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Abstract: In most geophysical flows, vortices (or eddies) of all sizes are observed. In 1941, Kol-
mogorov devised a theory to describe the hierarchical organization of such vortices via a homoge-
neous self-similar process. This theory correctly explains the universal power-law energy spectrum
observed in all turbulent flows. Finer observations however prove that this picture is too simplistic,
owing to intermittency of energy dissipation and high velocity derivatives. In this review, we discuss
how such intermittency can be explained and fitted into a new picture of turbulence. We first discuss
how the concept of multi-fractality (invented by Parisi and Frisch in 1982) enables to generalize
the concept of self-similarity in a non-homogeneous environment and recover a universality in
turbulence. We further review the local extension of this theory, and show how it enables to probe the
most irregular locations of the velocity field, in the sense foreseen by Lars Onsager in 1949. Finally, we
discuss how the multi-fractal theory connects to possible singularities, in the real or in the complex
plane, as first investigated by Frisch and Morf in 1981.
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1. Introduction

Fluids are an essential component of our environment: our body is made of 65 percent
of water, oceans cover two-thirds of the surface of our planet, which is itself surrounded
by a fluid atmosphere. Thanks to satellites, we now have a global view of the dynamics
and structure of fluids at such geophysical scales. Figure 1a, taken in South Atlantic Ocean
by NASA, is a typical example of swirling motions that are observed at the surface of
the ocean, or in the atmosphere. These swirling motions trace vortices, a basic feature of
any turbulent flow. If you look carefully at the picture, you’ll notice that vortices have a
wide range of scales. A first attempt to quantify their organization was made in 1962 [1],
by velocity measurements inside the so-called Seymour narrows, a 5 km section of the
Discovery Passage in British Columbia known for strong tidal currents. The Fourier energy
spectrum of these measurements is shown in Figure 1b: one sees that the spectrum exhibits
a well-defined power-law scaling, characteristic of a hierarchical organization of vortices.
The exponent of the power-law is −5/3 and was predicted in 1941 by Kolmogorov [2],
using a theoretical analysis of the Navier-Stokes equations (NSE), which are supposed
to be the relevant model for most geophysical flows. Later, when technological progress
enabled the numerical simulations of the NSE, power-law spectra were indeed observed
for solutions of the NSE at large enough Reynolds number, as shown in Figure 1b.

Kolmogorov analysis is based on a few symmetry assumptions (homogeneity, station-
arity, self-similarity) that highlight the universal character of the energy spectrum, when
plotted in non-dimensional variables involving only the viscosity ν and the energy input ε.
This is well illustrated by Figure 1b, where we see that all energy spectra collapse, provided
the spectra are non-dimensionalized by ε2/3 and the wavenumber by η = (ν3/ε)1/4, the
Kolmogorov length.
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Figure 1. Hierarchy of turbulence a) Vortices of all sizes in the South Atlantic Ocean on Jan. 5, 2021.
Vortices are visualized by phytoplankton blooms (shown in green and light blue). Image Credit:
NASA/Goddard Space Flight Center Ocean Color/NOAA-20/NASA-NOAA Suomi NPP. b) K41
Spectrum computed from ocean measurements ([1],blue diamonds) and DNS at Rλ between 52 and
650 (colored lines). Insert: multi-fractal universal representation of the spectrum, with β = log(L/η).

moments of the velocity field u besides the second and third one, already captured by
Kolmogorov theory. To check this, one can build the velocity structure functions defined as:

Sp(`) = 〈(W`)
p〉, (1)

where W` is a measure of the velocity at scale ` and 〈〉 denotes a statistical average. In 38

his theory, Kolmogorov used W` = δ`u = u(x + `)− u(x), the velocity increment over a 39

distance `. The Fourier energy spectrum being the Fourier transform of S2, we have by 40

Kolmogorov theory : S2(`) ∼ u2
K(`/η)2/3, where uK = (νε)1/4 is the Kolmogorov velocity. 41

Kolmogorov theory also predicts that S3(`) = −4ε`/3. 42

For practical reasons, we shall sometimes use another definition of W`, based on
wavelet transform. We thus define more generally:

W`(~x, t) = |
∫

ψ`(||~y||)u(~x +~y, t)d~y|, (2)

where ψ`(x) = `−3ψ(x/`), and ψ is any function C∞ of zero average. An example is the 43

nth derivative of a Gaussian, ψ = dnφ/dxn, where φ = exp(−x2/2). 44

Kolmogorov theory (hereafter K41) predicts that S2/S2/3
3 is a constant, independent

of `. More generally, Geneste et al.[3] showed that K41 universality can be checked by
plotting:

Sp

(S3)p/3 = F
(

log
(
`

η

))
. (3)

If the K41 universality holds, all curve collapse on universal lines depending only on p. 45

Further, if turbulence is self-similar, the universal functions are all constant, depending 46

only on p. We can use the DNS data of Figure 1-b to check K41 universality. This is shown 47

in Figure 2. Obviously, for p > 3, the data do not collapse on constant universal curve, 48

meaning that neither K41 universality nor self-similarity hold for the DNS. We cannot do 49

the same check on the data taken in the Seymour narrows (they are not available anymore) 50

but we can try the same check on data taken in water [3], in a von Karman laboratory 51

experiment mimicking flow circulation on Earth [4]. The result is shown in Figure 2-a. From 52

this, we see that K41 universality does not hold either for the experimental measurements. 53

Obviously, Kolmogorov theory is incomplete, as it cannot explain behaviour of mo- 54

ments higher than 3. What can be wrong? Besides NSE, Kolmogorov uses 3 symmetry 55

hypothesis: stationarity, homogeneity and self-similarity. The last hypothesis is obviously 56

(b)

Figure 1. Hierarchy of turbulence (a) Vortices of all sizes in the South Atlantic Ocean on 5 January 2021.
Vortices are visualized by phytoplankton blooms (shown in green and light blue). Image Credit:
NASA/Goddard Space Flight Center Ocean Color/NOAA-20/NASA-NOAA Suomi NPP. (b) K41
Spectrum computed from ocean measurements ([1], blue diamonds) and DNS at Rλ between 52 and
650 (colored lines). Insert: multi-fractal universal representation of the spectrum, with β = log(L/η).

This success of Kolmogorov theory fed the hope of that turbulence could be simply
modeled by a self-similar process, resulting in a universal hierarchy of vortices when
expressed in units of ε and ν. If such hopes were true, universality should extend to higher
moments of the velocity field u besides the second and third one, already captured by
Kolmogorov theory. To check this, one can build the velocity structure functions defined as:

Sp(`) = 〈(W`)
p〉, (1)

where W` is a measure of the velocity at scale ` and 〈〉 denotes a statistical average. In
his theory, Kolmogorov used W` = δ`u = u(x + `)− u(x), the velocity increment over a
distance `. The Fourier energy spectrum being the Fourier transform of S2, we have by
Kolmogorov theory: S2(`) ∼ u2

K(`/η)2/3, where uK = (νε)1/4 is the Kolmogorov velocity.
Kolmogorov theory also predicts that S3(`) = −4ε`/3.

