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Abstract: Distributed-order, space-fractional diffusion equations are used to describe physical pro-
cesses that lack power-law scaling. A fourth-order-accurate, A-stable time-stepping method was
developed, analyzed, and implemented to solve inhomogeneous parabolic problems having Riesz-
space-fractional, distributed-order derivatives. The considered problem was transformed into a
multi-term, space-fractional problem using Simpson’s three-eighths rule. The method is based on
an approximation of matrix exponential functions using fourth-order diagonal Padé approximation.
The Gaussian quadrature approach is used to approximate the integral matrix exponential function,
along with the inhomogeneous term. Partial fraction splitting is used to address the issues regarding
stability and computational efficiency. Convergence of the method was proved analytically and
demonstrated through numerical experiments. CPU time was recorded in these experiments to show
the computational efficiency of the method.

Keywords: distributed-order; Riesz-space-fractional diffusion; Padé approximation; splitting technique

1. Introduction

Complex processes which obey a mixture of power laws and flexible variations in
space are modeled by distributed-order, space-fractional differential equations. Distributed-
order, space-fractional differential equations are used to model the phenomena where
the order of differentiation varies in a given range [1,2]. Due to their nonlocal properties,
the distributed-order differentials can model more complex dynamical systems than the
fractional-order or classical models.

Consider the following two-dimensional Riesz-space, distributed-order, fractional,
inhomogeneous diffusion equation:

∂u
∂t

= Kx

2∫
1

P(α)
∂αu

∂|x|α dα + Ky

2∫
1

Q(β)
∂βu

∂|y|β
dβ + f (x, y, t), (x, y, t) ∈ Ω× (0, T], (1)

with initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

and boundary condition

u(x, y, t) = 0, (x, y) ∈ ∂Ω,
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where Ω = (a, b)× (c, d). The coefficients P and Q are non-negative functions defined on
(1, 2], that are not identically zero and satisfy

0 <

2∫
1

P(α)dα < ∞, 0 <

2∫
1

Q(β)dβ < ∞.

The inhomogeneous source term f is assumed to be sufficiently smooth. The distributed-
order, space-fractional derivative terms are approximated using Simpson’s three-eighth
rule. For any 1 < αi ≤ 2, the two-sided, Riesz-space-fractional derivative operator ∂αi

∂|x|αi on
a finite interval (a, b) is given by

∂αi

∂|x|αi
= − 1

2 cos παi
2

[
aDαi

x + xDαi
b
]
, 1 < αi ≤ 2, (2)

where aDαi
x is the left Riemann–Liouville and xDαi

b is the right Riemann–Liouville fractional
derivatives, which are, respectively,

aDαi
x u(x, y, t) =

1
Γ(2− αi)

∂2

∂x2

∫ x

a
(x− χ)1−αi u(χ, y, t) dχ,

xDαi
b u(x, y, t) =

1
Γ(2− αi)

∂2

∂x2

∫ b

x
(χ− x)1−αi u(χ, y, t) dχ.

The Riesz-space-fractional derivative operator ∂
βj

∂|y|βj
on (c, d) is defined similarly.

A recent review article [3] provided a state-of-the-art introduction to the mathematics
of distributed-order fractional calculus, along with analytical and numerical methods.
An extensive overview of the applications of distributed-order fractional calculus with
applications to viscoelasticity, transport processes, and control theory have been discussed.

Anomalous diffusion phenomena take place in many complex systems, such as subsur-
face flows, human tissues, viscoelastic material, and plasma. In such systems, the diffusion
is slower or faster than normal, the probability density function is not anymore Gaussian,
and the mean-square displacement is not linear in time; see, for example, [4] and references
therein. As such, the predictions obtained through integer-order local models do not match
the collected data and observed behaviors. Riesz-space-fractional diffusion equations
provide a powerful mathematical tool for modeling such phenomena. In these models,
the diffusion rate depends on the global state of the field. In particular, the order of the
Riesz fractional derivatives identifies the power-law scaling of the physical process.

