 2.
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That is, the conditions (7) and (8) of Theorem 1 hold. The corresponding simulation is
carried out for system (17) with x(0) = 0.125, and it is easy to obtain from Figure 2 that the
value of ‖x(k)‖ does not exceed the given threshold c2 = 2 over 0 to 8 s, which validates
that under the sufficient conditions in Theorem 1, system (17) is finite-time stable with
respect to (0.125, 2, 8).
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Example 3. Consider the following Caputo nabla fractional-order switched linear system.{
C
k0
∇0.4

k x(k) = Aσ(k)x(k),
x(k0) = x0,

(18)

where k0 = 0, x(k0) =
[
0.06 0.05

]T ,

A1 =

[
0.06 −0.02
0.02 0.05

]
, A2 =

[
−0.01 0.05
−0.02 0.04

]
, A3 =

[
0.04 0.02
0.05 0.06

]
.

c1 = 0.08, c2 = 3.745 and T = 8, and by some straightforward calculations, it is
obvious for system (18) that r = 0.078. Suppose that the switching number of σ(k) over the
set N8

0 is 3, i.e., m = 3. It can be checked that:

2(m + 1)r = 0.624 < 1,c2 > c1Fα,1(2(m + 1)r, T − k0) = 0.08× F0.4,1(0.624, 8) = 3.735304 < 3.745.

Figure 3 depicts the switching signal σ(k), and it is easy to find that the different
subsystems possess different dwell times. The time response of the considered system state
x(k) under the switching signal σ(k) is shown in Figure 4 (left). Furthermore, Figure 4 (right)
illustrates the trajectory of ‖x(k)‖, which satisfies the given initial condition ‖x(0)‖ ≤ 0.08.
It is easily calculated that ‖x(k)‖ < 3.745 for all k ∈ N8

0. Thus, the conducted simulations
verify that the considered system is finite-time stable with respect to (0.08, 3.745, 8) if it
obeys the given restrictions.
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Therefore, if conditions (7) and (8) of Theorem 1 are satisfied, system (18) is finite-time
stable with respect to the triplet (0.08, 3.745, 8).

Example 4. Consider the following Caputo nabla fractional-order switched linear system.{
C
k0
∇0.35

k x(k) = Aσ(k)x(k),
x(k0) = x0,

(19)

where k0 = 0, x(k0) =
[
0.08 0.05

]T .

A1 =

[
0.06 −0.02
0.02 0.05

]
, A2 =

[
0.05 0.06
−0.06 0.03

]
, A3 =

[
0.05 0.02
−0.01 0.04

]
.

Select c1 = 0.095, c2 = 3.5, T = 8, and it is obvious for system (19) that r = 0.045.
Suppose the switching number of σ(k) over the set N8

0 is five, i.e., m = 5 (see Figure 5).
After a straightforward calculation, it can be checked that:

2(m + 1)r = 0.54 < 1,c2 > c1Fα,1(2(m + 1)r, T − k0) = 0.095× F0.35,1(0.54, 8) = 1.15664 < 3.5.
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Thus conditions (7) and (8) of Theorem 1 hold. The time response of the considered
system state x(k) under the switching signal σ(k) is shown in Figure 6 (left) Furthermore,
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Figure 6 (right) illustrates the trajectory of ‖x(k)‖ which satisfies the given initial condition
‖x(0)‖ < 0.095. This shows that ‖x(k)‖ < 3.5, ∀k ∈ N8

0. Therefore, the above simulation
validates that under sufficient conditions in Theorem 1, system (19) is finite-time stable
with respect to the triplet (0.095, 3.5, 8).
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Then the related parameters are given as c1 = 0.095, c2 = 3.5, T = 8, and we can
directly obtain that r = 0.045. Suppose the switching number of σ(k) over the set N8

0 is 6,
i.e., m = 6. We can prove that system (19) satisfies the conditions in Theorem 1, by checking:

2(m + 1)r = 0.63 < 1,c2 > c1Fα,1(2(m + 1)r, T − k0) = 0.095× F0.35,1(0.63, 8) = 3.19845 < 3.5.

The corresponding system state x(k) under the switching signal in Figure 7 is shown
in Figure 8 (left), and it can be seen from the simulation Figure 8 (right) that the value of
‖x(k)‖ will not exceed the given value c2 = 3.5 within 0 to 8 s. Therefore, system (19) is
finite-time stable with respect to the triplet (0.095, 3.5, 8). Thus, the conducted simulations
verify that the considered system is finite-time stable with respect to (0.095, 3.5, 8) if it
satisfies the given conditions in Theorem 1.
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Example 4 also shows that for the same system, when the conditions of Theorem 1 are
satisfied, even if the switching signals are different, the system is still finite-time stable with
respect to the triplet (0.095, 3.5, 8).

5. Conclusions

We have investigated the finite-time stability problem of a class of Caputo nabla
fractional-order switched linear systems with α ∈ (0, 1). Based on the novel solution
expression for a Caputo nabla fractional-order switched linear system, the discrete Grönwall
inequality and monotonicity of discrete Mittag-Leffler function, we have provided some
sufficient conditions of finite-time stability for Caputo nabla fractional-order switched
linear systems under the per-designed switching strategy. Furthermore, three numerical
examples are used to illustrate the validity of the obtained results. Future work will try
to investigate the stability of fractional-order discrete-time switched linear and nonlinear
systems by using the multi-Lyapunov method.
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