For practical reasons, we shall sometimes use another definition of W`, based on
wavelet transform. We thus define more generally:

W`(~x, t) = |
∫

ψ`(||~y||)u(~x +~y, t)d~y|, (2)

where ψ`(x) = `−3ψ(x/`), and ψ is any function C∞ of zero average. An example is the nth

derivative of a Gaussian, ψ = dnφ/dxn, where φ = exp(−x2/2).
Kolmogorov theory (hereafter K41) predicts that S2/S2/3

3 is a constant, independent of `.
More generally, Geneste et al. [3] showed that K41 universality can be checked by plotting:

Sp

(S3)p/3 = F
(

log
(
`

η

))
. (3)

If the K41 universality holds, all curves collapse on universal lines depending only on p.
Further, if turbulence is self-similar, the universal functions are all constant, depending
only on p. We can use the DNS data of Figure 1b to check K41 universality. This is shown
in Figure 2. Obviously, for p > 3, the data do not collapse on a constant universal curve,
meaning that neither K41 universality nor self-similarity hold for the DNS. We cannot
perform the same check on the data taken in the Seymour narrows (they are not available
anymore) but we can try the same check on data taken in water [3], in a von Karman
laboratory experiment mimicking flow circulation on Earth [4]. The result is shown in
Figure 2a. From this, we see that K41 universality does not hold either for the experimental
measurements.
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Figure 2. Test of universality using structure function based on wavelet transform. (a) K41 universality,
given by Equation (3); (b) multi-fractal universality, given by Equation (35). DNS are shown with open
symbols, while experiments are shown with filled symbols. The structure functions have been shifted
by arbitrary factors for clarity and are coded by color: p = 1: blue symbols; p = 2: red symbols; p = 3:
orange symbols; p = 4: magenta symbols; p = 5: green symbols; p = 6: light blue symbols; p = 7:
dark red symbols; p = 8: blue symbols; p = 9: red symbols. Note that on that graph, the p = 1 symbols
are hidden behind the p = 2 symbols, because both have very weak intermittency. For K41 universality
to hold, all the function should be constant with p, with a level depending on p. The dashed lines are
power laws with exponents ζ(p)− ζ(3)p/3. Figure adapted from Geneste et al. [3].

Obviously, Kolmogorov theory is incomplete, as it cannot explain behaviour of mo-
ments higher than 3. What can be wrong? Besides NSE, Kolmogorov uses three symmetry
hypotheses: stationarity, homogeneity and self-similarity. The last hypothesis is obviously
broken by the data, because except for p = 1, 2, 3, the ratio Sp

(S3)
p/3 is never constant for any

data. Breaking of the universality, on the other hand, means that ` and η are not the only
scales that matter to understand the behaviour of W`. This implies that at least another
length scale has to be introduced into the problem (like the scale of the vessel, or of the
forcing), pointing to a breaking of the homogeneity assumption. Such spatial translation
symmetry breaking in turbulence is not a big surprise, and was already pointed out in
the early 1950s by Batchelor [5] and Landau (see footnote page 125 of [6]). It manifests
itself by the phenomenon of intermittency of high order derivatives of velocity fields or
dissipation, that arise under the shape of strong, localized bursts of activity, both in space
and time [5,7,8].

What causes this phenomenon? What can be done to take this phenomenon into account
and forge a new theory, that recovers some sort of universality for turbulence? The answer to
these two questions owes much to the pioneering work of Lars Onsager on the one hand, and
Uriel Frisch and his collaborators on this other hand, to which we dedicate this review at the
occasion of its 80(+2) birthday. In a first part, we shall see how the concept of multi-fractality
(invented by Parisi and Frisch in [9]) enables to generalize the concept of self-similarity in
a non-homogeneous environment and to recover a universality in turbulence. In a second
part, we discuss the local extension of this theory, and show how it enables to probe the most
irregular locations of the velocity field, in the sense foreseen by Lars Onsager in 1949 [10].
Finally, we discuss how the multi-fractal theory connects to possible singularities in the
complex plane, as first investigated by Frisch and Morf in 1981 [11].

Most of the results presented here have been detailed and published into several
previous papers, except for some results in the last sections which are new and original.
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2. Global Multi-Fractal Theory
2.1. Parisi–Frisch Interpretation

Rather than assuming that turbulence is globally self-similar, Parisi and Frisch [9]
assume asymptotic local self-similarity, in which the wavelet coefficient W` behaves locally
like a power-law in the inviscid limit: W`(x, t) ∼ `h(x,t), where h(x, t) is a local scaling
exponent. This hypothesis is connected with a peculiar symmetry of the NSE, the h-
rescaling, that is valid in the inviscid limit. Formally, it means that NSE with zero viscosity
are invariant under the h-rescaling:

(t, x, u)→ (λ1−ht, λx, λhu), (4)

for any λ and h ∈ R. Locally self-similar solutions are thus symmetrical solutions with
respect to this h-rescaling. One cannot however state that turbulence is a superposition
of such solutions, because NSE are non-linear and the superposition principle does not
hold deterministically. A superposition principle can however be defined in a probabilistic
way, using P(h, `) the probability to find a given exponent h somewhere in the flow [8].
To quantify this probability, Parisi and Frisch make a second crucial assumption, namely
that the set of points where the wavelet coefficients are locally self-similar with a given
exponent h is a fractal, of co-dimension C(h), also called multi-fractal spectrum. Simple
fractal geometrical rules then enable to state that

P(h, `) ∼ `C(h). (5)

With these tools, one can show that the structure functions now follow the scaling
Sp(`) ∼ `ζ(p), where

ζ(p) = min
h

(ph + C(h)), (6)

is a scaling exponent given by the Legendre transform of the multi-fractal spectrum C(h).
In the case where the scaling is homogeneous, with a given exponent h0, C(h) is infinite
everywhere except for h = h0, where it is equal to 0. In such case, ζ(p) = ph0, and we
recover Kolmogorov scaling for h0 = 1/3. Otherwise, there are deviations from such
scaling, depending on the way C(h) is distributed within the interval [hmin, hmax], defining
the range where C(h) is finite.

