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Abstract: Building an accurate constitutive model for soft materials is essential for better under-
standing its rate-dependent deformation characteristics and improving the design of soft material
devices. To establish a concise constitutive model with few parameters and clear physical meaning, a
variable-order fractional model is proposed to accurately describe and predict the rate-dependent
mechanical behavior of soft materials. In this work, the discrete variable-order fractional operator
enables the predicted stress response to be entirely consistent with the whole stress history and the
fractional order’s path-dependent values. The proposed model is further implemented in a numerical
form and applied to predict several typical soft materials’ tensile and compressive deformation
behavior. Our research indicates that the proposed variable-order fractional constitutive model is
capable of predicting the nonlinear rate-dependent mechanical behavior of soft materials with high
accuracy and more convinced reliability in comparison with the existing fractional models, where
the fractional order contains a constant initial order to depict the initial elastic response and a linear
variable-order function to account for the strain hardening behavior after acrossing the yield point.

Keywords: soft materials; fractional constitutive model; rate-dependent; variable-order

1. Introduction

Soft material covers a wide range of materials, including polymers, hydrogels, elas-
tomers et al., it has broad prospects of application in emerging industries and technologies
such as soft display [1], flexible microelectronics [2] and soft robots [3] due to their excel-
lent stretchability, lightweight and high energy density. Practically, the rate-dependent
viscoelastic behavior will significantly affect their performance in service [4]. For instance,
due to the vast range of technical applications in the aerospace and automotive sectors, as
well as in the field of fluid transportation, Animasaun [5] confirmed that the viscoelastic
characteristics of polymeric soft materials have received extensive study. In this regard,
characterizing the viscoelastic response of soft materials is of great importance for their ap-
plications. It is crucial to develop accurate constitutive models to describe their mechanical
response to design soft materials with desired properties.

For most soft materials, their internal structures have microscopic polyphaser char-
acteristics. Hepburn [6] reported that the macromolecular long chains of polyurethane
elastomer soft materials are intertwined and distributed roundaboutly. The long chains of
molecules are divided into two regions: the hard chain segment and the soft one. Under
external load, the release of the wrapped soft chain in the deformation process will cause a
change in the density of the hard chain and the soft chain area, leading to stress softening,
and the soft material is easy to produce macroscopic deformation [7,8]. Furthermore, the
movement of the molecular chain inside the rubber soft material will also be hindered
and affected by the surrounding molecules. Its mechanical properties in the deformation
process are a complex behavior of the mixture of elasticity and viscosity, which makes
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it exhibit rate-dependent property in the process of loading and unloading, also known
as time correlation. Given the complexity of the internal structure of soft materials, the
deformation of soft materials is entirely different from that of traditional linear elastic
materials, which will produce complex and variable mechanical responses under different
environmental conditions. This challenges the establishment of constitutive models for soft
materials [9,10].

As described above, the stress-strain behavior of soft materials exhibits obvious rate
dependency or is a typical time-dependent mechanical behavior, and its stress response
is not only related to the strain but also the strain rate of deformation. Qu et al. [11]
studied the rate-dependent tensile mechanical response of VHB947 soft material under
pure shear deformation mode. The results showed that the acrylic elastomeric soft material
had obvious tensile rate dependency. Wissler et al. [12] used the Prony series theory to
model the time-dependent viscoelastic behavior of VHB4910 elastomeric soft materials.
Foo et al. [13] and Zhao et al. [14] used a standard linear solid rheological model satisfying
the thermodynamic consistency to describe the rate-dependent mechanical behavior of
elastomeric soft materials. Their model could well capture the rate-dependent behavior
of soft materials. However, the internal variables are introduced in the modeling process,
where the multiplicative decomposition of the deformation tensor is adopted to modify
the traditional linear superposition process. This treatment significantly increases the
complexity of the proposed constitutive model and the number of governing equations.
There still lacks a proper constitutive model of soft materials with concise form and few
model parameters.