Many physical processes, however, lack power-law scaling and cannot be character-
ized by specific scaling exponents. Among these processes are several cases of accelerating
super diffusion [5–7]. These processes can easily be described by Riesz-space distributed-
order fractional diffusion equations.

There are many applications of the distributed-order fractional operators. For example,
applications to fields such as viscoelasticity, transport processes, and control theory were
discussed by Ding et al. in [3], and Patnaik et al. [8] discussed applications of variable- and
distributed-order fractional operators to the dynamic analysis of nonlinear oscillators.

Analytical solutions for some problems were constructed by Caputo [5] and Sokolov et al. [6].
The well-posedness of particular classes of such problems were studied by Jia et al. [9].
Numerical solutions for distributed-order space-fractional models on bounded domains are
in high demand, since analytical solutions are not in general available. Wang et al. [2] de-
veloped a second-order-accurate, implicit numerical method for one- and two-dimensional
Riesz-space, distributed-order fractional advection–dispersion equations. Their method
is based on use of a midpoint quadrature rule for the Riesz space distributed-order term.
Li et al. [10] proposed an unconditionally stable second-order Crank–Nicolson method for
a one-dimensional Riesz space distributed-order diffusion equation. The method is based
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on midpoint quadrature and the finite volume method. For the two-dimensional Riesz-
space, distributed-order advection–diffusion equation, a Crank–Nicolson ADI, Galerkin–
Legendre spectral method was developed by Zhang et al. [11]. Jia and Wang [12] designed
a fast finite difference method for distributed-order, space-fractional partial differential
equations on convex domains. Qiao et al. [13] analyzed the velocity distributions of the
distributed/variable-order fractional Maxwell governing equations under specific condi-
tions, and discussed the effects of different parameters on the solution.

The time-stepping methods mentioned in all the above-mentioned references are of
second order. The purpose of this work was to develop a computationally efficient, strongly
stable, fourth-order time-stepping method that is suitable for solving problems such as
(1). The numerical method is obtained by first applying the three-eighth Simpson’s rule
to the distributed-order space-fractional derivative term. Then, the multi-term fractional
derivative equation is discretized in space by using the fractional centered-difference
formulas introduced by Ortigueira [14]. The exact solution of the resulting semi-discretized
system is written using the Duhamel’s principle [15]. This exact solution involves a matrix
exponential function and the integral of a matrix exponential function, along with the
inhomogeneous term. Matrix exponential functions are approximated by diagonal (2,2)-
Padé approximation. The rationale behind using a diagonal (2,2)-Padé approximation is
that only one algebraic system needs to be solved at each time step. Therefore, we can
implement this fourth-order method with the same computational complexity as a first-
order method. We utilize an approach with a class of single-step, fully discrete numerical
methods developed by Brenner et al. [16], and the same approach is summarized in the
book by Thomée [15].

The paper is organized as follows. The Riesz-space distributed-order fractional deriva-
tive discretization is presented in Section 2. In Section 3, the time-stepping method is
developed, and an implementation algorithm is provided. The convergence theorem of the
numerical method is given in Section 4. Numerical experiments are shown in Section 5.
Solution profiles and convergence tables, along with CPU times, are also given in the same
section. Finally, some concluding remarks are included in Section 6.

2. Distributed-Order Space-Fractional Derivative Approximation

Let 1 = α0 < α1 < · · · < αN1 = 2 and 1 = β0 < β1 < · · · < βN2 = 2 be uniform
discretizations of the interval [1, 2]. Let ∆α = 1/N1 and ∆β = 1/N2. By applying the
fourth-order Simpson’s three-eighths rule to the distributed terms, we obtain

∫ 2

1
P(α)

∂αu
∂|x|α dα =

N1

∑
i=1

aiP(αi)
∂αi u

∂|x|αi
+ O((∆α)4), (3)