2.1.1. A Few Useful Properties of Multi-Fractals

By definition of the Legendre transform Equation (6), the quantity:

h(q) =
dζ(q)

dq
≡ ζ ′(q), (7)

defines a local scaling exponent when q varies from qmin to qmax, characterizing the lower
and higher convergent moments of the distribution. In the thermodynamic analogy (see
Section 2.5), they correspond to minimum and maximal temperature of the system. From the
local scaling exponent, one can define:

C†(q) = ζ(q)− qζ ′(q). (8)

This quantity, introduced by [12], is connected with the codimension of the active
volume, described in Section 3.1. Contrarily to C(h) , it needs not be concave. However, it
has some interesting properties (see [12] for proof and details):

• C† is minimum at the origin, where the scaling exponent h achieves its most probable
value h0 ≡ ζ ′(0).
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• Integrating Equation (8), we get:

ζ(q) = qh0 + Iq,

I(q) = −q
∫ q

0

C†

s2 ds. (9)

The function I(q) therefore characterizes the intermittency corrections. The relation
between C† and ζ is therefore purely differential, at variance with the connection with C(h)
and ζ which is variational. This explains why C† will be involved in analogy with special
relativity (a differential theory), while C(h) will be involved in the thermodynamic analogy
(a variational theory).

• The width of the multi-fractal spectrum is given by the total intermittency correction:

hmax − hmin =
∫ qmax

qmin

C†

s2 ds. (10)

This property hints at some isomorphism between the q (moment) space and the h
(exponent) space. In Section 2.3.2, we shall explain how scale covariance actually selects all
the possible shape of such isomorphisms, providing explicit shape for the function I(q).

2.1.2. Link with Information Theory

One can derive an interesting link with information theory by considering generalized
measures, built using moment of W`. Let us define Q-measures through:

dQ ≡ dµQ =
Wq

`

〈Wq
` 〉

dµ0, (11)

where dµ0 is the measure of W`, such that 〈Wq〉 =
∫

Wqdµ0.
Consider now the Kullback–Leibler entropy D(dQ/dµ0) between the measure dQ and

the measure dµ0 (its “natural” measure). Par definition, it is given by:

D(dQ/dµ0) =
∫

log
(

dQ
dµ0

)
dQ,

= 〈log

(
Wq

`

〈Wq
` 〉

)
Wq

`

〈Wq
` 〉
〉. (12)

So, for a multi-fractal field such that 〈Wq
` 〉 ∼ `ζ(q), we get:

D(dQ/dµ0) = (qh(q)− ζ(q)) log ` = −C†(q) log `. (13)

Therefore, the Kullback–Leibler entropy of the Q-measure of a mutlifractal field with
respect to its natural measure is directly connected to its multi-fractal spectrum. For a
fractal field, C† = 0 so that this entropy is zero for all Q. The fractal fields are thus the field
that stay arbitrarily close to their natural measure for any Q.

On the other hand, if we consider now the Kullback–Leibler entropy of the natural
measure with respect to its Q-measure, we get:

D(dµ0/dQ) = −〈log

(
Wq

`

〈Wq
` 〉

)
〉,

= (ζ(q)− qh(0)) log ` = I(q) log `, (14)

where we have used the relation h(0) = 〈log(W`)〉. In general, I(q) and C†(q) differ, so
that the Kullback–Leibler entropy of a multi-fractal is not antisymmetric by reversal. One
can check easily that the only case where it is true is for fractal fields, where both quantities
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are zero. In that respect, fractal fields play a distinguished role with respect to Q-measures
and the Kullback–Leibler entropy.

2.2. Hidden Symmetry Interpretation

The Parisi–Frisch interpretation is based on the h-rescaling Equation (4), and puts weight
on local values of h(`) = log W`/ log `. It assumes that there is an inertial range, so that
this values does not depend on ` and we recover power-laws for 〈Wq〉 ∼ `ζ(q). As shown
by Mailybaev and his collaborator [13–15], there is however a very elegant way to justify
such power law by considering a “hidden symmetry” of Navier–Stokes, making use of
commutation properties of evolution operator with h-rescaling and Galilean transformation.
For this, one considers instead of W`(x) the “normalized semi-Lagrangian” field:

U (x∗, X, `, t) =
u(x∗ + `X, t)− u(x∗, t)

A(δ`u)
, (15)

where x∗ is a Lagrangian coordinate such that dx∗/dt = u(x∗, t), X is a vector of local
coordinate at scale `, and A is any homogeneous function of degree 1 representing a local
average. In the sequel, we take A(δ`u) = |δ`u|. As discussed in [14,15], U represents a
projection of the velocity field on some functional space. Accordingly, one can check that
its obey a “projected” Euler equation in the inertial range:

∂τU = P(−U∇U −∇π), (16)

where P is a suitable projector, provided one considers the “renormalized” time τ such
that dτ = Adt/` [14,15].

One can then build the hidden scale transform, through which `→ `′ and that maps
U (X, τ) onto a new solution of the Equation (16) U ′(X, τ′). It is then possible to show
(see [14] for details), that if the normalized field is statistically symmetric with respect to
this hidden symmetry in the sense that U (X, τ) and U ′(X, τ′) have same statistics, then
〈(δu)q〉 obeys a scaling law. Therefore multi-fractal fields correspond to fields that are
statistically symmetric with respect to the hidden scale transformation.

The hidden scale transform also acts on the local exponents of Parisi–Frisch multi-
fractal fields. Indeed, if locally u(x∗ + `X, t)− u(x∗, t) ∼ `h, then U has a local scaling
exponent h − h(0), which transforms into h′ − h(0) under the hidden scale transform,
where h′ is another local scaling exponent of the multi-fractal spectrum.

2.3. Theoretical Constraints on the Multi-Fractal Spectrum

At this stage, the only constraints we have come from normalization of the probabilities
resulting in C(h) > 0, and Legendre transform property Equation (6), meaning that C(h) is
a convex function of h. It is however possible to constrain further the shape of C(h) using
either symmetry arguments, or directly Navier–Stokes equations.

2.3.1. from Hidden Scale Symmetry

Hidden scale symmetry can be used in simple models to derive explicitly the multi-
fractal spectrum, for fields that are statistically invariant through the hidden symmetry.
While this is not yet possible for Navier–Stokes, this can be done for simple shell models of
turbulence. An example is provided in [16].

2.3.2. from Scale Covariance and Analogy with Relativity

Scale invariance usually refers to systems conserving the same properties or shape at
different scales (statistically or deterministically). This is classically formalized by physical
transformations such as Equation (4) rescaling space by a factor λ, and W` by a factor µ = λh,
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and by a statement that a process is scale invariant if W` and µWλ` have the same statistics. This
usual definition (see e.g., [8]) introduces a family of natural operators, the dilation operators:

Sλ,µ : `→ λ`; W` → µW`, (17)

which simply compose as:Sλ,µ ◦ Sλ′ ,µ′ = Sλλ′ ,µµ′ . The dilation operators (17) define a global
scale symmetry. The hidden scale invariance of [14] is an example of such global scale
symmetry, with µ = 0.

