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Abstract: A model-free fractional-order sliding mode control (MFFOSMC) method based on a non-
linear disturbance observer is proposed for the electric drive system in this paper. Firstly, the ultra-
local model is established by using the mathematical model of electric drive system under parameter
perturbation. Then, aiming at reducing the chattering of the sliding mode controller and improving
the transient response, a model-free fractional-order sliding mode controller is designed based on
fractional-order theory. Next, considering that the traditional sliding mode control can only suppress
matched disturbance and that it is sensitive to mismatched disturbance, a non-linear disturbance
observer is used to estimate disturbance, and the estimated variables are used in the design of a
sliding mode surface to improve the tracking accuracy of the system. Finally, the experiment is
completed on an asynchronous motor drive platform. Compared with the model-free integer-order
sliding mode control (MFIOSMC), the results show that the proposed method has good dynamic
response and strong robustness. Meanwhile, the proposed method reduces the dependence on
mathematical models.

Keywords: model-free fractional-order sliding mode control (MFFOSMC); electric drive system;
non-linear disturbance observer (NDO); mismatched disturbance; asynchronous motor (AM)

1. Introduction

Due to reliable operation, simple structure and convenient maintenance, asynchronous
motors (AMs) have been widely used in industrial and energy systems [1], such as elec-
tric vehicles [2], electric railway vehicles [3], and wind energy [4]. However, the drive
and control system of the AMs is relatively complex, which limits the application in
high-performance control. With the development of control theory and power electronic
technology, the new control strategies of asynchronous motor have gained more attention.
In these methods, the sliding mode control (SMC) has become a research hotspot due to
the characteristics of simple structure and strong robustness to parameter perturbation and
external disturbance [5]. However, the chattering of SMC is an inherent defect, which will
affect control accuracy, damage running parts and increase energy consumption [6].

In recent studies, to suppress the chattering of sliding mode control, some scholars
have combined sliding mode control technology with advanced control algorithms, such
as neural network control [7], fuzzy control [8], and optimal control [9], but the controller
becomes very complex. At the same time, the researchers curb the shortcomings of the
sliding mode control through innovative algorithms. As a kind of high-order sliding mode
control algorithm, the super-twisting sliding mode control algorithm can effectively weaken
the chattering existing in the system, but it is also very complex [10]. Terminal sliding
mode control can converge in finite time and reduce chattering, but it also suffers from
singularity problems [11,12]. The improved reaching law method can directly act on the
reaching process, which can effectively reduce the system chattering, but it is difficult to
keep the system state on the sliding surface with zero error [13].
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Considering the two deficiencies of sliding mode control: (1) The control system
is not robust when the system is in the reaching stage. (2) The chattering phenomenon
of the system after reaching the sliding mode surface, the integral sliding mode control
(ISMC) [14] is established by adding an integral term to the sliding mode surface. ISMC
can set the initial state of the system, so that the arrival phase of the system is eliminated
to improve anti-disturbance performance [15]. Most of the existing studies about ISMC
are based on integer-order method, but there is an overshoot problem [16]. Since the
integer-order integral has an accumulative effect on the error, if the error between the initial
signal and the given value is too large, the phenomenon of integral saturation will occur,
which will lead to the large overshoot and the long adjustment time [17].

With the development of fractional-order theory, fractional calculus has received
enormous attention in engineering control [18,19]. As a generalization of integer-order
calculus, fractional-order differential can convert the sign function of control input into
fractional-order derivative form, so that the chattering phenomenon caused by switch
control action can be effectively avoided and high-precision control can be realized [17].
Fractional-order integral is a low-pass filter of a sign function that removes high-frequency
components. In [20], the fractional-order terminal sliding mode control is introduced to
integer-order non-linear systems, which reduces the chattering and improves the dynamic
response of the system. Due to fractional-order tunability, the system can respond quickly
and dynamically [21,22]. In [23], a discrete-time fractional-order terminal sliding mode
control strategy is applied to linear motors. The control accuracy and response speed of
the motor are improved, and it has certain robustness to uncertain disturbance. In [24],
to ensure the system stability and simplify the design, a second-order sliding surface using
a fractional module is constructed. For non-holonomic mobile robot system under external
disturbances, fixed-time fractional-order global sliding mode control approach is proposed
in [25] to against disturbances. A novel adaptive super-twisting non-linear fractional-
order PID sliding mode control strategy using extended state observer is presented in [26],
the results demonstrate that the proposed control strategy not only achieve good stability
and dynamic properties, but also is robust to external disturbance. In order to improve the
anti-disturbance performance of a bearingless induction motor control system, a fractional-
order sliding mode control strategy based on improved load torque observer is proposed
on the basis of the sliding mode speed regulation system in [27].