∫ 2

1
Q(β)

∂βu
∂|x|β

dβ =
N2

∑
j=1

bjQ(β j)
∂β j u

∂|x|β j
+ O((∆β)4), (4)

where ai and bj are the coefficients of Simpson’s three-eighths rule.
To approximate the Riesz derivatives in the right-hand sides of (3) and (4), we use the

fractional centered-difference introduced by Ortigueira [14]. We consider xm = a + mhx,
m = 0, 1, . . . , M with hx = (b − a)/M as the spatial mesh points. Suppose u(x) to be
a sufficiently smooth function defined for −∞ < x < ∞. Then, for i = 1, 2, · · · , N1,
we have

dαi

d|x|αi
u(x) = − 1

2 cos παi
2

[
−∞Dαi

x + xDαi
∞
]
u(x, t) =

−1
hαi

x
∆αi

hx
u(x) + O(h2), (5)

where

∆αi
h u(x) =

∞

∑
j=−∞

g(αi)
j u(x− jhx), (6)
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g(αi)
j =

(−1)j Γ(1 + αi)

Γ(αi/2− j + 1) Γ(αi/2 + j + 1)
, j = 0,±1,±2, . . . .

If u(x) vanishes outside the interval (a, b) and um = u(xm) for m = 1, . . . , M− 1, then
we have

∆αi
h v(xm) =

[
g(αi)

m−1u1 + · · ·+ g(αi)
0 um + · · ·+ g(αi)

M−m−1uM−1

]
.

We can write this system of equations as:

∆αi
hx

u

hαi
x

= G(αi)
x u,

with

G(αi)
x =

1
hαi

x



g(αi)
0 g(αi)

1 g(αi)
2 . . . g(αi)

M−4 g(αi)
M−3 g(αi)

M−2

g(αi)
1 g(αi)

0 g(αi)
1 . . . g(αi)

M−5 g(αi)
M−4 g(αi)

M−3

g(αi)
2 g(αi)

1 g(αi)
0 g(αi)

1 g(αi)
2 . . . g(αi)

M−4
...

. . . . . . . . . . . . . . .
...

g(αi)
M−4 . . . g(αi)

2 g(αi)
1 g(αi)

0 g(αi)
1 g(αi)

2

g(αi)
M−3 g(αi)

M−4 . . . g(αi)
2 g(αi)

1 g(αi)
0 g(αi)

1

g(αi)
M−2 g(αi)

M−3 g(αi)
M−4 . . . g(αi)

2 g(αi)
1 g(αi)

0


, u =



u1
u2
u3
...

uM−3
uM−2
uM−1


.

Thus, for each αi, we have the space-fractional derivative approximations

dαi

d|x|αi
≈ −Gαi

x . (7)

Similarly, by considering the spatial nodes: yn = c + nhy, n = 0, 1, . . . , N with
hy = (c− d)/N, we obtain the following approximation:

dβ j

d|y|β j
≈ −G

β j
y . (8)

Using the approximations (7) and (8), the distributed-order terms can be approxi-
mated as

∫ 2

1
P(α)

∂α

∂|x|α dα ≈
N1

∑
i=1
−aiP(αi)G

αi
x = Gα

x ,
∫ 2

1
Q(β)

∂β

∂|y|β
dβ ≈

N2

∑
j=1
−bjQ(β j)G

β j
y = Gβ

y . (9)

By applying the Riesz derivative approximation to Equation (1), the following semi-
discrete system is obtained:

du
dt

+ Au = f(t), (10)

where A = KxGα
x ⊗ I + I ⊗ KyGβ

y is an (M − 1)(N − 1) × (M − 1)(N − 1) matrix, I is
the (M − 1)(N − 1)× (M − 1)(N − 1) identity matrix and u is the (M − 1)(N − 1)× 1
vector that consists of columns of the matrix [ui,j], where ui,j = u(xi, yj)| 1 ≤ i ≤ M− 1,
1 ≤ j ≤ N − 1. The inhomogeneous term f(t) = [ f1, . . . , fM−1]

T is an (M− 1)(N − 1)× 1
vector, with f j = [ f (x1, yj, t), f (x2, yj, t), · · · , f (xM−1, yj, t)]T , j = 1, 2, · · ·N − 1.
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3. Time-Stepping Method