One can also define a “local” scale symmetry, by considering the case where the scale
space is discrete, made of N measurements (or degrees of freedom), with the nth scale being
described as:

`n = `0Λn,

Wn = W0Λ′n

L = `0ΛN , (18)

where Λ and Λ′ are the “resolution” of the measurements, that become infinite when Λ→ 1
(or equivalently N → ∞). A “local gauge invariance” would then mean that the system
should be also invariant by changes of resolution, e.g., by local “dilation” (Λ, Λ′)→ (Λα, Λ′α).
Such transformation changes `/`0 and W`/W0 into (`/`0)

α and (W`/W0)
α [17,18]. Fractal

processes are trivially invariant by such transformation, since 〈Wα
` 〉 ∼ `αh0 ∼ 〈W`〉α. For

multi-fractal processes, this equality is not true anymore and imposing both the local and the
global scale symmetry sets some important constraints on the multi-fractal spectrum.

These constraints were actually worked out in a series of papers [17,19–22] using the
notion of “scale covariance” [23] rather than “scale invariance”: while scale invariance
imposes that the process itself is invariant by scale transformation, scale covariance states
that the governing equations of the process or the relation between the process components
keep the same shape at any scale. This formulation introduces a notion of relativity, because
one must now consider the relation between one component with respect to another
one. This is reminiscent of special relativity, when speed is a notion that is defined only
with respect to a (Galilean) referential. This analogy is profound and extends to many
variables (Table 1).

Table 1. Summary of the analogy between the multi-fractal formalism of turbulence and relativity.
We have set the origin of the axis to 0 for simplicity.

Relativity Multi-Fractal

Time T log(`)

Space X 〈log(W`)(W`)
q〉/〈(W`)

q〉
Speed V = dX/dT δh(q)

Group structure velocity composition relative exponent composition

Limiting speed(s) c hmin and hmax

Specifically, one introduces the following quantities:

T = log
(

`

`0

)
,

X =
〈log

(
W`
R`

)(
W`
R`

)q
〉

〈
(

W`
R`

)q
〉

. (19)

where R` ∼ `h0 is a power-law reference field, and q an exponent. Both can be arbitrary
owing to the global and local scale symmetry. X thus depends on q and is defined from
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qmin to qmax. As q varies between these limiting values, X takes all the possible values
of the logarithm of the random field W`. These notations turn particularly convenient;
for instance, when R` is constant, (h0 = 0), the variable Ẋ = dX/dT is the multi-fractal
exponent of the random field [22] Ẋ = h(q) = dζ(q)/dq, in agreement with the Legendre
transform property Equation (6). In general, Ẋ = h(q)− h0 is a relative exponent noted δh.
In the sequel, we shall assume for convenience that h0 = h(0), so that δh corresponds to
the deviation with respect to the most probable exponent. In such a case, it is possible to
show that δh(q) = dI/dq, where I(q) is given by Equation (9).

By scale symmetry, changing ` to `′ (i.e., T into T′) changes δh(q) into δh(q′) (see
Section 2.2 for discussion in the case of hidden scale symmetry).

The scaling exponent δh(q) can be seen as a local exponent with respect to the Q-
measure. In that sense, scale symmetry corresponds to a change of referential for δh.
Scale covariance means that relations between dX/dT i.e., δh(q) cannot depend on the
“referential”, i.e., on q. By analogy with scale relativity this means that “composition of
exponents” should follow a group structure.

More generally, by scale covariant transforms, T and X become coupled variables (in
the same way as space and time get coupled in Einsteinian mechanics). The novel scale
covariant operators appear naturally as the analog of Lorentz boosts:

Sλ,µ,V : `→ (λ`)a11(V)(µW`)
a12(V),

φ` → (λ`)a21(V)(µW`)
a22(V) (20)

where the constant aij are determined by a few properties of the random process, see
below. This family includes, but does not reduce to, the former dilation operator, since
Sλ,µ = Sλ,µ,V=0. If the variables are not scale invariant, these novel operators have no
special reasons to select processes with scale invariant moments (dζ(n)/d` = 0 ∀n, `). In
fact, one can develop simple scale covariant models, that provides explicit variation of ζ
with the scale ` [18,21].

The main results obtained within scale covariant hypothesis are (see [22] for de-
tailed derivation):

• The relative scaling exponents follow the group law : δh(p⊗̃q) = δh(p)⊗ δh(q), where
⊗̃ and ⊗ are commutative group composition law of the type:

V ∗V′ :=
V + V′ −VV′(1/A+ + 1/A−)

1−VV′/A+A−
, (21)

where ∗ stands for ⊗̃ , or ⊗. Such laws are characterized by the two fixed points A±
which take the value h− = hmin − h0, h+ = hmax − h0 (resp. q− = qmin, q+ = qmax)
for ⊗ (resp. ⊗̃).

• The two fixed points h± depend only on the random process itself and are connected
with hmin and hmax, the minimal and maximal value of the exponent h(p). They play
an essential role since they classify the possible statistics [12,19].

• It is then technically possible to compute all the possible shapes for δh(q) compatible
with the scale covariance symmetry, as a function of h0, h± or q± [22]. By integration,
one then gets ζ(q) and Iq. By Legendre transform, one further obtain C(h). We list
below but a few examples:

• log-Poisson: this case [24–26] was already obtained in [19]. It corresponds to h− finite,
h+ = ∞, q− = −∞, q+ = +∞. It reads:

δh(q) = h−(1− βq),

ζ(q) = q (h0 + h−) +
h−
ln β

(1− βq),

C(h) =
h− h0

ln β
+ h−[1− (h− h0)/h−] ln[1− (h− h0)/h−]. (22)
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The parameters are here h0 (or equivalently ζ(1)), h− and β.
• self-similar: this limiting case of the previous one is obtained for h− = 0, and reads:

δh = 0,

ζ(q) = q h0,

C(h) = 0. (23)

• log-normal: this is again a limiting case of the log- Poisson, with h− → ∞; it corre-
sponds to:

δh = 2q(ζ(1)− h0),

ζ(q) = q h0 + q2 (ζ(1)− h0),

C(h) =
(h− h0)

2

2(h0 − ζ(1))
. (24)

• a log-Levy-like distribution: this case, also sometimes called “truncated log-Levy”, was
obtained in [22] and used in geophysical flows by Schertzer and collaborators [27–29].
It corresponds to h− finite, h+ = ∞, q+ finite and q− = ∞ (or vice versa). It is defined
only for q < q+ and yields:

δh = −h−

(
1− q

q+

)α−1
,

ζ(q) = q(h0 + h−)− h−
q+
α

[
1−

(
1− q

q+

)α]
,

C†(q) = qh−

[
1 + (1− 1/α)

(
1− q

q+

)α−1
]

. (25)

Here, α along with h−, q+, h0, make four parameters, one of which could be replaced
by ζ(1) and C(h) can be obtained parametrically from C†.