It should be noted that although the fractional-order sliding mode control algorithms
have many advantages in motor control, it is still a model-based control method, besides the
motor control performance is closely related to the model parameters. To reduce the
dependence on mathematical models, a model-free adaptive control algorithm is proposed
in [28]. In [29], the model-free sliding mode control is applied to PMSM, which simplifies
the adjustment process of controller parameters. The experiment proves that the method
has good robustness for the disturbance. A model-free non-singular terminal sliding mode
control method is proposed in [30], which ensures that the PMSM can reliable operate
regardless of permanent magnet demagnetization faults and external disturbance.

For unknown linear systems perturbed by odd-harmonics disturbances, a tracking
control strategy that combine adaptive and repetitive control methods is presented in [31].
In [32], the digital design of adaptive repetitive control for a class of linear systems sub-
ject to time-varying periodic disturbance is proposed, whose periods are assumed to be
identifiable. In [33], in order to further reduce the chattering caused by sliding mode
control, the extended state observer is used to estimate the system disturbance, which
improves the control accuracy of the system. The optimal double-layer sliding mode ob-
server is proposed in [34], which can reduce chattering and improve tracking performances.
The above algorithm has good robustness to the matched disturbance, and has limited
effect on the mismatched disturbance. So as to suppress the disturbance of the mismatched
term, the lumped disturbance is considered in the mathematical model [35], and the esti-
mated value of the disturbance is used for feedforward compensation, which effectively
suppresses the influence of the disturbance.
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Motivated by the above analysis, a model-free fractional-order sliding mode control
(MFFOSMC) method based on non-linear disturbance observer is proposed for asyn-
chronous motor drive in this paper. First, the motor model is simplified to a ultra-local
model, which reduces the complexity of model. Then, by introducing fractional calculus
into the sliding mode surface, the chattering is reduced and the dynamic response of the
system is improved. The lumped disturbance is estimated by using a non-linear disturbance
observer, and the disturbance rejection performance of the system is further improved.
The experimental results show that the proposed method has fast convergence performance
and strong anti-disturbance performance.

The main contributions of this paper are summarized as follows.

(1) The ultra-local model of the AM is established, which reduces the dependence on
motor parameters.

(2) A fractional-order sliding mode control method is proposed, which reduce the chat-
tering of sliding mode control and improve dynamic performance. Speed-current
no-cascade control structure is adopted to effectively simplify the system structure.

(3) A model-free sliding-mode controller for asynchronous motors based on non-linear
disturbance observer is designed, which not only improves the dynamic performance
of the system, but also enhances the robustness of the system.

The remainder of this paper is arranged as follows. The Section 2 introduces the
fractional-order calculus fundamental. The mathematical model and the ultra-local model
of AM is established in Section 3. The MFFOSMC controller and the non-linear disturbance
observer are designed in Section 4. The experimental results is shown in Section 5. A brief
conclusions of the paper is presented in Section 6.

2. Fractional-Order Calculus Fundamentals
2.1. Introduction of Fractional-Order Calculus

Fractional-order operators are extensions of traditional integer-order calculus opera-
tors. Fractional-order calculus operators are defined as follows [36].

t0 Dα
t f (t) =


dα

dtα f (t), α > 0

f (t), α = 0∫
f (τ)dτ−α, α < 0

(1)

where t0 and t are the upper and lower bounds of the operator, α is the order of the calculus,
α > 0 is considered a differential, and α < 0 is an integral.

