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Abstract: In this study, a spectral tau solution to the heat conduction equation is introduced. As
basis functions, the orthogonal polynomials, namely, the shifted fifth-kind Chebyshev polynomials
(5CPs), are used. The proposed method’s derivation is based on solving the integral equation that
corresponds to the original problem. The tau approach and some theoretical findings serve to
transform the problem with its underlying conditions into a suitable system of equations that can be
successfully solved by the Gaussian elimination method. For the applicability and precision of our
suggested algorithm, some numerical examples are given.
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1. Introduction

The heat equation pioneered by Fourier [1] describes the distribution of heat in a given
body over time [2], which is a type of second-order parabolic partial differential equation. It
has many applications in diverse scientific fields. Moreover, it has been studied analytically
and numerically. For example, Meyu and Koriche [3] proposed two techniques based on
the separation of variables and finite-difference methods to solve the heat equation in one
dimension. Liu and Chang [4] used a method of nonlocal boundary shape functions to
solve a nonlinear heat equation with nonlocal boundary conditions. Tassaddiq et al. [5]
introduced an approximate approach based on a cubic B-spline collocation method to solve
the heat equation with classical and nonclassical boundary conditions.

It is well-known that obtaining accurate and efficient methods for solving differential
equations has become an important research point. There are several analytic and numerical
methods, such as the homotopy analysis method [6,7], the variational iteration method [8,9],
the Adomian decomposition method [10,11], the finite-difference method [12–14], the
finite-element method [15–17], and spectral methods [18–22]. Spectral methods have
many advantages if compared with the other methods because they yield exponential rate
convergence, a good accuracy, and the computational efficiency of the solutions while
failing for many complicated problems with singular solutions. Thus, it is relevant to be
interested in how to enlarge the adaptability of spectral methods and construct certain
simple approximation schemes without a loss of accuracy for more complicated problems.
Further applications of spectral methods in different disciplines may be found in [23–29].

Orthogonal polynomials, such as Legendre polynomials and Chebyshev polynomials,
have received a lot of attention from both theoretical and practical perspectives [30–32].
Chebyshev polynomials have been used as an important category of basis functions to solve
ordinary, partial, and fractional differential equations, see for instance [33–38]. Two major
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reasons for the widespread use of these polynomials are the high accuracy of the approxi-
mation and the simplicity of numerical methods established based on these polynomials.
There are six types of Chebyshev polynomials, they are Chebyshev polynomials of the
first, second, third, fourth, fifth, and sixth kind. All the kinds of Chebyshev polynomials
have their important parts in numerical analysis and approximation theory. There are old
and recent contributions regarding the first four kinds, see, for example, [39,40], while
the fifth and sixth kind of Chebyshev polynomials have gained recently a fast-growing
attention from many authors. For instance, Sadri and Aminikhah in [41] treated a multiterm
variable-order time-fractional diffusion-wave equation using a new efficient algorithm
based on the 5CPs. Moreover, Abd-Elhameed and Youssri in [42] employed the 5CPs for
solving the convection–diffusion equation.

The following items are the main goals of this paper:

• Deriving new theorems, corollaries, and lemmas concerned with the shifted 5CPs that
serve in the derivation of our proposed numerical scheme.

• Presenting a new spectral tau algorithm for the numerical treatment of the heat
conduction equation.

• Investigating the convergence analysis of the proposed double-shifted Chebyshev
expansion.

• Performing some comparisons to clarify the efficiency and accuracy of our method.

To the best of our knowledge, some advantages of the proposed technique can be
mentioned as follows:

• By choosing the shifted 5CPs as basis functions, and taking a few terms of the re-
tained modes, it is possible to produce approximations with excellent precision. Less
calculation is required. In addition, the resulting errors are small.

• In comparison to other Chebyshev polynomials, the shifted 5CPs are not as well-
studied or used. This motivates us to find theoretical findings concerning them.
Furthermore, we found that the obtained numerical results, if they are used as basis
functions, are satisfactory.

We point out here that the novelty of our contribution in this paper can be listed
as follows:

• Some derivatives and integral formulas of the shifted 5CPs are given in reduced
formulas that do not involve any hypergeometric forms.

• The employment of these basis functions to the numerical treatment of the heat
conduction equation is new.

The contents of the paper are arranged as follows. Section 2 is devoted to presenting
mathematical preliminaries containing some relevant properties of 5CPs and their shifted
ones. In addition, some new formulas concerning the shifted 5CPs are derived. In Section 3,
we present and implement a spectral tau method for solving the heat conduction equation
based on employing the shifted 5CPs. In Section 4, we investigate in detail the convergence
and error analysis of the suggested shifted 5CPs. In Section 5, some numerical examples
are given to ensure the efficiency, simplicity, and applicability of the suggested method.
Finally, conclusions are reported in Section 6.

2. An Account on the Shifted 5CPs and Some New Useful Formulas

This section is confined to presenting an account on the 5CPs, Xj(t), j ≥ 0, and their
shifted ones. In addition, building on some of their fundamental relations, we derive some
new specific formulas that serve in the derivation of our proposed numerical scheme. More
precisely, we establish the second-order derivative formulas of the shifted polynomials and
also the corresponding integral formulas of these polynomials.

2.1. An Account on the Shifted 5CPs

The 5CPs (Xi(t)) are a sequence of orthogonal polynomials on [−1, 1] (see, [28,43])
that satisfy the following orthogonality relation:
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∫ 1

−1

t2
√

1− t2
Xi(t) Xj(t) dt = hi δi,j,

where

hi =
π

22 i+1

{
1, if i even,
i+2

i , if i odd,

and

δi,j =

{
1, if i = j,
0, if i 6= j.

Xi(t) may be generated with the aid of the following recursive formula:

Xi(t) = t Xi−1(t)− $i Xi−2(t), i ≥ 2,

where X0(t) = 1, X1(t) = t and

$i =
(i− 1)2 + i + (−1)i (2 i− 1)

4 i (i− 1)
.