All above examples belong to the family of the so-called “log-infinitely divisible laws”.
More generally, [22] conjecture that the corresponding scale covariance symmetry selects
all log-infinitely divisible laws, in agreement with other previous arguments [26].

Note that scale covariance is a stronger assumption than hidden symmetry. Therefore,
the log-infinitely divisible laws we just found are just a subset of all possible multi-fractal
laws selected by hidden symmetry. Empirical observations discussed below however show
that multi-fractal spectrum of turbulent flows can indeed be described by log-infinitely
divisible laws.

2.3.3. From Navier–Stokes Equations

Parisi and Frisch multi-fractal theory is quite generic for any system obeying the
h-rescaling symmetry, so that at this stage, the constraints we found are satisfied by any
scale covariant system. In particular, the shape of the multi-fractal spectrum depends
on a few parameters, that depend on the equations of motions [19,20]. Computing these
parameters from NSE is still an unsolved issue. It is however possible to find more
restrictive constraints on the multi-fractal spectrum for turbulent flows using directly the
Navier–Stokes equations, as discussed in [30]. Indeed, it is possible to derive general
bounds on m-norms of the nth velocity derivatives, defined as:

‖∇nu‖2m =

(∫

V
|∇nu|2mdV

)1/2m
. (26)

The bounds holds for for the dimensionless function Fn,m(t), defined as:

Fn,m(t) = ν−1L1/αn,m‖∇nu‖2m , (27)
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where exponents αn,m are defined by

αn,m =
2m

2m(n + 1)− 3
. (28)

Then, one can show [31] that for any time interval T, and n ≥ 1 and 1 ≤ m ≤ ∞,
on periodic boundary conditions, weak solutions of the three-dimensional Navier–Stokes
equations obey

T−1
∫ T

0
F αn,m

n,m dt ≤ cn,mRe3 + O
(

T−1
)

, (29)

where the cn,m are a set of constants. These bounds are valid only for periodic bound-
ary conditions.

Using multi-fractal theory, one then obtains [30] two conditions for the multi-fractal
spectrum:

(i) that it is bounded from below by hmin = −2/3, (in three dimensions, for periodic
boundary conditions);

(ii) that the function C(h) is bounded from below by a linear function: C(h) ≥ 1− 3h.

As shown in Figure 3, this constrains the multi-fractal spectrum y = C(h) inside the
region delineated by the three lines of equations h = −2/3, y = 0 and y = 1− 3h. For
example, the log-normal model Equation (24), the log-Poisson model Equation (22) or the
log-Levy model Equation (25) obeys the constraints, provided hmin ≥ −2/3 and that a
suitable relation between the parameters ensures that ζ(3) = 1 [30].

2.4. Observational Constraints on the MFR Spectrum

The bounds derived previously are currently the best we can do from a theoretical side,
in the sense that no one succeeded to derive analytically the full shape of C(h) from the
NSE. One can then infer properties of C(h) from measurements, either through numerical
simulations or experiments. The way to do it is first to compute structure functions,
then compute their scaling exponents, and finally compute C(h) from inverse Legendre
transform. This is usually challenging, as issues arises such as noise for experiments,
extension of the inertial range for DNS, and convergence of statistics for both. The group of
Arneodo [32,33] has built the most powerful tool to ensure best convergencies. Figure 3
reports two measurements of C(h) in recent data set: one from experiments in the Saclay
group [34], and one from very high resolution DNS from the GiorgiaTech group [35].

In the case of DNS, Figure 3a, the measurements are done up to Rλ = 1300, via
velocity increments in longitudinal or transverse direction with respect to the separation.
One observe that transverse increments are slightly more intermittent than longitudinal.
The authors [35] note that the scaling exponents of the transverse velocity increments
have a tendency to saturate at large values of p. This is compatible with a log-Poisson
description with hmin <≈ 0, which is reported in Figure 3a by the blue-dotted line. In the
case of experiments, measurements were performed via velocity wavelet, using derivative
of the Gaussian as wavelet. The intermittency correction I(p) was computed by a fit
of the universal functions, see Figure 2b, which provides the value of I(p) − I(3) =
ζ(p)− pζ(3)/3. In this experiment, we measured ζ(3) = 0.8. The multi-fractal spectrum
was then computed by Legendre transform of ζ(p)/ζ(3), shown in Figure 3b. In this case,
the measurements seem well fitted by the log-normal formula, see blue-dotted line.
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Figure 3. Empirical multi-fractal spectrum computed from data using different definitions of W`.
(a) using velocity increments in high resolution DNS [35]: magenta: transverse velocity increments;
green: longitudinal velocity increments. Blue dotted lines is a log-Poisson fit.; (b) using wavelet
coefficients and the universal curves in Figure 2b. Red: data points. Blue dotted lines is a log-normal
(parabolic) fit. The black lines delineate the admissibility range of the multi-fractal spectrum in
three dimensions, obtained by theory. The zone left of the vertical dotted line is excluded as a result of
Equation (29). The zone below the horizontal continuous line is excluded as a result of normalization
of C(h) [36]. The zone below the black dashed-dotted line is excluded as a result of both Equation (29)
and the four-fifths law.

2.5. The Large Deviation Formulation and Thermodynamics

The original Parisi and Frisch formulation is very pedagogical, but a bit empirical.
Eyink pointed out that the multi-fractal theory has a more rigorous formulation, in terms
of large deviation theory [37]. This formulation is interesting, because it enables to build
thermodynamical analogy to multi-fractals [32,38,39] that will be useful to replace the K41
universality which is broken in turbulence. For this, we consider again a scale dependent
measure corresponding to the 3-measure (see Section 2.1.2):

dµ3 =
|W`|3
〈|W`|3〉

dµ0. (30)

One can check that dµ3 has the good properties of a measure: it is positive definite
and

∫
dµ3 = 1 for any `. Let us now assume that the measure µ3 follows a large-deviation

property as:
P[log(µ3) = E log(`/η)] ∼ elog(`/η)S(E), (31)

where S(E) is the large deviation function of log(µ3).
The property given by Equation (31) has a nice thermodynamic interpretation, where

S(E) represents of an entropy, log(`/η) has the meaning of a volume, and log(µ3)/ log(`/η)
is an energy density.

The entropy is simply connected to the multi-fractal spectrum through S(E) =
C(3h− ζ(3)) [3]. We can also define a partition function Z associated to the variable
log(µ3) through:

Z ≡ 〈ep log(µ3)〉 = S3p

Sp
3

, (32)
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where p is a pseudo-inverse temperature p = 1/kT. Taking the logarithm of Z, we then get
the free energy F as:

F ≡ log(Z) = log

(
S3p

Sp
3

)
. (33)

By the Gärtner-Elis theorem, F is the Legendre transform of the energy S: F =
minE(pE− S(E)).