During the development of fractional-order theory, scholars have given a variety of
definitions, among which the R-L fractional integral of α-order is defined as [37,38]

t0 D−α
t f (t) =

1
Γ(α)

∫ t

t0

(t− τ)α−1 f (τ)dx (2)

where α > 0, Γ(α) is the Gamma function,

Γ(α) =
∫ ∞

0
e−ttα−1dt (3)

The most common Caputo definition of α-order fractional-order calculus in the field
of engineering control is

C
t0

Dα
t f (t) =

1
Γ(n− α)

∫ t

t0

(t− τ)n−α−1 f (n)(τ)dx (4)

where α > 0, n > α > n− 1, n ∈ N.
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The Laplace transform of α-order fractional-order calculus (0 initial condition) at t = 0 is

L{Dα f (t)} = sαF(s) (5)

2.2. Analysis of Fractional-Order Operators

The frequency domain analysis of the system can be carried out by bringing s = jω
into the transfer function.

In the frequency domain range (ωb, ωh), the approximation order N is set, and the
fractional-order operator can use the Oustaloup filter for a good approximation. When
1 > α > 0, the recursive filter of Oustaloup for sα is

G f (s) = K
N

∏
k=−N

s + ω′k
s + ωk

= sα (6)

where ω′k, ωk , K are, respectively,

ω′k = ωb

(
ωh
ωb

) k+N+1/2(1−α)
2N+1

, ωk = ωb

(
ωh
ωb

) k+N+1/2(1+α)
2N+1

, K = ωh
α (7)

A modified oustaloup filter has been proposed in [39]. It is given by

sα =

(
dωh

b

)α( ds2 + bωhs
d(1− α)s2 + bωhs + dα

)
Gp (8)

where ω′k, ωk , K are, respectively, Gp(s) =
N
∏

k=−N

s+ωk
′

s+ωk
, ωk

′ =
(

dωb
b

)−2k+α
2N+1 , ωk =

(
bωh

a

) 2k+α
2N+1 ,

b = 10, d = 9.
The fractional-order system is approximated by the Oustaloup filter.

2.3. Comparison of Fractional-Order Sliding Mode and Integer-Order Sliding Mode

Take a simple fractional-order linear sliding surface as an example for analysis [40]

s = 0Dr
t x(t)− Ax(t) (9)

where 1 > r > 0, x ∈ Rn, A is the coefficient matrix and A = (aij) ∈ Rn×n.
When the system state reaches the sliding mode surface, the fractional-order system

and the integer-order system satisfy the following conditions

0Dr
t x(t) = Ax(t) (10)

Solve Differential Equation (10)

x(t) = Er,1(t)x0 (11)

where

Er,β(t) =
∞

∑
k=0

Aktrk

Γ(rk + β)

is the state transfer function, β generally takes as β = 1, Γ(·) is the Gamma function, and it
is defined in Equation (3).

The transfer function of the integer-order system is

E1,1(t) =
∞

∑
k=0

Aktk

Γ(k + 1)
=

∞

∑
k=0

Aktk

k!
= eAt (12)
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The transfer function of the fractional-order system is

Er,1(t) =
∞

∑
k=0

Aktrk

Γ(rk + 1)
≈ 1

Γ(1− r)
A−1t−r (13)

From (12) and (13), it can be obtained that the state variables of the integer-order
system converge to zero at the speed of eAt on the sliding mode surface, and the state
variables of the fractional-order system converge at the speed of t−r. This indicates that the
energy transfer of fractional-order sliding mode surfaces is slower than that of integer-order.

Figure 1 shows the comparison between fractional-order sliding mode control and
integer-order sliding mode control. When the system state variable moves on the sliding
surface, the switching control takes effect, and it takes time for the control output u(t) to
switch from +u(t) to −u(t). This process is called time delay. Time delay is the main cause
of chattering. In Figure 1, when the system state reaches the sliding surface from the initial
state (x0, y0). For fractional-order systems, the switching control takes effect only when
the system state reaches (x1, y1), and the delay at this time is tm. The system state will
converge to zero in the form of t−r. For an integer-order system, the switching control
comes into play at (x1’, y1’), where the delay is tm’. The system state will converge to the
origin in the form of e−t. The delay time of the system depends on the actuator, so tm =
tm’, that is, when 1 > r > 0, e−tm

′
>tm

−r. It can be seen from the above analysis that the
chattering of the fractional-order system is smaller than that of the integer-order system,
and the fractional-order system can effectively suppress the chattering added [39,40].

Figure 1. Comparison between fractional-order sliding mode control and integer-order sliding
mode control.