In the last decades, fractional calculus has convinced to be a powerful mathematical
approach to modeling the time-dependent mechanical behavior of viscoelastic material.
The superiority lies in the remarkable reduction in model parameters required to de-
velop a constitutive model involving fractional operators. Such models with the constant
fractional order are among the most fashionable ones in the study of fractional viscoelas-
ticity, including soils [15], polymers [16,17], and construction materials [18]. However,
the rate-dependent mechanical behavior, as well as its significant nonlinearities under
extensive deformation regimes derived from those soft materials like rubbers [19,20], hy-
drogels [21–23] and dielectric elastomers [24,25], both featuring memory effects whose
behavior varies over time, which exhibits highly complex material properties and poses a
significant challenge with regards to constitutive modeling of them. Recently, the original
point of building fractional operators by enabling the order of fractional calculus to be
a function of the state variable, i.e., space or time, has increasingly arisen widespread
attention. Such operators involving variable fractional orders are proved to be a promising
tool to depict the complicated physical phenomena relating to memory effects. Numer-
ous operators with variable fractional order have been suggested in the literature like
physics [26], anomalous diffusion [27–29], signal process [30], solid mechanics [31] and
transport process in inhomogeneous media [32], in which the fractional viscoelasticity is
one of the most fashionable application domains. Meng et al. [16] constructed a fractional
operator with variable order to model the nonlinear viscoelastic response of polymers
associated with the evolution of material properties. Xiang et al. [4] investigated the creep
behavior of natural fiber polymer composites (NFPCs) material based on variable-order
fractional operators. Additionally, extensive rheological studies of viscoelastic materials
are reported by [33–35]. In these variable-order fractional definitions mentioned above, a
typically handling variable order extension of classical fractional derivatives is acquired by
substituting an order function α(t) for the constant fractional order α, and the performance
of these models was obtained by simply fitting it to the experimental data. This treatment of
the fractional constitutive model with variable-order makes the description of its physical
process unclear.

As Garrappa et al. [36] reported, the mathematical process of these operators obtained
by simply replacing the constant order is problematic. Besides, the general solution of a
variable-order fractional operator cannot be formulated by directly substituting a given
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order function for the constant fractional order. Di Paola et al. [37] pointed out that the
existing modeling process is not derived from a robust mathematical framework and
cannot be consistent with the classical Boltzmann principle, given viscoelasticity. To
establish a simple constitutive model with clear physical meaning to accurately describe
the rate-dependent mechanical behavior of soft materials, in this paper, with the help
of the variable-order fractional calculus in describing the time-dependent mechanical
behavior of soft materials, we develop a nonlinear fractional constitutive model to predict
the rate-dependent viscoelastic response of soft materials, the fractional operator with
variable-order is numerically approximated by the Grünwald-Letnikov derivative and can
be easily applied to construct the lower triangular strip matrix, this treatment dramatically
simplifies the operation of the numerical algorithm.

The structure of this work is arranged as follows. The preliminary knowledge of
fractional derivatives is introduced in Section 2, and Section 3 gives the scheme of the nu-
merical discretization method based on the Grünwald-Letnikov derivative. The nonlinear
variable-order fractional model is established and solved in Section 4, and the prediction
results of the numerical calculation of the proposed model. Finally, the main conclusions
are arranged in Section 5.

2. Preliminary Knowledge of Fractional Calculus

Generally, the fractional differential and integral operators are defined based on a
natural extension of the order of integer operators. Herein, three commonly accepted
fractional definitions are recalled, namely the Grünwald-Letnikov (GL), Riemann-Liouville
(RL), and Caputo definitions [38–40]. Firstly, the fractional integral D−α

t of the function g(t)
is defined as:

D−α
t g(t) =

1
Γ(α)

∫ t

a
(t− τ)α−1g(τ)dτ, α > 0, (1)

where Γ(z) =
∫ ∞

0 tz−1e−tdt is the Euler-Gamma function.
The Caputo derivative of the function f (t) with fractional order α > 0 satisfies

Dα
t f (t) = I−(m−α)

t Dm
t f (t) =

1
Γ(m− α)

∫ t

0

f m(τ)

(t− τ)α−m+1 dτ, (2)

where m − 1 < α < m, m ∈ Z+. By interchanging the processes of differentiation and
integration in Equation (2), the so-called RL derivative of the function f (t) with order α > 0
can be obtained as follows

RLDα
t f (t) = RLDm

t Im−α
t f (t) =

1
Γ(m− α)

dm

dtm

∫ t

a
(t− τ)m−α−1 f (τ)dτ, (3)

in which m− 1 < α < m, m ∈ Z+.
Secondly, the GL derivative of the function f (t) with fractional order α > 0 reads

GLDα
t f (t) = lim

h→ 0
jh→ 0

h−α
j

∑
r=0

(−1)j
(

α
j

)
f (t− jh) =

m−1

∑
k=0

f (k)(a)tk−α

Γ(k + 1− α)
+

1
Γ(m− α)

∫ t

a
(t− τ)m−α−1 f (m)(τ)dτ, (4)

where m− 1 < α < m, j = (t− t0)/h and
(

α
j

)
denotes Newton’s binomial coefficients

with the form of (
α
j

)
=

α(α− 1)(α− 2) · · · (α− j)
j!