The thermodynamic analogy is summarized in Table 2.

Table 2. Summary of the analogy between the multi-fractal formalism of turbulence and thermody-
namics.

Thermodynamics Turbulence

Temperature kBT 1/p

Energy E log(µ3)

Entropy S C(3h− ζ(3)),

Number of d.f. N 1/β(Re) ∼ log(Re)

Volume V log(`/η)

Free energy F log
(

S3p

Sp
3

)
.

2.6. Recovering Universality

The thermodynamic analogy enables to recover a multi-fractal universality using basic
properties of the free energy. Indeed, F a priori depends on the temperature T, on the
volume V and on the number of degrees of freedom system N. Further, extensivity of the
free energy means that F should follow the homogeneous scaling:

F(T, V, N) = NF(T,
V
N

, 1). (34)

Using the analogy of Table 2, and introducing the function β = 1/N, we see that for ex-
tensivity to be valid, the structure function should follow the generalized universality law:

β log
(

Sp

(S3)p/3

)
= F (β log(`/η)). (35)

At this point, β is a free parameter. Theories of turbulence usually assume that the
number of degree of freedom of turbulence depends on the Reynolds number only i.e.,
β(Re). Vergassola and Frisch [40] used properties of the dissipative range in the multi-
fractal picture to infer that a relation such as Equation (35) should hold for the energy
spectrum (Fourier transform of S2), with β depending on the width of the inertial range like:
β ∼ 1/ log(L/η), where L is the largest scale of the system. This universal representation is
shown in the insert of Figure 2b, and indeed provides a good collapse of the spectra. Since
we have L/η ∼ Re3/4, this gives β(Re) ∼ 1/ log(Re). A few years later, Castaing and his
collaborators [41] checked empirically the veracity of Equation (35) in turbulent jet by a
best collapse procedure, and confirmed this scaling. More recently, Geneste et al. [3] also
check multi-fractal universality using the numerical and experimental data of Figure 2a.
They confirmed that the best collapse is indeed obtained for a function β ∼ 1/ log(Re).
Their result is shown in Figure 2b. Indeed, it is quite spectacular that see that all data
from the 5 different DNS and 5 different experiments at Re between 6× 102 and 3× 105

(Rλ between 25 and 2000) indeed collapse on universal curves depending only on the
pseudo-temperature 1/p.

Such universality ensures that the relative scaling exponent ζ(p)− pζ(3)/3 = I(p)−
I(3)-computed as the slope of the dotted line in Figure 2b are universal in the sense that
they do not depend on Reynolds number nor on boundary conditions. This provides a
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certain degree of universality to the multi-fractal spectrum, up to a translation by ζ(3)
(which could be not universal, see discussion in Geneste et al. [3]).

3. Local Multi-Fractal Analysis

The multi-fractal formalism summarized in the previous section is essentially global:
one is only interested in the probability of having a certain scaling exponent h within the
whole volume of the fluid, without trying to localize exactly where the given behaviour
takes place. As explained previously, this is essential because there is not such a thing a
superposition of self-similar solutions, nor existence of a well given space and/or time
location where a self-similar behaviour develops, since this is precluded by several mathe-
matical theorems [42]. Yet, the very phenomenon of intermittency is based on physical
processes which are well defined and localized in space and time: they are due to large
velocity gradients, arising in an intermittent way, following non-linear dynamics of NSE. If
the velocity field were locally self-similar with exponent h, there would however exist a
correspondence between this exponent, and the value of velocity gradients smoothed at a
fixed scale, since the wavelet coefficient W`/`p is nothing more than, within a multiplicative
constant, the norm of the smoothed value of the derivative ∇pu with respect to a Gaussian.
The multiplicative constant is troublesome, in the sense that it forbids the simple identifica-
tion of h with log` W`. In this section, we summarize how it is possible to use information
theory (and the knowledge of P(h, `)) to derive a one-to-one mapping between the value of
the smoothed derivative of u at a given scale, and the value of the corresponding scaling
exponent, h. This relies heavily on a work done by Cheskidov and Shvydoy [12], that we
rephrase in a physical language more appropriate for practical applications [43].

3.1. Active Regions and the Nested (Concentration) Volume Interpretation

To start with, one needs to define what is an intermittent region, or “active” region.
This is defined as a region where the magnitude of W` is large. Then, we consider these
velocity wavelet coefficients as “source of information”, whose concentration in active
regions, Aq is measured by concentration volumes, with well defined co-dimension. The
precise definition of Aq is given by:

Aq = {x : bq`
h(q) ≤W`}, (36)

where the constant bq at this stage is undefined, and h(q) is a local exponent, playing the
role of a Hölder exponent, that is defined according to Equation (7) as:

h(q) =
〈log`

(
W`

)(
W`

)q〉
〈
(
W`

)q〉
. (37)

The volume of active regions is simply given by:

Vq = 〈1A〉 ∼ `C†(q), (38)

where C†(q) is the co-dimension of the active volume. These definitions guarantee that
active volume are nested, i.e., Vq ⊂ Vr for q < r.

3.2. Connection with Multi-Fractal Formalism and Construction of Local Exponents

For multi-fractal fields obeying 〈
(
W`

)q〉 ∼ `h(q), we see that h(q) = dζ(q)/dq, in
agreement with the Legendre transform property Equation (6). This construction shows
that the multi-fractal sets of Parisi and Frisch are necessarily nested, like Russian dolls. It
also shows that one can calibrate the values of bq defining the active regions, by imposing
that C†(q), the co-dimension of the volume of the active regions, precisely matches the
multi-fractal spectrum C(h(q)) which can be computed from the whole set of data.
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The philosophy of this construction is therefore as follows: one first performs a classic
multi-fractal analysis on the data set, to obtain the value of C(h); then, one calibrates
the constant bq so that the co-dimension of the active volume matches the multi-fractal
spectrum; this provides a one-to-one correspondance between W` and a local scaling
exponent h, for a given data set. All details are given in [43]. Figure 4a shows example
of a map of local scaling exponent obtained using this procedure on an experimental data
set. As expected, isovalues of h are nested. In this example, the procedure is applied for
a field resolved at the Kolmogorov scale ∆x = η, so that the underlying velocity field is
already very smooth. Yet, there are still a few places where h is below 1 (see Figure 4b),
so that the field is non-differentiable. The same procedure has been repeated for velocity
fields in the inertial range, resulting in values of h even smaller than h = 1/3, see [44]. The
probability distribution function for h that one can get from such plots (Figure 4b) coincides
by construction with (∆x)C(h).
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Figure 4. Local Holder exponents for experimental data at resolution ∆x = η. (a) Map of local Holder
exponent. (b) Histogram of values of h in the field of view (a). Most of the values are above h = 1 but
there are a few events where h < 1, meaning non-differentiability. Note that for h < 2, the field is
not twice differentiable, meaning we cannot define a dissipation. (c) Local-energy transfer for the
velocity field corresponding to (a). (d) Vorticity field corresponding to (a).