3. Mathematical Model of AM

Based on the rotor field-oriented technology, the mathematical model of the AM in the
d-q synchronous rotating frame can be expressed as

disd
dt = usd

Lc
−
(

Rs
Lc

+ Lm
2

Tr Lc Lr

)
isd + ωsisq +

Lm
Tr Lc Lr

λrd + fisd

disq
dt =

usq
Lc
−
(

Rs
Lc

+ Lm
2

Tr Lc Lr

)
isq −ωsisd − Lmωr

Lc Lr
λrd + fisq

dλrd
dt = 1

Tr
(Lmisd − λrd) + fλ

dω
dt = 1

J (Te − TL) + fω

(14)
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where Tr= Lr
Rr

represents the rotor time constant, Te = np Lmλrdisq
Rr

is the electromagnetic torque,

ωr = npω denote rotor electrical angular velocity, ωs = npω +
Lmisq
Trλrd

denote stator electrical

angular velocity, Lc = Ls Lr−Lm
2

Lr
. np is the pole pairs, Ls, Lr, and Lm are the stator inductance,

rotor inductance and mutual inductance, respectively. Rs and Rr are stator resistance and
rotor resistance. Usd and Usq are the stator voltage of d-axis and q-axis. λrd , λrq represents
the rotor flux of d-axis and q-axis, ω denote rotor mechanical angular velocity. J, TL are
the moment of inertia and load torque. fisd, fisq, fλ, and fω are the lumped disturbances of
motor system.

The second and fourth expressions in model (1) can be rewritten as
disq
dt =

(
1
Lc
− α1

)
usq + α1usq −

(
Rs
Lc

+ Lm
2

Tr Lc Lr

)
isq −ωsisd − Lmωr

Lc Lr
λrd + fisq

dω
dt =

(
1
J

np Lmλrd
Lr

− α2

)
isq + α2isq − 1

J TL + fω

(15)

where α1, α2 represent the proportional adjustable coefficient.
According to model-free theory [14], the model (15) can be simplified to a ultra-local

model as { disq
dt = α1usq + Fisq

dω
dt = α2isq + Fω

(16)

where Fisq =
(

1
Lc
− α1

)
usq −

(
Rs
Lc

+ Lm
2

Tr Lc Lr

)
isq − ωsisd − Lmωr

Lc Lr
λrd + fisq,

Fω =
(

1
J

np Lmλrd
Lr

− α2

)
isq − 1

J TL + fω are the lumped disturbance including uncertain
parameters and external unknown perturbation.

Define the speed error as
ωe = ω∗ −ω (17)

where ω∗, ω are the given speed and actual speed of motor.
By combining (16) and (17), the ultra-local model of the speed loop can be rewritten as{

(−α2)
disq
dt = (−α2)α1usq + (−α2)Fisq

dωe
dt = ω̇∗ − ω̇ = ω̇∗ − α2isq − Fω

(18)

Let x1 = ωe, x2 = −α2isq, then {
ẋ2 = −α1α2usq + d2
ẋ1 = x2 + d1

(19)

where d1 = ω̇∗ − Fω , d2 = −α2 Fisq. d1 and d2 are the mismatched disturbance and
matched disturbance. Assuming that the system disturbance is bounded and slowly
varying, the boundary of the disturbance can be expressed as |d1| ≤ D1, |ḋ1| ≤ D11 and
|d2| ≤ D2 , |ḋ2| ≤ D22, where D1, D11, D2, D22 are positive.

4. Design of Speed Controller for AM
4.1. Analysis of Traditional Sliding Surface with Mismatched Terms

In the traditional sliding mode controller, the linear sliding mode surface is composed
of state variables as follows

s = x1 + cx2 (20)

where c is a constant and greater than 0.
Regardless of the system disturbance, when the system state reaches the sliding mode

surface, the equivalent control of the system (19) is

ueq =
1

cα1α2
x2 (21)
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The switching control of system (19) is

usw =
k

cα1α2
sgn(s) (22)

where k is the designed controller gain, k > 0. Then, the designed controller is

u = ueq + usw (23)

Substitute the designed controller (23) into the sliding surface (20)

ṡ = d1 + cd2 − ksgn(s) (24)

If the set value of k is greater than d1 + cd2, the system will eventually reach the sliding
surface s = 0 [20]. On the sliding surface of the system and without considering the system
chattering, it can be obtained

ẋ1 = −1
c

x1 + d1 (25)

Solving the differential Equation (25)

x1(t) = [x1(0)− cd1 ]e
−t/c + cd1 (26)

where x1(0) is the initial value of the system speed error variable.
From the analysis of Formula (26), when the system state reaches the sliding mode sur-

face and d1 6= 0, the speed error variable x1 (t) will not converge to 0. For the systems with
mismatched disturbance, this is a problem faced by traditional sliding mode controllers.