. (5)

If one considers a class of functions f (t) having m + 1 continuous derivatives for t ≥ 0,
the RL definition is equivalent to the GL one, yielding
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RLDα
t f (t) =

(
d
dt

)m∫ t
a(t− τ)m−1−α f (τ)dτ

=
m−1
∑

k=0

f (k)(a)(t−a)−α+k

Γ(k−α+1) + 1
Γ(m−α+1)

∫ t
a(t− τ)m−α−1 f (m)(τ)dτ = GLDα

t f (t), (m− 1 ≤ α < 1).
(6)

While the Caputo and RL derivatives are not equivalent unless the initial condition
satisfies f (k)(a) = 0, k = 0, 1, · · · , m− 1, this relation can be expressed as

CDα
t f (t) = RLDα

t f (t)−
m−1

∑
k=0

f (k)(a)(t− a)−a+k

Γ(k− α + 1)
= RLDα

t

[
f (t)−

m−1

∑
k=0

f (k)(a)(t− a)k

k!

]
. (7)

3. Numerical Discretization Method Based on the GL Derivative

From a different point of view, considering the classical backward finite differences
scheme, the first derivative of the function g(t) can be formulated as [41,42]

g′(t)
∣∣∣t=tk = h−1∇ f (tk) = h−1[ f (tk)− f (tk−1)], k = 1, 2, · · · , N, (8)

where tk is the generic time and k is the steps of discretized variable range, h is the temporal
step between two subsequent values of variable t, i.e., h = tk − tk−1. Then, the N equations
expressed by Equation (8) can be grouped in the following matrix, giving

h−1∇f =



h−1 f (t0)
h−1[ f (t1)− f (t0)]

...
h−1[ f (tk)− f (tk−1)]

...
h−1[ f (tN)− f (tN−1)]


=

1
h



1 0 0 0 0 0
−1 1 0 0 0 0

0
. . .

...
... 0 0

0 0 −1 1 0 0

0 0 0
. . .

...
...

0 0 0 0 −1 1





f (t0)
f (t1)

...
f (tk)

...
f (tN)


=

1
h

B(1)
N fN , (9)

where B(1)
N is a lower triangular strip matrix.

By generalizing Equation (9), one can obtain the j-th derivative with the form of [43,44]

1
hj∇

jfN
∼=

1
hj B(1)

N B(1)
N · · ·B

(1)
N︸ ︷︷ ︸

j

fN =
1
hj B(j)

N fN . (10)

Correspondingly, the j-th integral proves to be governed by the inverse operator, yielding

hj I jfN
∼= hj

(
B(1)

N

)−1(
B(1)

N

)−1
· · ·
(

B(1)
N

)−1

︸ ︷︷ ︸
j

fN = hj
(

B(j)
N

)−1
fN , (11)

where the matrix B(j)
N and its inverse form

(
B(j)

N

)−1
can be built by the following sim-

ple rules:

1
hj B

(j)
N = 1

hj



ω0
ω1 ω0
...

. . . . . .
ωj · · · ω1 ω0

0 0 · · · . . . . . .
0 0 ωj · · · ω1 ω0


(12)
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hj
(

B(j)
N

)−1
= hj



β0
β1 β0
...

. . . . . .
β j · · · β1 β0

0 0 · · · . . . . . .
0 0 β j · · · β1 β0


,

in which ω0 = 1, ωλ = (−1)λ
(

j
λ

)
, β0 = 1, βλ = λ, λ = 1, · · · , j.

By substituting the derivative order with a non-integer value α > 0 in Equation (12),
the GL fractional derivative and integral can be written as

∇αfN =
1
hα

B(α)
N fN ; ∇−αfN = hαA(α)

N fN , (13)

where ∇α and ∇−α denotes the GL derivative and integral, respectively, and B(α)
N ,A(α)

N are
the lower triangular strip matrix related to the fractional differential and integral operator,
which the following matrix can evaluate:

B(α)
N =



ω
(α)
1

ω
(α)
2 ω

(α)
1

ω
(α)
3 ω

(α)
2 ω

(α)
1

...
. . . . . .

...
. . .

ω
(α)
N ω

(α)
N−1 · · · ω

(α)
3 ω

(α)
2 ω

(α)
1


, (14)

in which the element ω
(α)
j can be recursively constructed as following: ω

(α)
1 = 1; ω

(α)
2 = −α;

ω
(α)
3 = ω

(α)
2 (1− α)/2; ω

(α)
j = ω

(α)
j−1(j− 1− α)/j. It can be observed that to evaluate the

fractional derivative of a function f (t) at a specific point tn, all the precedent values of the
function have to be considered. Besides, we have

A(α)
N = B(−α)

N =
(

B(α)
N

)−1
, (15)

where β
(α)
j can be obtained by substituting (−α) into ω

(α)
j .

As indicated above, the GL derivative may be the correct way of studying the fractional
derivative since all the other definitions can be deduced from it. In addition, it might be
the most suitable approach for numerical computations due to its recursive coefficients and
discretization scheme. This will be utilized to calculate the following nonlinear variable-
order fractional constitutive model.