The shifted orthogonal 5CPs on [0, τ] are defined as

Ci(t) = Xi

(
2 t
τ
− 1
)

, τ > 0,

with the orthogonality relation∫ τ

0
ω(t)Ci(t)Cj(t) dt = hτ,i δi,j, (1)

where hτ,i = τ2 hi and ω(t) = (2 t−τ)2
√

t τ−t2 .

Lemma 1 ([28]). The analytic formula of Xj(x) may be split to the following two analytic formulas:

X2i(x) =(2 i + 1)
i

∑
n=0

(−1)n 2−2 n (2 i− n)!
n! (2 i− 2 n + 1)!

x2 i−2 n, i ≥ 0, (2)

X2i+1(x) =
(
i + 3

2
)
!

(2 i + 1)!

i

∑
n=0

(−1)n ( i
i−n) (2 i− n + 1)!(
i− n + 3

2
)
!

x2 i−2 n+1, i ≥ 0. (3)

Theorem 1 ([28]). The following two inversion formulas hold for the polynomials Xj(x):

x2j =
j

∑
r=0

(2j+1
r )

22r X2j−2r(x), j ≥ 0, (4)

x2j+1 =
(

j + 3
2
)
!

j

∑
r=0

( j
j−r) (2 j− 2 r + 2)!(

j− r + 3
2
)
! (2 j− r + 2)!

X2 j−2 r+1(x), j ≥ 0. (5)

2.2. Derivation of the Second-Order Derivative Formulas of Cj(t)

The following theorem exhibits the expressions of the second-order derivatives of
Xj(t) in terms of their original ones.

Theorem 2. The second-order derivative of the polynomials Xi(t) can be expressed explicitly as:

D2 X2 i(t) =
i

∑
n=0

4−n
(
(−1)n(−2 i + 2 n + 1)− (2 i + 1)

(
−2 i (n + 1) + n2 + n + 1

))
X2 i−2 n−2(t), (6)
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D2 X2 i+1(t) = (2 i + 3)
i

∑
n=0

21−2 n (n− i)
(

(−1)n (4 (i−n)2−1)
4 i (i+2)+3 − 2 i (n + 1) + n2

)
2 i− 2 n + 1

X2 i−2 n−1(t). (7)

Proof. First, we prove relation (6). The power-form representation of Xi(t) in (2) enables
one to express D2 X2 i(t), in the following form:

D2 X2 i(t) = (2 i + 1)
i

∑
n=0

(−1)n 21−2 n (2 i− 2 n− 1) (i− n) (2 i− n)!
n! (2i− 2 n + 1)!

t2 i−2 n−2,

which can be written with the aid of the inversion formula (4) as

D2 X2 i(t) =(2 i + 1)
i

∑
n=0

(−1)n 21−2 n (2 i− 2 n− 1) (i− n) (2 i− n)!
n! (2i− 2 n + 1)!

×
i−n−1

∑
r=0

(2 i−2 n−1
r )

22 r X2 i−2 n−2 r−2(t).

The last relation after expanding and rearranging the terms can be converted into

D2 X2 i(t) =(2 i + 1)
i

∑
n=0

4−n

×
n

∑
r=0

(−1)n−r+1 (−2 i + 2 n− 2 r + 1) (2 i− n + r)!
(r)!(2 i− 2 n + 2 r + 1) (n− r)! (2 i− 2 n + r− 1)!

X2 i−2 n−2(t).

Now, in order to reduce the summation on the right-hand side of the last formula, set

Gn,i =
n

∑
r=0

(−1)n−r+1 (−2 i + 2 n− 2 r + 1) (2 i− n + r)!
(r)! (2 i− 2 n + 2 r + 1) (n− r)! (2 i− 2 n + r− 1)!

.

The application of Zeilberger’s algorithm mentioned in [44] enables us to get the following
recurrence relation for Gn,i:(

4 i2n− 6 i n2 + 2 n3 + 10 i2 − 26 i n + 12 n2 − 29 i + 25 n + 18
)

Gn,i

+
(

4 i2 − 4 i n + 2 n2 − 4 i + 6 n + 1
)

Gn+1,i = 0

+
(
−4 i2n + 6 i n2 − 2 n3 − 6 i2 + 14 i n− 6 n2 + 9 i− 7 n− 3

)
Gn+2,i = 0,

(8)

with the initial values:

G0,i =
2 i(2i− 1)

2i + 1
, G1,i =

2(4 i2 − 3)
2i + 1

.

The recurrence relation (8) can be exactly solved to give

Gn,i = 2 i (n + 1) +
(−1)n (−2 i + 2 n + 1)

2 i + 1
− n2 − n− 1,

and therefore, relation (6) can be obtained.
Now, we prove Formula (7). Based on relation (3), we have

D2 X2 i+1(t) =
i

∑
n=0

(2 i + 3) (−1)n+1 4−n (2 i− n + 1)!
n! (−2 i + 2 n− 3) (2 i− 2 n− 1)!

t2 i−2 n−1.

Making use of Formula (5) yields
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D2 X2 i+1(t) =
i

∑
n=0

(2 i + 3) (−1)n+1 4−n (2 i− n + 1)!
(

i− n + 1
2

)
!

n! (−2 i + 2 n− 3) (2 i− 2 n− 1)!

×
i−n−1

∑
r=0

(2 i− 2 n− 2 r)!( i−n−1
i−n−r−1)

(2 i− 2 n− r)!
(

i− n− r + 1
2

)
!

X2 i−2 n−2 r−1(t).

The last relation after expanding and rearranging the terms can be converted into

D2 X2 i+1(t) =
i

∑
n=0

(2 i + 3) 21−2 n (n− i)
2 i− 2 n + 1

×
n

∑
r=0

(−1)n−r (−2 i + 2 n− 2 r− 1) (2 i− n + r + 1)!
(r)! (2 i− 2 n + 2 r + 3) (n− r)! (2 i− 2 n + r)!

X2 i−2 n−1(t).

Now, set

G̃n,i =
n

∑
r=0

(−1)n−r (−2 i + 2 n− 2 r− 1) (2 i− n + r + 1)!
(r)! (2 i− 2 n + 2 r + 3) (n− r)! (2 i− 2 n + r)!