4.2. Design of Fractional-Order Sliding Mode Controller

In order to obtain accurate and fast control of the motor speed, a novel fractional-order
sliding mode surface with mismatched disturbance is designed as follows

s = c1t0 Dv−1
t x1 + c2x1 + x2 + d̂1 (27)

where c1 > 0, c2 > 0, 1 > v > 0 are constants that need to be designed. The introduction of
ḋ is used to remove the effect of mismatched disturbance. Then, considering the advantages
of the fractional-order relative to the integer-order, the dynamic performance of the system
is improved by introducing the fractional-order term in the sliding mode surface.

The time derivative of sliding surface (27) is

ṡ = c1t0 Dv
t x1 + c2(x2 + d1)− α1α2usq + d2 +

˙̂d1 (28)

By introducing s = 0 into Equation (28), the equivalent controller of the system can be
obtained as

ueq =
1

α1α2

[
c1t0 Dv

t x1 + c2(x1 + d1) + d2 +
˙̂d1

]
(29)

Using the exponential reaching law

ṡ = −εsgn(s)− ks (30)

The fractional-order sliding mode controller based on exponential reaching rate is
designed as

usq = ueq + usw

= 1
α1α2

[
c1t0 Dv

t x1 + c2(x2 + d1) + d2 +
˙̂d1

]
+ 1

α1α2
[εsgn(s) + ks]

(31)
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Define the Lyapunov function as [40,41]

V =
1
2

s2 (32)

Then

V̇ = sṡ
= s
[
c1t0 Dv

t x1 + c2(x2 + d1)− α1α2usq + d2 +
˙̂d1

]
= s

c1t0 Dv
t x1 + c2(x2 + d1)− α1α2


1

α1α2

[
c1t0 Dv

t x1 + c2(x2 + d1) + d2 +
˙̂d1

]
+ 1

α1α2
[εsgn(s) + ks]

+ d2 +
˙̂d1


= −ε|s| − ks2

(33)

When the parameters satisfy conditions of ε > 0, k > 0, then V̇ ≤ 0 is satisfied.
According to Lyapunov stability theory, the designed controller is asymptotically stable.

To sum up, the diagram of the composite control system of AM based on MFFSMC is
shown in Figure 2. The composite control system consists of flux linkage regulator, speed
regulator, vector coordinate transformation module, space vector pulse width modulation
module, converter module, asynchronous motor, flux linkage observer, and non-linear
disturbance observer, where the flux linkage regulator is a cascaded PI controller, speed
regulator is the designed MFFOSMC controller.

Figure 2. The diagram of the composite control system of AM based on MFFSMC.

4.3. Design of Non-linear Disturbance Observer

Since the system performance is affected by the uncertainty of the motor parameters
and the load disturbance, in order to improve the anti-disturbance performance of the
fractional-order sliding mode controller and the dynamic response of the system, a non-
linear disturbance observer is constructed. By compensating the estimated disturbance to
the single-loop controller, the influence of disturbance on the system is reduced.

Converting the ultra-local model (19) into matrix form[
ẋ1
ẋ2

]
=

[
0 1
0 0

][
x1
x2

]
+

[
0

−α1α2

]
usq +

[
1 0
0 1

][
d1
d2

]
(34)

The estimated values of d1 and d2 are written as[
d̂1
d̂2

]
=

[
p1
p2

]
+

[
r1 0
0 r2

][
x1
x2

]
(35)

where p1, p2 are intermediate variables and r1, r2 are observer gains.
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Substituting (35) into (34), then

[
ṗ1
ṗ2

]
= −

[
r1 0
0 r2

][
ẋ1
ẋ2

]
= −

[
r1 0
0 r2

]〈[
0 1
0 0

][
x1
x2

]
+

[
0

−α1α2

]
usq +

[
1 0
0 1

]{[
p1
p2

]
+

[
r1 0
0 r2

][
x1
x2

]}〉
[

d̂1
d̂2

]
=

[
p1
p2

]
+

[
r1 0
0 r2

][
x1
x2

] (36)

The structure of the non-linear disturbance observer designed in this section is shown
in Figure 3.