Of course, if one changes the precision of the data set, one can get other estimates of
C(h), and the whole procedure has to be repeated, providing possibly another mapping.
In the same way, if one increases the size of the data set, one can extend the multi-fractal
spectrum to lower values of h, and extend the mapping between W` and h accordingly. In
this sense, this local procedure is clearly an information-based procedure.
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3.3. Link with Onsager Conjecture and Inertial Dissipation

The definition of the active regions Equation (36) hints at a connection between h and
Hölder regularity of the field, so that the lower h, the less regular the velocity field. A
heuristic argument is also provided by the observation that if W` ∼ `h locally, then its
gradient behaves as W`/` ∼ `h−1, diverging as long as h < 1. Such irregular region are
expected to have a very interesting inter-scale dynamics, providing local very large energy
transfers that may ultimately contribute to a non-viscous dissipation, as first intuited by
Onsager [10]. A simple interpretation of Onsager’s conjecture was provided by Duchon
and Robert [45], who used a local energy balance for weak solution of the NSE to show that
the energy dissipation can be written as [36]:

ε = lim
`→0

(
D I

` +Dν
`

)
,

D I
` =

1
4

∫
dξ ∇φ`(ξ) · δξu(δξ u)2, (39)

Dν
` =

ν

2

∫
dξ ∇2φ`(ξ)(δξ u)2. (40)

The term Dν
` is the viscous dissipation, that explicitly depends on the viscosity. The

term D I
` is the local interscale energy transfer. For a velocity field that is Hölder continuous

with exponent h, D I
` is locally bounded by a term O(`3h−1). Therefore, if h > 1/3, D I

`
tends to zero as ` → 0, and the only contribution to the local dissipation is the viscous
contribution. If instead h ≤ 1/3,D I

` is not bounded anymore, and there is a possibility that it
contributes to the dissipation, via a term that is independent of viscosity. The corresponding
singularities (with h ≤ 1/3), if they exist, are termed dissipative singularities.

It is not clear whether such singularities exist for NSE, or if they can only occur in the
limit ν→ 0. In any case, one can expect that regions with low value of local h, defined by
the local multi-fractal analysis, should correspond to regions with high values of D I

` . This
correlation was checked in [43] and indeed observed, both statistically and deterministically.
This is illustrated in Figure 4c, where one sees how regions of high value of D I

` co-exist
with region of low h.

3.4. Observation of Most Irregular Structure

The most irregular structures of a given data set can be obtained by looking for places
where the pseudo-Holder exponent takes its lowest value, and then analyzing the features
of velocity and vorticity field around that place. This was done in [44] for DNS. In Figure 4d,
we report a plot of the vorticity field in the experimental case. One sees that lower values of
h are in the vicinity of (but do not coincide with) areas of large vorticities. More generally,
one finds that the most irregular structures laying around places of lower h are vorticity
filaments. The corresponding “typical” structure can be obtained by conditional averaging,
after suitable translation and rotation [44]. It is shown in Figure 5a. It is an asymmetrical
vorticity filament, with exponential vorticity profile corresponding to a Burgers vortex.
Further investigation using time-resolved numerical [44] or experimental measurements [46]
actually showed that the most irregular situations are obtained during vortex interaction,
as illustrated in Figure 5b. More refined analysis prove that the interaction corresponds to
vortex reconnection [47].
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Figure 5. (a) Typical vorticity structure found near location of smallest local Holder exponent,
obtained by averaging several structure after suitable re-orientation. Note the presence of two
pieces of bent filaments on either side of the structure. This is a remnant of the reconnection event.
(b) Example of a reconnection event captured in the experimental von Karman device by selecting of
trajectories obtained around a very irregular point. The trajectories are coded by velocity norm (in
m2 s−2, with intensity given by the colorbar.

4. Link with Singularity
4.1. Fluctuating Dissipative Scale in the Multi-Fractal Framework

In its original version, Parisi and Frisch multi-fractal picture was based on the idea that
the values of h were piloted by singularities of the Euler equation, that were regularized
by viscosity at small enough scale. The scale at which this regularization occurs may be
inferred from energetic arguments using Equation (40). Indeed, for a velocity field that
is Hölder continuous with exponent h, we have that D I

` ∼ `3h−1, while Dν
` ∼ ν`2h−2.

The scale at which viscous dissipation becomes dominant with respect to the local energy
transfers is there for ηh ∼ ν1/(1+h). This scale also corresponds to the scale at which the local
Reynolds number δ`u`/ν take a value of order unity, corresponding to a relaminarization
of the flow [48]. For h = 1/3, we recover η1/3 ∼ ν4/3 like for the Kolmogorov scale. Note
that for h→ −1, we have η−1 → 0, so that the flow is never regularized. Locations where
h > −1 are thus only quasi-singuarities, while those with h = −1 are genuine Navier–
Stokes singularities. According to the constraint of Figure 3, we see that singularities are
excluded for periodic boundary conditions, since h = −1 cannot be reached. Most of astro-
or geophysical flows have boundaries, however. What kind of singularities can we expect
of this is the case? Is there a way we can give flesh to this intuition of Parisi and Frisch
using observations?

4.2. Pressure Mediated Singularity

In 2014, Luo and Hou [49] provided a detailed numerical evidence of the existence
of a finite-time blow up in an inviscid axisymmetric fluid with swirl. The flow is initially
put into a kind of “differential rotation”, with the upper part of the tank rotating in one
direction, and the lower part rotating in the other direction. The blow-up is characterized
by a very strong increase of the amplitude of the vorticity, and occurs at the radial boundary
and at the altitude of the shear layer. This blow-up was interpreted by Barkley [50] in terms
of a “tea-cup like” singularity driven by the pressure field. This singularity mechanism is
interesting because of the similarity of the geometry with a von Karman experiment, where
the differential rotation is imparted by counter-rotating impellers [36]. It may then provide
a suitable mechanism for building of singularities or quasi-singularities.
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4.3. Singularity of Vortex Filaments

Another type of singularity can occur during vortex dynamics or interaction. Investi-
gating such possibility with DNS or experiments is hard, and there is only limited evidence
so far, for vortices starting perpendicular to each others [51,52]. Several simplified models
however hints at a potential singularity.

4.3.1. Curvature Gradient Blow-Up

The first one is DLA: vortex filaments are modeled by one-dimensional lines with a
given vorticity density. The line is allowed to move under the action of its own velocity
field, computed using a Biot–Savart law, truncated at a given order. This provides the
evolution of the curvature κ and the torsion τ of the vorticity line, as a function of time.
Using the Hasimoto’s transformation [53] ψ = κ exp(i

∫
τ), one can map the corresponding

equations to focusing non-linear Schrödinger equations for ψ. The equation corresponding
to the lowest order truncation was studied by Konopelchenko and Ortenzi [54]. They
proved the existence of a finite-time blow-up, during which the gradient of the curvature
and torsion becomes infinite, and the vorticity filaments undergo wild fluttering.