,

and utilize again Zeilberger’s algorithm to show that G̃n,i satisfies the following recurrence
relation:(

4 in− 2 n2 + 6 i− 2 n + 1
)
(−1 + 2 i− 2 n)2 G̃n+2,i − 4

(
4 i2 + 8 i− 1

)
(−1 + i− n) G̃n+1,i

−
(

4 in− 2 n2 + 10 i− 6 n− 3
)
(−3 + 2 i− 2 n)2 G̃n,i = 0,

(9)

with the initial values:

G̃0,i =
−(1 + 2 i)2

2 i + 3
, G̃1,i = −

4 i (4 i (i + 2)− 1)
4 i (i + 2) + 3

.

The recurrence relation (9) can be exactly solved to give

G̃n,i =
(−1)n(4 (i− n)2 − 1

)
4 i (i + 2) + 3

− 2 i (n + 1) + n2,

and therefore, relation (7) can be obtained.

As a result of Theorem 2, the formula expressing the derivatives of the 5CPs can be
merged to give the following result.

Corollary 1. Let j ≥ 2. The second-order derivative of the polynomials Xj(t) can be expressed
explicitly as:

D2 Xj(t) =
j−2

∑
r=0

λr,j Xr(t),

where

λr,j = 2r−j



(j + r + 2)
(

j2 − (j + 1) r + j− 4
)
, if j even and j−r−2

2 even,
(j− r) (j (j + r + 3) + r− 2), if j even and j−r−4

2 even,

− (r+1) (−j (j2 (j+4)−8)+(j (j+2)+4) r2+2 (j (j+2)+4)r)
j (r+2) if j odd and j−r−2

2 even,
(j (j+2)−4) (r+1) (j−r) (j+r+2)

j (r+2) , if j odd and j−r−4
2 even,

0, otherwise.

Now, the second-order derivatives of the shifted polynomials Cj(t) can be easily
deduced. The following corollary exhibits this result.
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Corollary 2. Let j ≥ 2. The second-order derivative of the polynomials Cj(t) can be expressed
explicitly as:

D2 Cj(t) =
j−2

∑
r=0

λ̄r,j Cr(t), (10)

where

λ̄r,j =
2r−j+2

τ2



(j + r + 2)
(

j2 − (j + 1) r + j− 4
)
, if j even and j−r−2

2 even,
(j− r) (j (j + r + 3) + r− 2), if j even and j−r−4

2 even,

− (r+1) (−j (j2 (j+4)−8)+(j (j+2)+4) r2+2 (j (j+2)+4)r)
j (r+2) if j odd and j−r−2

2 even,
(j (j+2)−4) (r+1) (j−r) (j+r+2)

j (r+2) , if j odd and j−r−4
2 even,

0, otherwise.

Proof. The result is a direct consequence of Corollary 1 by replacing t by
( 2 t

τ − 1
)
.

2.3. Derivation of Integral Formulas of Cj(x)

In this section, new integral formulas of Cj(t) are derived in detail. For this derivation,
the following two lemmas are useful.

Lemma 1. Let i > 0 and 1 < n < i + 2. One has

3F2

(
1− n, i− n + 3

2 , 2 + 2 i− n
4 + 2 i− 2 n, i− n + 5

2

∣∣∣∣1) =
2 (−1)n (n− 1)!

(2 i + 1) (−2 i + n− 1)n−2
,

where (a)n = Γ(a+n)
Γ(a) .

Lemma 2. Let i > 0 and 1 < n < i + 2. One has

3F2

(
−n, i− n + 1

2 , 1 + 2 i− n
3 + 2 i− 2 n, i− n + 3

2

∣∣∣∣1) =
4 i (−1)n (n)!

i (2 i + 1) (2 i− 2 n + 3) (n− 2 i)n−2
.

Proof. The proofs of Lemmas 1 and 2 can be done through some algebraic manipulations
along with Zeilberger’s algorithm [44].

Theorem 3. For all i ≥ 0, the following integral formulas hold:∫ t

0
X2 i(z) d z =

i

∑
n=2

23−2 n (2 i− 2 n + 1)n

(2 i− 2 n + 1)2 (2 i− 2 n + 3)2 (n− 2 i)n−2
X2 i−2 n+1(t)

+
(2 i− 1) (−4 i (i + 3)− 1)

4 (1− 4i2)2 X2 i−1(t) +
1

2 i + 1
X2 i+1(t),

(11)

∫ t

0
X2 i+1(z) d z =

(2 i + 3)
4 (i + 1)

(
2

2 i + 3
X2 i+2(t)−

1
2 (2 i + 1)

X2 i(t) +
(
−1

4

)i
)

. (12)

Proof. We prove formula (11). The power-form representation (2) enables one to express∫ t

0
X2 i(z)d z as∫ t

0
X2 i(z)d z = (2 i + 1)

i

∑
n=0

(−1)n (2 i− n)!
22 n n! (2 i− 2 n + 1) (2 i− 2 n + 1)!

t2 i−2 n+1.

In virtue of relation (5), the last equation may be written alternatively as
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∫ t

0
X2 i(z)d z =(2 i + 1)

i

∑
n=0

(−1)n (2 i− n)!
(
i− n + 3

2
)
!

22 n n! (2 i− 2 n + 1) (2 i− 2 n + 1)!

×
i−n

∑
r=0

(2 i− 2 n− 2 r + 2)! ( i−n
i−n−r)

(2 i− 2 n− r + 2)!
(
i− n− r + 3

2
)
!

X2 i−2 n−2 r+1(t).

After rearranging and expanding the terms in the previous equation, one gets

∫ t

0
X2 i(z)d z = (2 i + 1)

i

∑
n=0

(
− 1

4

)n
(2 i− n)!

(2 i− 2 n + 1)2 (−2 i + 2 n− 3)3 (n)! (2 i− 2 n)!

×
(
(−2 i + 2 n− 3)3

3F2

(
−n, i− n + 1

2 , 1 + 2 i− n
3 + 2 i− 2 n, i− n + 3

2

∣∣∣∣1)
+ 2n(−2i + n− 1)(−2i + 2n− 1) 3F2

(
1− n, i− n + 3

2 , 2 + 2 i− n
4 + 2 i− 2 n, i− n + 5

2

∣∣∣∣1))X2 i−2 n+1(t).