Figure 3. The structure of the non-linear disturbance observer.

5. Experimental Results

In order to validate the effectiveness of the proposed model-free fractional-order
sliding mode control with non-linear disturbance observer for AM, the experiment is
completed based on a hardware-in-loop experimental platform LINKS-RT. The photograph
of experimental platform is shown in Figure 4. Table 1 lists the parameters of the AM.

To demonstrate the superiority of the proposed method, the speed controllers based
on MFFOSMC and MFIOSMC with disturbance observer are designed for comparison.
The parameters of control system are obtained by trial and error method. The parameters of
model-free fractional-order sliding mode controller are chosen as k = 5, v = 0.8, c1 = 1200,
c2 = 5, and ε = 5.

Figure 4. Experimental platform.
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Table 1. Parameters of AM.

Parameters Symbol Value

rated power PN 1.5 KW
rated stator voltage UN 220 V
rated stator current IN 5.9 A

stator resistance Rs 0.96 Ω
rotor resistance Rr 0.93 Ω

stator inductance Ls 118.32 mH
rotor inductance Lr 118.67 mH

mutual inductance Lm 112.23 mH
number of pole pairs np 2

moment of inertia J 0.0038 kg·m2

5.1. Low Speed Performance
5.1.1. Low Speed Startup Performance

Firstly, the transient response experiments of the proposed method are performed
under low reference speed. The reference speed is given as n = 300 r/min, and the results
are shown in Figure 5. It can be seen from Figure 5 that the setting times are 0.8 s and 0.9 s,
based on MFFOSMC + NDO and MFIOSMC + NDO, respectively. As shown in Figure 6,
the speed fluctuations under MFIOSMC + NDO is 11 r/min, the proposed method reduce
speed fluctuation by 27% (3 r/min). Compared with MFIOSMC + NDO, the proposed
MFFOSMC + NDO has the shortest setting time and smaller speed fluctuation under low
reference speed.

Figure 5. The response curves at low speed.
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Figure 6. The speed fluctuation of motor at low speed.

5.1.2. Low Speed Anti-Disturbance Performance

To further verify the robustness for external disturbance, the anti-disturbance experi-
ment is provided. In order to test this performance, when the motor is running at 300 r/min,
the load torque of 3.5 N·m is suddenly added to the motor at t = 5 s and removed at t = 10 s.
The anti-disturbance curve of 300r/min speed is shown in Figure 7. Figure 7 illustrates
that the steady-state speed of the fractional-order sliding mode controller fluctuates to
265 r/min when the load torque is added in 5 s, and returns to the set speed at 5.6 s; the
steady-state speed of the integer-order sliding mode controller fluctuates to 258 r/min,
and reaches the set speed at 5.8 s. When the load torque is canceled within 10 s, the speed of
the integer-order sliding mode controller fluctuates to 338 r/min, and resumes the set speed
at 10.8 s; the speed of the fractional-order sliding mode controller fluctuates to 332 r/min,
and reaches the set speed at 10.8 s. The results prove that the fractional-order sliding
mode controller can better reduce the impact of disturbance, increase the robustness of
the system.

Figure 7. The speed curves with disturbance at low speed.

5.2. Middle Speed Performance
5.2.1. Middle Speed Startup Performance

Then, the startup control performance of the methods MFFOSMC + NDO and MFIOSMC
+ NDO under middle reference speed are compared. The experimental results are shown
in Figures 8 and 9. It can be seen from Figure 8 that the settling time using the method
MFIOSMC + NDO to reference speed is 0.85 s, while the settling time using the method
MFFOSMC + NDO to reference speed is 0.75 s. From Figure 9, we can see that the speed
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fluctuation is about 8 r/min, 12 r/min, respectively. The result above show that the
proposed MFFOSMC + NDO has the faster dynamic response time and less chattering.