4.3.2. Reconnection Blow-Up

The previous “gradient catastrophe” scenario is interesting because large gradients
curvature are typically observed during vortex reconnection, where “vorticity kinks” are
built at early stages. Evidence of a singularity was actually observed in a simplified model
of reconnection by Moffatt and Kimura [55,56]. In this model, vorticity filaments are also
modeled by lines with constant vorticity density. Two filaments are initially placed at
the ridges of a tetrahedra, and then allowed to interact via their mutual velocity field
computed using the Biot–Savart law. The vortices interaction results in a self-similar
evolution, with vorticity diverging as 1/(t∗ − t) as the distance between the two filaments
decreases as

√
t∗ − t. There laws are exactly the laws that one would expect from scale

symmetry argument of the viscid Navier–Stokes equation, that corresponds to a typical
pseudo Holder exponent h = −1. It is not yet clear whether this blow-up scenario via
reconnection is indeed present in Navier–Stokes, where interactions are more complex and
self-regularizing mechanisms are present [57]. On the one hand, this blow-up scenario
may explain why most irregular places are found near vortex interaction (see previous
section). On the other hand, the value h = −1 is forbidden by the properties of NSE (see
Section 2.3.3), and no value of h lower than h = −0.2 has ever been observed.

4.4. Singularity in the Complex Plane
Singularity Strip

A third possibility was initially proposed by Frisch and Morf [11]. It corresponds to
a situation where the analytical continuation of the velocity field has complex branching
points or poles that cross the real axis. This possibility is hard to investigate theoretically,
because it is hard to establish the dynamics of those potential poles from the NSE. This has
only be done for simpler 1D partial differential equations such as Burgers or KdV, using
a technique invented by Calogero [58]. Forr example, Senouf et al. [59] found that the
poles of Burgers equation with imaginary viscosity Iν follow a Calogero dynamics, with
logarithmic potential. The distance of the closest poles to the real axis is O(ν3/4), while
distance between poles on the imaginary axis is O(ν).

In more general cases, one can still try to follow numerically the fate of the poles that
lay closest to the real axis, using the “singularity strip” method. This method is based on
the observation that if the velocity field follows u(z) ∼ 1/(z− z∗)γ, with z∗ = a + ib, then
it Fourier transform satisfies:

FT(u)(k) ∼ k−d−γ sin(ka)e−bt. (41)
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The exponential decay of FT(u) results in a similar exponential decay for the energy
spectrum, over a typical distance δ = 2b. Monitoring the decay of the velocity spectrum
therefore enables to measure the distance to the axis of the closest pole.

Such a method is simple to implement in theory, but difficult in practice because one
needs to have a very good resolution to resolve the dissipative range and be able to have a
reliable fit of the potential exponential decay.

This difficulty is illustrated in Figure 6a for the different spectra of Figure 1. One sees
that one needs a very good resolution to be able to distinguish clear exponential decay,
that shows up only when kη ≥ 4. For kη near unity, it may well be that the decay is in
fact a stretched exponential [60], with exponent that may be close to the prediction by the
renormalization group [60–62]. Given these caveats, one may try to infer the behaviour
of the width of the singularity strip as a function of Rλ. This is shown in Figure 6b.
One observes that the singularity strip width decays faster than the Kolmogorov length.
Specifically, δ/η displays a power-law decay with exponent −0.29. Can we understand
this value?

0 2 4 6 8 10

-40

-30
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0

(a)

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6
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Figure 6. (a) Compensated energy spectrum k5/3E(k)/ε2/3 vs. kη in the dissipative range for DNS at
Rλ = 52 to 650, where the color codes the Reynolds number, and with color code providedin panel
(b). The plot is in log-lin so that a straight line corresponds to an exponential decay. The area where
this is satisfied is delimited on each case via yellow symbols. The fit is materialized by a black line.
(b) Non-dimensional width of the singularity strip 2 δ/η as a function of Rλ. The black dotted line is
corresponds to a power-law R−0.29

λ .

4.5. The Fluctuating Dissipation Scale and Correspondence Conjecture

A possible interpretation is the following, based on Frirsch and Morf [11] ideas, and
on multi-fractal properties. Imagine that turbulence is characterized by a distribution of
complex poles-that may dynamically interact following some sort of Calogero type of
dynamics. The distance of these singularities to the real axis is δi, where i is the label
corresponding to the ith pole. Around each pole, the velocity field behaves as u(z) ∼
1/(z − zi)

γi , so that in the real space, u(x) (respectively ∂xu) behaves like a power-law
with exponent −γi (respectively γi − 1) over a distance δi from the real part of zi. In some
sense, δi therefore acts as a local “cut-off”, that prevents formation of two large velocities
(or velocity gradients). This notion is therefore similar to the local multi-fractal dissipative
scale ηh introduced in Section 4, and we may establish a correspondence δi → ηh. In that
respect, at fixed ν, the distribution of ηh is determined by the distribution of δi.

From the singularity strip method, we cannot determine the full distribution of δi,
since the spectrum decay will be dominated by behaviour near the poles that is closest
to the real axis, resulting in δ = mini(δi). Because it is the “most singular” point, it will
correspond to the location where h = hmin, the minimum Holder exponent in the set. We
this get δ ∼ ν1/(1+hmin). Since ν ∼ 1/R2

λ, we finally get
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δ

η
= R−α

λ ,

α = 2
(

1
1 + hmin

− 3
4

)
. (42)

For α = 0.29, as observed here, we thus get hmin = 0.12, close to what is observed in
periodic DNS.

5. Conclusions

The multi-fractal framework invented by G. Parisi and U. Frisch proved to be a very
powerful tool in incompressible 3D turbulence [63–65], both from the Eulerian [66] and
Lagrangian point of view [67–69]. It should be viewed as a natural and general extension
of the Kolmogorov theory. The adaptation of the global theory to geophysical flows is
straightforward and very relevant, as already shown by Schertzer, Lovejoy and their
collaborators [27–29]. To our knowledge, however, there has been no attempt to adapt
the local theory to geophysical flows. Given the potential of such a framework to detect
the most irregular structures, it would be certainly very illuminating to investigate the
topological and dynamical properties of “most irregular areas” as defined by the local
theory. Indeed, it may provide a physically based and statistically unbiased way to define
“local extreme events”. Whether such events do correspond to local extreme events of
societal interest (such as storms, heat waves, etc.) is an open question. I certainly hope that
the present review will motivate research in that direction.
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