Thanks to Lemmas 1 and 2, we get the desired relation (11).
Relation (12) can be similarly proved through some algebraic computations.

The following corollary is a direct consequence of Theorem 3.

Corollary 3. For all i ≥ 0, the following integrals formulas hold∫ t

0
C2 i(z) d z =

i

∑
n=2

τ 22−2 n (2 i− 2 n + 1)n

(2 i− 2 n + 1)2 (2 i− 2 n + 3)2 (n− 2 i)n−2
C2 i−2 n+1(t)

+
τ (2 i− 1) (−4 i (i + 3)− 1)

8 (1− 4i2)2 C2 i−1(t) +
τ

2 (2 i + 1)
C2 i+1(t) + c̄,

∫ t

0
C2 i+1(z) d z =

(2 i + 3)τ
8 (i + 1)

(
2

2 i + 3
C2 i+2(t)−

1
2 (2 i + 1)

C2 i(t) +
(
−1

4

)i
)
+ ¯̄c,

where c̄ and ¯̄c are constants.

3. A Numerical Tau Approach for the Treatment of the Heat Conduction Equation

This section focuses on obtaining a new spectral solution to the heat conduction
equation subject to an initial condition and homogeneous or nonhomogeneous boundary
conditions with the aid of the spectral tau method.

Treatment of the Equation Subject to Homogeneous Boundary Conditions

Now, consider the following heat conduction equation [45]:

∂ u(x, t)
∂ t

= k
∂2 u(x, t)

∂ x2 + f (x, t), 0 ≤ x ≤ `, 0 ≤ t ≤ τ, (13)

governed by the initial condition:

u(x, 0) = ψ(x), (14)

and by the homogeneous boundary conditions:

u(0, t) = 0, u(`, t) = 0,

where f (x, t) represents the source term and k is a real constant.
If we integrate Equation (13) with respect to t, then the following equation is obtained:

u(x, t) = k
∫ t

0

∂2 u(x, z)
∂ x2 d z + f̄ (x, t), 0 ≤ x ≤ `, 0 ≤ t ≤ τ, (15)

subject to the homogeneous boundary conditions:
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u(0, t) = 0, u(`, t) = 0, (16)

where

f̄ (x, t) =
∫ t

0
f (x, z) d z + ψ(x),

then, we can alternatively solve Equation (15) instead of Equation (13).
Now, define

PN = span
{

Ci(x)Cj(t) : i, j = 0, 1, ..., N
}

,

then, any function u(x, t) ∈ L2
ω̂(x,t) can be approximated by the truncated double series

uN(x, t) =
N

∑
i=0

N

∑
j=0

aij Ci(x)Cj(t) = C(x)A CT(t), (17)

where
C(x) = [C0(x), C1(x), ..., CN(x)],

A = (aij)0≤i,j≤N is a matrix of order (N + 1)× (N + 1), I = [0, `]× [0, τ] and

ω̂(x, t) = (2 x−`)2
√

x `−x2
(2 t−τ)2
√

t τ−t2 .
Now, the application of the tau method implies that

(uN(x, t), Cm(x)Cn(t))ω̂(x,t) − k
(∫ t

0

∂2 uN(x, z)
∂ x2 d z, Cm(x)Cn(t)

)
ω̂(x,t)

=
(

f̄ (x, t), Cm(x)Cn(t)
)

ω̂(x,t), 1 ≤ m, n ≤ N.
(18)

Let us denote

B = (bm i)N×(N+1), bm i = (Ci(x), Cm(x))ω(x),

D = (dm i)N×(N+1), dm i = (C
′′
i (x), Cm(x))ω(x),

G = (gn j)N×(N+1), gn j =

(∫ t

0
Cj(z) d z, Cn(t)

)
ω(t)

,

F = ( fm n)N×N , fr,s = ( f̄ (x, t), Cm(x)Cn(t))ω̂(x,t),

(19)

where

(u(x), v(x))ω(x) =
∫ `

0
u(x) v(x)ω(x) dx

and

(u(x, t), v(x, t))ω̂(x,t) =
∫ `

0

∫ τ

0
u(x, t) v(x, t) ω̂(x, t) dt dx.

In matrix form, Equation (18) may be rewritten as

B A BT = k D A GT + F, (20)

where the nonzero elements of the matrices B, D, and G are given as in the next theorem.
In addition, making use of the homogeneous boundary conditions (16) yields

C(0)A CT
(

i + 1
N + 2

)
= 0, i = 0, 1, . . . N,

C(`)A CT
(

i + 1
N + 2

)
= 0, i = 0, 1, . . . N − 1.

(21)

Equations (20) and (21) generate a system of algebraic equations of dimension (N + 1)2 in
the unknown expansion coefficients aij. Thanks to the Gaussian elimination technique, the
required numerical solution can be obtained.
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Theorem 4. The elements of the matrices B, D, and G can be computed explicitly as follows:

bm i =

{
h`,i, if i = m,
0, otherwise,

(22)

dm i =

{
λ̄m,i h`,m, if i−m ≥ 2,
0, otherwise,

(23)

gn j =



j
2

∑
s=2

(
M

s, j
2

hτ,j−2 s+1 δj−2 s+1,n

+ M̄ j
2

hτ,j−1 δj−1,n +
¯̄M j

2
hτ,j+1 δj+1,n

)
, if j even,

τ (4 j hτ,j+1 δj+1,n−(j+2) hτ,j−1 δj−1,n)

8 j (j+1) , if j odd,

(24)

where
Ms,j =

(−1)2 s τ 22−2 s (2 j−2 s+1)s
(2 j−2 s+1)2 (2 j−2 s+3)2 (s−2 j)s−2

, M̄j =
(2 j−1) (−4 j (j+3)−1) τ

2
(

4 (1−4 j2)2
) and ¯̄Mj =

τ
2 (2 j+1) .

Proof. First, we prove the two Formulae (22) and (23). From Equations (10) and (19),
we have

bm i = (Ci(x), Cm(x))ω(x)

=
∫ `

0
ω(x)Ci(x)Cm(x) d x

and

dm i =
(

D2Ci(x), Cm(x)
)

ω(x)

=
i−2

∑
r=0

λ̄r,i

∫ `

0
ω(x)Cr(x)Cm(x) d x.