We consider the following abstract initial value problem:

ut + Au = f (t), t ∈ (0, T] = J, (11)

u(0) = u0,

to develop the numerical method and to discuss the convergence analysis that works with-
out dependence on the spatial mesh size; see Thomée [15] [Ch. 3, 7–9]. Using Duhamel’s
principle [15], the exact solution of (11) is written as:

u(t) = e−tAu0 +
∫ t

0
e−(t−s)A f (s)ds, (12)

where the matrix exponential function e−tA is the solution which corresponds to the
homogeneous problem having f ≡ 0. First, we replace the variable t by the shifted value
t + k, and then we use the following change in variable s − t = kτ and write the exact
solution (12) as:

u(t + k) = e−kAu(t) + k
∫ 1

0
e−k(1−τ)A f (t + kτ) dτ, (13)

and setup the following recurrence formula as

u(tn+1) = e−kAu(tn) + k
∫ 1

0
e−kA(1−τ) f (tn + τk) dτ, (14)

where k, with 0 < k ≤ k0 for some k0, is the temporal step size, and temporal mesh points
are given by tn = nk with 0 ≤ n ≤ n̄ =

[
T
k

]
.

Our fourth-order A-stable method is based on the following method from [15]:

vn+1 ≈ r(kA)vn + k
m̃

∑
i=1

Pi(kA) f (tn + τik), n ≥ 0, v0 = v. (15)

where r(z) and {Pi(z)}m̃
i=1 are the rational approximations of e−kA and e−kA(1−τi), respec-

tively. These rational approximations are uniformly bounded on the spectrum of kA in k
and h, where h represents the spatial discretization step size. The real numbers {τi}m̃

i=1 are
the m̃ Gaussian quadrature points in the interval [0, 1]. Our aim is to obtain a procedure
which admits an optimal order-error estimate ‖vn − u(tn)‖ = O(hα + kq), with spatial
discretization order α. The real number q > 0 is determined by the properties of the rational
functions r(z) and Pi(z), for i = 1, 2, . . . , m̃.

The time-stepping method (15) is accurate for order q if it satisfies some equivalent
conditions given in [15]. The reader may consult chapter 9 of [15] to fill in various details
omitted here for brevity. The accuracy of the time-stepping method (15) is defined in the
following definition.

Definition 1 ([15] (Ch. 9)). The time discretization method (15) is said to be accurate for order q
if the solution of (11) satisfies (15) with an error of order O

(
kq+1), as k→ 0 for any choice of linear

operator A and a smooth function f on R.

The following Lemma describes the accuracy of the method (15) and establishes some
equivalent relations which are then used in the proof of the main results.

Lemma 1 ([15] (Lemma 8.1)). The time discretization method (15) is accurate for order q if and
only if

r(λ) = e−λ + O(λq+1), λ→ 0, (16)
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and for 0 ≤ l ≤ q,

m̃

∑
i=1

τl
i Pi(λ) =

l!
(−λ)l+1

(
e−λ −

l

∑
j=0

(−λ)j

j!

)
+ O(λq−l), λ→ 0, (17)

or equivalently
m̃

∑
i=1

τl
i Pi(λ) =

1∫
0

sle−λ(1−s)ds + O(λq−l), λ→ 0. (18)

A computationally efficient method can be developed by considering r(λ) and {Pi(λ)}m̃
i=1

such that they have the same denominator (the same poles). Let

r(λ) =
N (λ)

D(λ) and Pi(λ) =
Ni(λ)

D(λ) , i = 1, 2, · · · , m̃ (19)

be bounded on the spectrum of kA, uniformly in h and k. The method (15) is approxi-
mated as:

vn+1 ≈
N (kA)

D(kA)
vn + k

m̃

∑
i=1

Ni(kA)

D(kA)
f (tn + τik), n ≥ 0, v0 = v. (20)

For the case when m̃ = q, we can achieve the conditions of Lemma 1 by choosing
a rational function r(λ) which satisfies (16) and by selecting the distinct real numbers as
Gaussian quadrature points {τi}m̃

i=1. Then, we solve the system of equations [15]

q

∑
i=1

τl
i Pi(λ) =

l!
(−λ)l+1

(
e−λ −

l

∑
j=0

(−λ)j

j!