Figure 8. The response curves at middle speed.

Figure 9. The speed fluctuation of motor at middle speed.

5.2.2. Middle Speed Anti-Disturbance Performance

In this experiment, we test the speed fluctuation due to external disturbance. The test
conditions are that the motor runs in 500 r/min, and a load torque of 3.5 N·m is added
at t = 5 s and then removed at t = 10 s. The anti-disturbance curve of 500 r/min speed
is shown in Figure 10. The waveforms illustrates that the steady-state speed with the
fractional-order sliding mode controller fluctuates to 465 r/min when the load torque is
added in 5 s, and returns to the set speed at 5.6 s. The steady-state speed with the integer-
order sliding mode controller fluctuates to 460 r/min, and reaches the set speed at 5.8 s.
When the load disturbance is removed at t = 10 s, the motor speed of the integer-order
sliding mode controller rises to 532 r/min and the motor speed of the fractional-order
sliding mode controller rises to 530 r/min. The recovery time is about 0.8 s. As seen in
Figure 10, when the load torque is changed, the proposed method under middle speed has
the smaller speed fluctuation.
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Figure 10. The speed curves with disturbance at middle speed.

5.3. High Speed Performance
5.3.1. High Speed Startup Performance

Finally, the control performance of the proposed method under high reference speed
is tested, and the experimental results are shown in Figures 11 and 12. Figure 11 shows
that based on two methods is 0.82 s and 0.9 s, respectively. Figure 12 indicates that the
steady-state speed fluctuation with the fractional-order sliding mode controller is 10 r/min,
while the steady-state speed fluctuation with the integer-order sliding mode controller is
12 r/min. According to the above analyses, the proposed MFFOSMC + NDO has the better
transient performance and the smaller speed fluctuation.

Figure 11. The response curves at high speed.
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Figure 12. The speed fluctuation of motor at high speed.

5.3.2. High Speed Anti-Disturbance Performance

The robustness performance for the disturbance under high speed is very impor-
tant. To validate the superiority of the proposed approach, when the motor is running
at 800 r/min, the load torque of 3.5 N·m is added to the motor at t = 5 s and removed
at t = 10 s. The results are shown in Figure 13. It is obvious from Figure 13 that when
the load torque is added in 5 s, the speed with the integer-order sliding mode controller
fluctuates to 763 r/min, and returns to the set speed at 5.8 s; the speed with fractional-order
sliding mode controller fluctuates to 775 r/min, and reaches the set speed again at 5.5 s.
When the load torque is canceled at 10s, the speed with the integer-order sliding mode
controller fluctuates to 835 r/min, and resumes to the set speed at 10.8 s. The speed with
fractional-order sliding mode controller fluctuates to 828 r/min, and reaches the set speed
at 10.8 s. The results above show that the proposed method under high speed has the
strong robustness.

In order to show the operation of asynchronous motor clearly, the detailed comparison
of the two control algorithms at different speeds are summarized in Table 2. It can be seen
from the Table 2 that the proposed method has smaller mean square error and achieves
better speed tracking control. The experimental results above show that the proposed
control strategy with MFFOSMC + NDO has the fast convergence speed, the good steady
performance and the strong robustness for disturbance.

Figure 13. The speed curves with disturbance at high speed.
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Table 2. Detailed comparison of the two control algorithms at different speeds.

Speed Control Scheme Root Mean Square Error

300 rpm MFIOSMC 4.2948
300 rpm MFFOSMC 4.2795
500 rpm MFIOSMC 5.6966
500 rpm MFFOSMC 5.5471
800 rpm MFIOSMC 7.2379
800 rpm MFFOSMC 7.1444

6. Conclusions

Aiming at the speed regulation problem of an asynchronous motor, a model-free
fractional-order sliding mode controller based on non-linear disturbance observer is pro-
posed in this paper. Mismatched disturbance are introduced in the sliding mode surface
and estimated by the non-linear disturbance observer to eliminate the influence of non-
linear disturbance. At the same time, due to the effect of fractional-order sliding mode
surface, the dynamic performance of the system is improved and the robustness of the
system is enhanced. The experimental results show that compared with the traditional
integer-order sliding mode controller, the proposed control strategy has faster response
time, better tracking performance, and stronger anti-disturbance ability at different speeds.
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