Making use of the orthogonality relation (1), the desired results (22) and (23) can be obtained.
Let us prove Formula (24). In virtue of Corollary 3 and Equation (19), we get

gn,2j =

(∫ t

0
C2 j(z) d z, Cn(t)

)
ω(t)

=
j

∑
s=2

(
Ms,j (C2 j−2 s+1(t), Cn(t) )ω(t) + M̄j (C2 j−1(t), Cn(t) )ω(t)

+ ¯̄Mj (C2 j+1(t), Cn(t) )ω(t) + ( c̄, Cn(t) )ω(t)

)
(25)

and

gn,2j+1 =
(2 j + 3)τ
8 (j + 1)

(
2

2 j + 3
(C2 j+2(t), Cn(t) )ω(t) −

1
2 (2 j + 1)

(C2 j(t), Cn(t) )ω(t)

)

+

 (2 j + 3)
(
− 1

4

)j
τ

8 (j + 1)
+ ¯̄c, Cn(t)


ω(t)

.
(26)

The application of the orthogonality relation (1) enables us to write Equations (25) and (26) as
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gn j =



j
2

∑
s=2

(
M

s, j
2

hτ,j−2 s+1 δj−2 s+1,n

+M̄ j
2

hτ,j−1 δj−1,n +
¯̄M j

2
hτ,j+1 δj+1,n

)
, if j even,

τ (4 j hτ,j+1 δj+1,n−(j+2) hτ,j−1 δj−1,n)

8 j (j+1) , if j odd,

and this proves Formula (24).

Remark 1. Consider the heat conduction Equation (13) subject to the initial condition (14) and the
nonhomogeneous boundary conditions

u(0, t) = h1(t), u(`, t) = h2(t), 0 < t ≤ τ. (27)

Then, the following transformation

v(x, t) := u(x, t)−
(

1− x
`

)
h1(t)−

x
`

h2(t),

enables us to convert the nonhomogeneous boundary conditions (27) to the homogeneous ones.

4. Convergence and Error Analysis

In this section, we study the convergence of the numerical solution (17) to the exact so-
lution u(x, t) of Equation (13). We discuss the analysis of the convergence for the following
two cases:

1. The case in which the solution u(x, t) is separable.
2. The case in which the solution u(x, t) is not separable.

4.1. The Case Where the Solution Is Separable

Theorem 5. Assume that the function u(x, t) = g1(x) g2(t) ∈ L2
ω̂(x,t)(I) and assume that each

of g1(x) and g2(t) has a bounded third derivative such that

u(x, t) =
∞

∑
i=0

∞

∑
j=0

aij Ci(x)Cj(t). (28)

Then, the above series (28) is uniformly convergent to u(x, t), and the expansion coefficients aij
satisfy the inequality:

|aij| /
1

(i j)3 2i+j
, ∀ i, j > 3,

where the expression X / Y means that there exists a generic constant n independent of N and any
function such that X ≤ n Y.

Proof. The orthogonality relation of Ci(x) enables us to write the expansion coefficients aij as

aij =
1

h`,i hτ,j

∫ `

0

∫ τ

0
ω̂(x, t) u(x, t)Ci(x)Cj(t) d t d x.

According to the hypotheses of the theorem, one can write

aij =
1

h`,i hτ,j

(∫ `

0
ω(x) g1(x)Ci(x) d x

)(∫ τ

0
ω(t) g2(t)Cj(t) d t

)
.

If we make use of the two following substitutions

2 x
`
− 1 = cos ζ1,

2 t
τ
− 1 = cos ζ2,

then the last equation may be rewritten in the following form
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aij =
`2 τ2

h`,i hτ,j

∫ π

0
g1

(
`

2
(1 + cos ζ1)

)
Xi(cos ζ1) cos2 ζ1 d ζ1

×
∫ π

0
g2

(
`

2
(1 + cos ζ2)

)
Xj(cos ζ2) cos2 ζ2 d ζ2.

Bsed on the following trigonometric representations [43]

Xi(cos θ) =
1
2i


cos (i + 1)θ

cos θ
, if i even,

(i + 2) cos θ cos (i + 1)θ − cos (i + 2)θ
i cos2 θ

, if i odd,

along with the assumptions that g1(x) and g2(t) have a bounded third derivative and
following similar steps to those followed in [43], the desired result can be obtained.

Theorem 6. The following truncation error estimate is valid

|u(x, t)− uN(x, t)| / 1
22 N .

Proof. Based on relations (17) and (28), we get

|u(x, t)− uN(x, t)| ≤
∣∣∣∣∣ ∞

∑
j=N+1

( a0j C0(x) + a1j C1(x) + a2j C2(x) + a3j C3(x) )C(t)

∣∣∣∣∣
+

∣∣∣∣∣ ∞

∑
i=N+1

( ai0 C0(t) + ai1 C1(t) + ai2 C2(t) + ai3 C3(t) )Ci(x)

∣∣∣∣∣
+

∣∣∣∣∣ N

∑
i=4

∞

∑
j=N+1

aij Ci(x)Cj(t)

∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
i=N+1

∞

∑
j=4

aij Ci(x)Cj(t)

∣∣∣∣∣.
(29)

Following similar steps to those given in [43], we get

|a0j| /
1

j3 2j , |a1j| /
1

j3 2j , |a2j| /
1

j3 2j , |a3j| /
1

j3 2j ,

|ai0| /
1

i3 2i , |ai1| /
1

i3 2i , |ai2| /
1

i3 2i , |ai3| /
1

i3 2i .
(30)

Inserting Equation (30) into Equation (29) and using Theorem 5 along with the identity
|Cn(x)| < n

2n−1 , lead to the desired estimation.