)
, l = 0, 1, · · · q− 1, (21)

to find Pi(λ). The system given in (21) is of Vandermonde type, and its determinant is not
zero. The rational functions {Pi(λ)}

q
i=1 are obtained as linear combinations of the terms on

the right-hand side of (21). Additionally, if r(λ) is bounded for large λ, then the right-hand
sides of (21) are small for large λ, and the numerator polynomials of Pi(λ) would be of a
smaller degree than their denominator polynomials for each i.

A fourth-order, A-stable method is developed by considering r(λ) = R2,2(λ), where

R2,2(λ) =
1− 1

2 λ + 1
12 λ2

1 + 1
2 λ + 1

12 λ2
= 1 +

−λ

1 + 1
2 λ + 1

12 λ2
, (22)

is the fourth-order, A-acceptable (2,2)-Padé approximation of e−λ. By replacing the matrix
exponential e−kA by rational (2,2)-Padé approximation R2,2(kA) and taking the Gaussian
quadrature points τ1 = 3−

√
3

6 , τ2 = 3+
√

3
6 , the system (21) can be written as:

P1(λ) + P2(λ) = − 1
λ
(R2,2(λ)− 1),

τ1P1(λ) + τ2P2(λ) =
1

λ2 (R2,2(λ)− 1 + λ),

which results in

P1(λ) =
1−

√
3

6 λ

2(1 + 1
2 λ + 1

12 λ2)
, P2(λ) =

1 +
√

3
6 λ

2(1 + 1
2 λ + 1

12 λ2)
.

Using these rational approximations, the method (15) is written as

vn+1 ≈ R2,2(kA)un + kP1(kA) f (tn + τ1k) + kP2(kA) f (tn + τ2k). (23)
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The above-mentioned method (23) is of fourth-order accuracy of Lemma 1 [15] (Ch. 9),
under the assumption that initial data have sufficient regularity.

3.1. Computationally Efficient Version of the Method

In order to implement the methods, it is required to compute matrix exponential
functions, which would be computationally expensive and compromise the computational
efficiency of the time-stepping methods. Another challenge is to invert higher-degree
matrix polynomials which can cause computational difficulties due to the ill-conditioning
of the spatial discretization matrix A. Use of the splitting technique not only resolves
this but also results in a highly efficient method; see Khaliq, Twizell, and Voss [17] and
references therein. We can write:

R2,2(λ) = 1 + 2<
(

w
λ− z

)
and the corresponding {Pi(λ)}2

i=1 takes the form:

Pi(λ) = 2<
(

wi
λ− z

)
, i = 1, 2,

where c is the non real pole of R2,2 and the Pi with corresponding weights w and wi,
respectively. All the poles and corresponding weights were computed using MAPLE 11.

3.2. Algorithm

Solve (kA− zI)y = wun +
2
∑

j=1
kwj f

(
tn + τjk

)
for y, and then compute un+1 = un +

2<(y), n = 0, 1, · · · , where <(y) = Real(y). The poles and corresponding weights are:

z = −3.0− 1.73205080757 i,

ω = −6.0 + 10.3923048454 i,

ω1 = −0.86602540378 + 3.23205080757 i,

ω2 = 0.86602540378 + 0.23205080757 i.