Lemma 3. The following inequalities hold for the first and second derivatives of Cn(x):

|D Cn(x)| ≤ 4 n3

` 2n , x ∈ [0, `], ∀ n ≥ 0, (31)

and

|D2 Cn(x)| ≤ n5

`2 2n , x ∈ [0, `], ∀ n ≥ 0. (32)

Proof. The proofs of (31) and (32) are similar. Now, we prove (31).
Consider the following two cases:

• For n = 2 i, we have (see Theorem 2.4 in [28])

C2 i(x) = 21−2 i
i

∑
j=0

(−1)i+j δj T∗2 j(x),

where T∗j (x) are the shifted first-kind Chebyshev polynomials. Based on the inequality:

|D T∗n (x)| ≤ 2 n2

` , we get
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|D Cn(x)| = 21−2 i
i

∑
j=0

∣∣∣(−1)i+j δ2 j

(
D T∗2 j(x)

)∣∣∣
≤ 22−2 i

`

i

∑
j=0

(2 j)2

=
23−2 i

3 `
i (i + 1) (2 i + 1)

≤ 4 (2 i)3

` 22 i =
4 n3

` 2n .

• For n = 2 i + 1, we have (see Theorem 2.4 in [28])

C2 i+1(x) =
2−2 i

2 i + 1

i

∑
j=0

(−1)i+j (2 j + 1) T∗2 j+1(x).

Now, it is easy to write

|D Cn(x)| ≤ 21−2 i

` (2 i + 1)

i

∑
j=0

∣∣∣(2 j + 1)3
∣∣∣

=
21−2 i

` (2 i + 1)
(i + 1)2 (1 + 2 i (2 + i))

≤ 4 (2 i + 1)3

` 22 i+1 =
4 n3

` 2n .

The above two cases lead to the estimation

|D Cn(x)| ≤ 4 n3

` 2n , x ∈ [0, `], ∀ n ≥ 0.

The Inequality in (32) can be obtained using the inequality: |D2 T∗n (x)| ≤ 4 n2 (n2−1)
3 `2 and

imitating the previous steps.

Lemma 4. Let u(x, t) and uN(x, t) satisfy the assumptions of Theorem 5. One gets∣∣∣∣∂ (u(x, t)− uN(x, t))
∂ t

∣∣∣∣ / N
2N−2 ,

and ∣∣∣∣∂2 (u(x, t)− uN(x, t))
∂ x2

∣∣∣∣ / N2

2N−4 .

Proof. Based on Lemma 3 and following similar steps as in Theorem 6, we get the desired
results.

Theorem 7. Assume that RN(x, t) is the residual of Equation (13), then |RN(x, t)| → 0 as
N → ∞.

Proof. RN(x, t) of Equation (13) can be written as

RN(x, t) =
∂ uN(x, t)

∂ t
− k

∂2 uN(x, t)
∂ x2 − f (x, t),

which may be written alternatively with the aid of Equation (13) as

|RN(x, t)| =
∣∣∣∣∂ (u(x, t)− uN(x, t))

∂ t
− k

∂2 (u(x, t)− uN(x, t))
∂ x2

∣∣∣∣
≤
∣∣∣∣∂ (u(x, t)− uN(x, t))

∂ t

∣∣∣∣+ |k| ∣∣∣∣∂2 (u(x, t)− uN(x, t))
∂ x2

∣∣∣∣.
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Now, the application of Lemma 4 leads us to deduce that:∣∣∣∣∂ (u(x, t)− uN(x, t))
∂ t

∣∣∣∣→ 0 and
∣∣∣∣∂2 (u(x, t)− uN(x, t))

∂ x2

∣∣∣∣→ 0,

and therefore, |RN(x, t)| → 0 as N → ∞.

4.2. The Case Where the Solution is Nonseparable

Here, we follow Sadri and Aminikhah [41] to introduce two theorems about the
convergence of our spectral tau method in the two-dimensional Chebyshev-weighted
Sobolev space:

CHm
ω̂(x,t)(I) =

{
u :

∂i+j u
∂ xi ∂ tj ∈ L2

ω̂(x,t)(I), 0 ≤ i + j ≤ m
}

, m ∈ N,

endowed with the norm

||u||CHm
ω̂(x,t)(I) =

 ∑
|n|6m

∣∣∣∣∣
∣∣∣∣∣ ∂|n| u
∂ xn1 ∂ tn2

∣∣∣∣∣
∣∣∣∣∣
2

L2
ω̂(x,t)


1
2

,

where n = (n1, n2) such that n1, n2 ∈ Z+, |n| = n1 + n2.

Theorem 8 ([41]). Assume that 0 ≤ n ≤ m < N + 1, 0 ≤ k ≤ m < N + 1, and uN(x, t)
is the shifted fifth-kind Chebyshev approximation of u(x, t) ∈ CHm

ω̂(x,t)(I). Then, the following
estimations are satisfied∣∣∣∣∣∣∣∣ ∂n

∂ xn (u(x, t)− uN(x, t))
∣∣∣∣∣∣∣∣

L2
ω̂(x,t)

≤
√

3 γ1 N−
7
4 (m−n)

∣∣∣∣∣∣∣∣∂m u(x, t)
∂ tm

∣∣∣∣∣∣∣∣
L2

ω̂(x,t)

and ∣∣∣∣∣
∣∣∣∣∣ ∂k

∂ tk (u(x, t)− uN(x, t))

∣∣∣∣∣
∣∣∣∣∣
L2

ω̂(x,t)

≤
√

3 γ2 N−
7
4 (m−k)

∣∣∣∣∣∣∣∣∂m u(x, t)
∂ tm

∣∣∣∣∣∣∣∣
L2

ω̂(x,t)

,

where γ1 and γ2 are positive constants independent of any function.

Corollary 4. Assume that 0 ≤ m < N + 1, and uN(x, t) is the shifted fifth-kind Chebyshev
approximation of u(x, t) ∈ CHm

ω̂(x,t)(I). Then, the following estimation is satisfied

||u(x, t)− uN(x, t)||L2
ω̂(x,t)
≤ γ3 N−

7 m
4

∣∣∣∣∣∣∣∣∂m u(x, t)
∂ tm

∣∣∣∣∣∣∣∣
L2

ω̂(x,t)

,

where γ3 is a positive constant independent of any function.

Proof. The proof of this corollary is a direct result of Theorem 8.