4. Convergence Analysis

We present convergence in the Hilbert space case assuming A is a self-adjoint operator.
We followed the approach of Brenner et al. described in [16], which is also summarized
in [15] (Ch. 9]). In this analysis, we used the spaces Ḣs = D(As/2), as defined in [15] by
the norm

|u|s = (Asu, u)1/2 = ‖As/2u‖ =
(

N

∑
j=1

λs
j (u, φj)

2

)1/2

,

where {φj}N
j=1 are orthonormal eigenfunctions of A with corresponding positive eigenval-

ues {λj}N
j=1. We assume f ∈ Ḣs to have sufficient regularity and also use the concept that

the operator Ek = r(kA) is said to be stable in H if ‖En
k ‖ ≤ C for n ≥ 1, 0 < k ≤ k̄, nk ≤ t̄;

see [15].

Theorem 1. Let A be a self-adjoint operator defined on the Hilbert spaceH; the solution operator
Ek = r(kA) is stable in H; and the time discretization method (15) is accurate for order q = 2m,
where m is a positive integer. Suppose f (l)(t) ∈ Ḣ2q−2l for l < q, t ≥ 0. Then, there exists
a constant C = C(t) such that

‖vn − u(tn)‖ ≤ Ckq
(

t−q
n ‖v‖+ tn

q−1

∑
l=0
Sl +

∫ tn

0
‖ f (q)‖ds

)
, 0 ≤ n ≤ n̄, 0 ≤ k ≤ k̄, (24)
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where Sl = sup
s≤tn

| f l(c)|2q−2l .

Proof. By letting

Rk f (t) =
s

∑
i=0

Pi(kA) f (tn + kτi),

we can write method (15) as

vn = rn(kA)v + k
n−1

∑
j=0

rn−1−j(kA)Rk f (tj), for n = 1, 2, · · · (25)

By denoting E(t) = e−tA, we write the exact solution, (14), of Equation (11) as:

u(tn) = E(tn)v + k
n−1

∑
j=0

E(tn−1−j)Ik f (tj), (26)

where

Ik f (tj) =
∫ 1

0
E(k− sk) f (tj + sk)ds.

For n ≥ 0, the error En = vn − u(tn) can be written as:

En = rn(kA)v− E(tn)v + k
n−1

∑
j=0

(
rn−1−j

m (kA)Rk f (tj)− E(tn−1−j)Ik f (tj)
)

= En
0 + En

m, (27)

where the error En
0 corresponds to the homogeneous equation and En

m is the error due to
the inhomogeneous part of the method. The error En

0 is approximated by the established
result in [15] (Theorem 7.2) as:

‖En
0 ‖ = ‖

(
rn−2

m (kA)r2
s (kA)− E(tn)

)
‖ ≤ Ckqt−q

n ‖v‖. (28)

By adding and subtracting rn−1−j
m (kA)Ik f (tj) in the error term En

m and rearranging
the terms, we get

En
m = k

n−1

∑
j=0

(
rn−1−j

m (kA)− E(tn−1−j)
)
Ik f (tj) + k

n−1

∑
j=0

rn−1−j
m (kA)(Rk − Ik) f (tj)

= En
m1 + En

m2. (29)

Using the change of variable tj + sk = t, we can write

1∫
0

f (tj + sk)ds =
1
k

tj+1∫
tj

f (t)dt

and

n−1

∑
j=0

1∫
0

f (tj + sk)ds =
1
k

tn∫
0

f (t)dt

Additionally, using the facts:

max
0≤s≤1

E(k− sk) = max
0<s≤1

e−(1−s)k = I, at s=1, (30)
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E(s− sk) commutes with rn(kA)− E(tn) and r(kA) is a q-th order approximation of E(t) =
e−kA. We get the following estimate:

‖En
m1‖ ≤ k

n−1

∑
j=0
‖
(

rn−1−j
m (kA)− E(tn−1−j)

)
Ik f (tj)‖

≤ k
n−1

∑
j=0

1∫
0

‖E(k− sk)
(

rn−1−j
m (kA)− E(tn−1−j)

)
f (tj + sk)‖ds

≤ kq+1
n−1

∑
j=0

1∫
0

| f (tj + sk)|2qds = Ckq
tn∫

0

| f (t)|2qdt, (31)

which is bounded by the right-hand side of (24). Using Taylor-series expansions of f (tj + sk)
and f (tj + sk) and the approach given in [15] (Theorem 8.1), an estimate for En

m2 can be
obtained as follows:

‖En
m2‖ ≤

n−1

∑
j=2

Ckq+1
q−1

∑
l=0
| f (l)(tj)|2q−2l + Ckq

n−1

∑
j=2

∫ tj+1

tj

‖ f (q)‖ds. (32)

Since the right-hand side of (31) is bounded by the right-hand side of (32),

‖En
m‖ ≤

n−1

∑
j=0

Ckq+1
q−1

∑
l=0
| f (l)(tj)|2q−2l + Ckq

n−1

∑
j=0

∫ tj+1

tj

‖ f (q)‖ds (33)

≤ Ckqtn

q−1

∑
l=0
Sl + Ckq

∫ tn

0
‖ f (q)‖ds, (34)

where Sl = sup
s≤tn

| f (l)(s)|2q−2l , and (28) together with (34), completes the proof.

5. Numerical Experiments

In this section, we present the solutions of two test problems and discuss the results
obtained. The errors between the consecutive solutions were calculated by decreasing the
time step size by half. The following formula was used to calculate the rate of convergence:

r = ln
Error(2k)
Error(k)

,

where Error(k) denotes the error between the consecutive solutions corresponding to the
numbers of time steps k and 2k, respectively. The error(k) are computed by using the
in f norm. The rate of convergence of the method is computed using this approach when
an analytical solution of the problem is not available.

5.1. Example 1

First we consider the following problem with f (x, t) = 0; see [10]:

∂u
∂t

=

2∫
1

KxP(α)
∂αu

∂|x|α dα, (x, t) ∈ (0, 1)× [0, T], (35)

with homogeneous Dirichlet boundary condition

u(0, t) = 0, u(1, t) = 0, > 0 (36)
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and initial condition
u(x, 0) = δ(α− 0.5), x ∈ (0, 1), (37)

where P(α) = lα−2K[A1δ(α − δ1) + A2δ(α − δ2)] with dimensionless constants l and K.
Additionally, 0 < δ1 < δ2 ≤ 2, A1 > 0, A2 > 0.

Figure 1 displays the numerical solution u(x, t) at different times, which decays with
time. Figure 2 illustrates the impacts of δ1 and δ2 on the diffusion behavior of u(x, t). As the
values of δ1 and δ2 increase, the amplitude decreases and more diffusive behavior appears
in the profiles. Figure 3 shows how different values of l affect the numerical solution u(x, t).
It is evident that the amplitude of the solution increases as the value of l increases. Figure 4
shows the time evolution graphs of u(x, t) at t = 0.1 and at t = 1, respectively. Table 1
shows the error and convergence rate of the time-stepping method. A column of CPU time
is also included in this table to show the computational efficiency of the method.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

u(
x,

t)

t = 0.1
t = 0.5
t = 1.0
t = 2.0

Figure 1. Example 1: Numerical solutions at different values of t using h = k = 1/200, l = 2, K = 1,
A1 = A2 = 1, δ1 = 1.255, and δ2 = 1.75.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
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0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

u(
x,

t)

1
 = 1.255, 

2
 = 1.355

1
 = 1.355, 

2
 = 1.455

1
 = 1.455, 

2
 = 1.455

1
 = 1.555, 

2
 = 1.655

1
 = 1.655, 

2
 = 1.755

1
 = 1.755, 

2
 = 1.855

1
 = 1.855, 

2
 = 1.955

Figure 2. Example 1: Numerical solutions using for different values of δ1 and δ2 using h = k = 1/200,
l = 2, K = 1, and A1 = A2 = 1.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.005

0.01

0.015

0.02

0.025

0.03

u(
x,

t)

l = 2.0
l = 5.0
l = 10.0
l = 15.0

Figure 3. Example 1: Numerical solutions at t = 1 using δ1 = 1.255 and δ2 = 1.755 with h = k =

1/200, K = 1, and A1 = A2 = 1 for different values of l.