Theorem 9. Let uN(x, t) be the shifted fifth-kind Chebyshev approximation of u(x, t) ∈ CHm
ω̂(x,t)(I).

Then, ||RN(x, t)||L2
ω̂(x,t)
→ 0 as N → ∞.

Proof. Based on Theorem 7, ||RN(x, t)||L2
ω̂(x,t)

can be written as

||RN(x, t)||L2
ω̂(x,t)
≤
∣∣∣∣∣∣∣∣∂ (u(x, t)− uN(x, t))

∂ t

∣∣∣∣∣∣∣∣
L2

ω̂(x,t)

+ |k|
∣∣∣∣∣∣∣∣∂2 (u(x, t)− uN(x, t))

∂ x2

∣∣∣∣∣∣∣∣
L2

ω̂(x,t)

. (33)

Now, the application of Theorem 8 enables us to write Equation (33) as

||RN(x, t)||L2
ω̂(x,t)
≤
√

3 γ2 N−
7
4 (m−1)

∣∣∣∣∣∣∣∣∂m u(x, t)
∂ tm

∣∣∣∣∣∣∣∣
L2

ω̂(x,t)

+
√

3 |k| γ1 N−
7
4 (m−2)

∣∣∣∣∣∣∣∣∂m u(x, t)
∂ tm

∣∣∣∣∣∣∣∣
L2

ω̂(x,t)

,
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and hence, it is clear that ||RN(x, t)||L2
ω̂(x,t)

→ 0 as N → ∞. This completes the proof of

Theorem 9.

5. Illustrative Examples

In order to show the convenience and validity of the presented algorithm, three
numerical examples are presented accompanied by comparisons with some other methods
in the literature.

Example 1. Consider the following heat conduction equation [46]

∂ u(x, t)
∂ t

− ∂2 u(x, t)
∂ x2 = 0, 0 ≤ x ≤ `, 0 ≤ t ≤ τ,

along with the following initial and boundary conditions:

u(x, 0) = sin(x),

u(0, t) = 0, u(`, t) = e−t sin(`),

where the exact solution is: u(x, t) = e−t sin(x).
Figure 1 shows the approximate solution and the maximum absolute error (MAE) graphs for

the case N = 12 and ` = τ = 1. This figure shows that the numerical solution is close to the exact
solution. In Table 1, we illustrate the absolute error (AE) for different values of t at N = 12 and
` = τ = 1. This table fully shows that the expressed method has a good precision. Furthermore, the
AEs for different values of t at N = 8 when ` = 3 and τ = 2 are shown in Table 2. We can see from
Tables 1 and 2 and Figure 1 that the proposed method is appropriate and effective.

0

0.2

0.4

0.6

0.8

0

5.0×10-7

1.0×10-6

1.5×10-6

Figure 1. The approximate solution and the MAE graphs of Example 1.

Table 1. The AEs of Example 1.

x t = 2
10 t = 4

10 t = 6
10 t = 8

10

0.1 1.07216× 10−6 1.04375× 10−7 1.04421× 10−8 1.74522× 10−9

0.2 1.01956× 10−6 1.66463× 10−7 1.97095× 10−8 2.84439× 10−9

0.3 9.15588× 10−7 2.09069× 10−7 2.70454× 10−8 3.78237× 10−9

0.4 7.82278× 10−7 2.30326× 10−7 3.17442× 10−8 4.40703× 10−9

0.5 6.37195× 10−7 2.30262× 10−7 3.33491× 10−8 4.62481× 10−9

0.6 4.92708× 10−7 2.10443× 10−7 3.17013× 10−8 4.39902× 10−9

0.7 3.55998× 10−7 1.73636× 10−7 2.69589× 10−8 3.74448× 10−9

0.8 2.29584× 10−7 1.23449× 10−7 1.95837× 10−8 2.72157× 10−9

0.9 1.12214× 10−7 6.4063× 10−7 1.02952× 10−8 1.42996× 10−9
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Table 2. The AEs of Example 1.

x t = 3
10 t = 7

10 t = 11
10 t = 15

10 t = 19
10

0.2 9.81704×10−5 2.42225×10−4 2.24868×10−6 5.37087×10−3 3.24886×10−3

0.4 1.61729×10−4 5.11161×10−4 4.67631×10−4 2.53555×10−3 1.11043×10−3

0.6 1.84251×10−4 8.30112×10−4 8.43864×10−4 8.92868×10−4 1.84493×10−3

0.8 1.26461×10−4 1.21323×10−3 1.14871×10−3 1.94866×10−4 4.31002×10−3

1 6.98793×10−5 1.66147×10−3 1.38598×10−3 2.11464×10−4 1.64701×10−3

1.2 4.82847×10−4 2.15759×10−3 1.54812×10−3 7.01591×10−4 3.46544×10−2

1.4 1.19936×10−3 2.66197×10−3 1.62211×10−3 1.39606×10−3 5.36674×10−2

1.6 2.29473×10−3 3.11052×10−3 1.59488×10−3 1.99516×10−3 6.71459×10−2

1.8 3.79811×10−3 3.41681×10−3 1.45906×10−3 2.18735×10−3 6.83315×10−2

2 5.64132×10−3 3.48161×10−3 1.21885×10−3 1.69924×10−3 5.15014×10−3

2.2 7.58846×10−3 3.21358×10−3 8.95812×10−4 3.90051×10−4 1.43644×10−2

2.4 9.14396×10−3 2.56621×10−3 5.33517×10−4 1.59222×10−3 3.82048×10−2

2.6 9.43725×10−3 1.59666×10−3 2.00103×10−4 3.57282×10−3 8.86543×10−2

2.8 7.08014×10−3 5.53469×10−4 1.32394×10−5 4.00638×10−3 9.89625×10−2

Example 2. Consider the following heat conduction equation [47,48]:

∂ u(x, t)
∂ t

− ∂2 u(x, t)
∂ x2 = 0, 0 ≤ x ≤ `, 0 ≤ t ≤ τ,

along with the following initial and boundary conditions:

u(x, 0) = e−
x√
2 cos

(
x√
2

)
,

u(0, t) = cos(t), u(`, t) = e−
√̀

2 cos
(

t− `√
2

)
,

where the exact solution is: u(x, t) = e−
x√
2 cos(t− x√

2
).