0
0

0.2

0.4

0

0.6

u
(x

,t
)

0.8

0.2

1

t

0.05 0.4

x

0.6
0.8

0.1 1

0
0

0.2

0.4

0

0.6

u
(x

,t
)

0.8

0.2

1

t

0.5 0.4

x

0.6
0.8

1 1

Figure 4. Time evolution graph of Example 1 at t = 0.1 LEFT and t = 1 RIGHT, using δ1 = 1.255 and
δ2 = 1.755 with h = k = 1/200, l = 2, K = 1, and A1 = A2 = 1.

Table 1. Example 1: Convergence results for the time-stepping method.

∆t Error Order CPU Time

0.04000 0.0218
0.02000 2.6347 × 10−9 0.0132
0.01000 1.6361 × 10−10 4.009 0.0177
0.00500 1.0219 × 10−11 4.001 0.0337
0.00250 6.4051 × 10−13 3.996 0.1029
0.00125 3.8032 × 10−14 4.074 0.1542

5.2. Example 2

Here we consider the two-dimensional problem on the rectangular domain Ω =
(0, 1)× (0, 1) [1]:

∂u
∂t

=

2∫
1

KxP(α)
∂αu

∂|x|α dα +

2∫
1

KyQ(β)
∂βu

∂|y|β
dβ + f (x, y, t), (x, y, t) ∈ Ω× [0, T], (38)
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with the homogeneous Dirichlet boundary condition

u(x, y, t) = 0, (x, y) ∈ ∂Ω, (39)

and the initial condition

u(x, y, 0) = u0(x, y) = x2(1− x)2y2(1− y)2, (x, y) ∈ Ω, (40)

where P(α) = Q(α) = −2Γ(5− α) cos( απ
2 ) are non-negative functions and the inhomoge-

neous term is

f (x, y, t) = etx2(1− x)2y2(1− y)2

− etx2(1− x)2[R(x) + R(1− x)]

− ety2(1− y)2[R(y) + R(1− y)]

with

R(r) = Γ(5)R1(r)− 2Γ(4)R2(r) + Γ(3)R3(r),

R1(r) =
1

ln r
(r3 − r2),

R2(r) =
1

ln r
(3r2 − 2r) +

1
(ln r)2 (r− r2),

R3(r) =
1

ln r
(6r− 2) +

1
(ln r)2 (3− 5r) +

2
(ln r)3 (r− 1).

The exact solution of this problem is given as: u(x, y, t) = etx2(1− x)2y2(1− y)2.
Figure 5 shows the graph’s exact and numerical solution of the problem (38). Conver-

gence results along with CPU times are given in Table 2.

0

1

0.002

0.004

1

0.006

u
(x

,y
)

0.008

0.8

Exact

y

0.5

0.01

0.6

x

0.012

0.4
0.2

0 0

0

1

0.002

0.004

1

0.006

u
(x

,y
)

0.008

0.8

Numerical

y

0.5

0.01

0.6

x

0.012

0.4
0.2

0 0

Figure 5. Exact and numerical solutions of Example 2 with ∆x = 0.04 and ∆y = 0.02.

Table 2. Example 2: Convergence results for the time-stepping method.

∆t Error Order CPU Time

0.02500 6.1233 × 10−4 0.1087
0.01250 4.1451 × 10−5 3.736 0.1243
0.00625 2.9543 × 10−6 3.811 0.2656
0.00313 2.0695 × 10−7 3.836 0.4343
0.00156 1.2276 × 10−8 4.075 1.2353
0.00078 7.2832 × 10−10 4.075 2.1253
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6. Conclusions

By synthesizing diverse ideas, we developed an implementation strategy to numeri-
cally solve the Riesz distributed-order, space-fractional, inhomogeneous diffusion equa-
tions. A fourth-order A-stable method was developed using a diagonal (2,2)-Padé approx-
imation of a matrix exponential function. Use of the partial fraction splitting makes the
method more efficient, stable, and accurate. It can also be noted that we can implement this
fourth-order method with the same computational complexity as a first-order method.
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