In Figure 2, we sketched the exact and approximate solutions for the case N = 12 and
` = τ = 1. This figure shows that the numerical and exact solutions are almost identical. In
Figure 3, we plotted the MAEs when ` = 3 and for different values of τ at N = 12. In Table 3,
we list the MAEs for different values of N and for ` = τ = 1. In Table 4, we give a comparison
between the MAEs obtained from the application of the numerical scheme presented in [47] and our
method. The results of Tables 3 and 4 and Figures 2 and 3 show that our numerical results when
taking few terms of the proposed shifted fifth-kind Chebyshev expansion are more accurate. This
demonstrates the advantage of our method when compared with some other numerical methods.

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Figure 2. The exact and approximate solutions of Example 2.
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0
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0

0.0001

0.0002
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0.0004

0

0.0001

0.0002

0.0003

0.0004

0.0005

0

0.0001

0.0002

0.0003

0.0004

Figure 3. MAE graphs of Example 2.

Table 3. MAEs of Example 2.

N 2 4 6 8 10 12

MAE 3.73882× 10−1 1.57463× 10−2 1.50513× 10−2 3.26227× 10−3 1.16386× 10−3 1.30992× 10−8

Table 4. Comparison between our method and the method in [47] for Example 2.

Our method 1.30992× 10−8

method in [47] 2.28× 10−5

Example 3. Consider the following heat conduction equation

∂ u(x, t)
∂ t

− ∂2 u(x, t)
∂ x2 = − (t + 1)2 ex

(t2 + 1)2 , 0 ≤ x ≤ `, 0 ≤ t ≤ τ,

along with the following initial and boundary conditions:

u(x, 0) = ex,

u(0, t) =
1

t2 + 1
, u(`, t) =

e`

t2 + 1
,

where the exact solution is: u(x, t) = ex

t2+1 .
In Figure 4, we illustrate the approximate solution and the MAE graphs for the case N = 12

and ` = τ = 1. Table 5 shows the AEs for different values of t at N = 12 and ` = τ = 1. This
table fully reveals that the expressed method has a good precision. In Table 6, we report the AEs
for different values of t at N = 10 when ` = 3 and τ = 1. We can see from the tabulated AEs of
Tables 5 and 6 and Figure 4 that the proposed method is suitable and powerful for solving the heat
conduction equation.
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Figure 4. The approximate solution and the MAE graphs of Example 3.

Table 5. The AEs of Example 3.

x t = 1
10 t = 3

10 t = 5
10 t = 7

10 t = 9
10

0.1 2.53661× 10−6 6.78466× 10−7 4.66726× 10−8 6.34649× 10−9 1.09628× 10−7

0.2 2.12895× 10−6 8.21776× 10−7 9.03818× 10−8 1.21842× 10−8 2.68961× 10−9

0.3 1.75779× 10−6 8.88757× 10−7 1.24666× 10−7 1.69281× 10−8 1.93979× 10−8

0.4 1.43444× 10−6 8.86624× 10−7 1.46208× 10−7 2.00541× 10−8 5.19067× 10−9

0.5 1.15321× 10−6 8.25147× 10−7 1.53111× 10−7 2.11703× 10−8 1.08241× 10−8

0.6 9.01903× 10−7 7.15177× 10−7 1.44973× 10−7 2.01492× 10−8 2.08671× 10−8

0.7 6.69298× 10−7 5.67622× 10−7 1.22826× 10−7 1.71658× 10−8 3.45005× 10−8

0.8 4.45284× 10−7 3.92877× 10−7 8.89726× 10−8 1.25433× 10−8 4.42532× 10−9

0.9 2.25786× 10−7 3.92877× 10−7 4.67338× 10−8 6.77284× 10−9 1.53647× 10−7

Table 6. The AEs of Example 3.

x t = 1
10 t = 4

10 t = 7
10 t = 1

0 1.75063× 10−7 4.24278× 10−7 2.88407× 10−8 7.33871× 10−5

0.3 2.16085× 10−5 1.95217× 10−4 2.59148× 10−4 2.84798× 10−4

0.6 7.64342× 10−5 4.37391× 10−4 5.12969× 10−4 5.05394× 10−4

0.9 2.26323× 10−4 7.54558× 10−4 7.48026× 10−4 7.13391× 10−4

1.2 5.74283× 10−4 1.13808× 10−3 9.39723× 10−4 8.97356× 10−4

1.5 1.24217× 10−3 1.51991× 10−3 1.05868× 10−4 1.05103× 10−3

1.8 2.28929× 10−3 1.76226× 10−3 1.08712× 10−3 1.16802× 10−3

2.1 3.55861× 10−3 1.68673× 10−3 1.03616× 10−3 1.23095× 10−3

2.4 4.47518× 10−3 1.17726× 10−3 9.38583× 10−4 1.19524× 10−3

2.7 3.87464× 10−3 3.82554× 10−3 7.46487× 10−4 9.78603× 10−4

3 5.70265× 10−7 8.39831× 10−8 2.23171× 10−7 4.82824× 10−4

6. Concluding Remarks

In this paper, we treated numerically one of the well-known equations named the heat
conduction equation. The shifted Chebyshev polynomials of the fifth kind were used as
basis functions. Some new theoretical results concerning specific formulas of the derivatives
and integrals formulas of these polynomials were established. A numerical scheme to
solve this equation was analyzed and implemented in detail. The basic idea behind the
proposed algorithm was built on solving the corresponding integral equation to the heat
conduction equation, and after that employing the spectral tau method to convert the
integral equation governed by its boundary condition into an algebraic system of equations
that could be solved via a suitable numerical solver. The performance of our presented
method was evaluated in terms of absolute errors and maximum absolute errors. The
numerical results demonstrated the good accuracy of this scheme and the ability to simulate
the exact solution well. All codes were written and debugged by Mathematica 11 on HP
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Z420 Workstation, Processor: Intel (R) Xeon(R) CPU E5-1620—3.6 GHz, 16 GB Ram DDR3,
and 512 GB storage.
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