4. The Proposed Variable-Order Fractional Constitutive Model
4.1. Model Development

For the sake of interpretation, the spring-pot is considered a reference to model the
stress-stretch response of soft materials due to its mechanical property naturally transform-
ing from the pure solid-like behavior to that of ideal fluid as the fractional order varies
from 0 to 1. The variable-order fractional constitutive relation of the spring-pot is defined
as [16,45–47]

σ(t, ε(t)) = λ̂� Dα(t)
t ε(t), (16)

where ε(t) = [ε1, ε2, · · · , εn]
T , λ̂ = [Eθα1 , Eθα2 , · · · , Eθαn ], σ(MPa) is the stress, ε is the

strain, and E(MPa) is the material parameter considered as Young’s modulus, θ(s) rep-
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resents the viscous parameter with the form of η/E, commonly defined as the relaxation
time and η is the viscosity coefficient, Dα(t)

t represents the Caputo variable-order fractional
derivative. From the numerical perspective, we discrete Equation (16) in time using the
uniform grids with 0 < α(t) < 1, that is tj = a + jh, j = 0, 1, 2, · · · , N, N = (t − a)/h.
Meanwhile, the order of fractional derivative in Equation (16) is generally defined as a
piecewise function of discretized time increments, then the Caputo derivative of strain can
be approximated by the following relation [38,44]

Dα(t)
t ε(t) ≈ 1

hαn

N

∑
k=0

cαn
k

[
ε(tN−k)−

n−1

∑
j=0

(t− a)jε(j)(a)
j!

]
, (17)

where cαn
k are binomial coefficients defined with variable fractional order. Compared to the

fractional operator with constant order, the elements of the lower triangular strip matrix
Bαn

n−1 are extended as (also refer to [37,48])

Bαn
n−1 =


ω
(α1)
1

ω
(α2)
2 ω

(α2)
1

ω
(α3)
3 ω

(α3)
2 ω

(α3)
1

ω
(αn−1)
n−1 ω

(αn−1)
n−2 ω

(αn−1)
2 ω

(αn−1)
1

. (18)

Accordingly, its counterpart with that of fractional integral Aαn
n−1 can be formulated by

the ensuing relation
Aαn

n−1 = B−αn
n−1 =

(
Bαn

n−1
)−1. (19)

Follows from Equation (17), the stress response described by the discrete fractional
model can be formulated as

σ(tN) = λ� 1
hαn

N
∑

k=0
cαn

k

[
ε(tN−k)−

n−1
∑

j=0

(t−a)jε(j)(a)
j!

]

= λ� 1
hαn

[
ε(tN)−

n−1
∑

j=0

(t−a)jε(j)(a)
j!

]
+ λ� 1

hαn

N
∑

k=1
cαn

k

[
ε(tN−k)−

n−1
∑

j=0

(t−a)jε(j)(a)
j!

]
.

(20)

Considering the following formula

ε(tN−k) ∼= λ−1 � hαn
N

∑
k=1

c′αn
k σ(tN−k). (21)

For the sake of simplicity, the above stress response can be expressed under the zero
initial condition

σ(tN) =
N

∑
k=1

cαn
k

N

∑
k=1

c′αn
k σ(tN−k) + λ� 1

hαn
ε(tN). (22)

From Equation (22), it is observed that the formula underlines the property of historical
dependence and non-locality of fractional calculus, namely, the stress value σn at t = tn is
dependent on all the previous stress history of t = 0, 1, · · · , n− 1 and the strain values εn
at tn. Furthermore, this treatment dramatically simplifies the calculation of the fractional
model, which benefits from the recursion formula of matrix coefficients. In the following
work, the performance of the numerical stress solution will be testified by adopting several
material tests.
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4.2. Validity of the Proposed Model under Tensile Tests
4.2.1. Results for Nitrile Rubber

In this subsection, to testify to the applicability of the discrete fractional model, a
series of uniaxial tensile tests were conducted on the nitrile rubber at stretch rates of 20, 50,
200, and 500/min using an electronic universal-testing machine (WDW-3050, Changchun
Testing Machine Research Institute, Changchun, China) in our lab. All tests were performed
in a temperature-controlled room (70 ◦C). The samples were kept in a thermostat for at least
30 min to eliminate the residual stress and thermal history before each set of subsequent
experiments. The obtained tensile behaviors of described rubber samples are shown in
Figure 1 (empty blue circles). It can be observed that the four stress-strain curves at different
stretch rates all share a similar trend: the stress grows with the increasing applied strain,
showing a convex shape with intervals of strain-softening, and it also increases distinctly
with increasing stretch rate for a given strain, this implies that the described rubber material
exhibits a typical rate-dependent behavior.
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To determine the optimal values of unknown model parameters E, θ, and αn, an
optimization method is used by minimizing the residual at the discretized points goodness.
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Specifically, Moghaddam et al. [49] and Manish et al. [50] minimized
n
∑

i=1
(σ̃i − σi)

2 where

σ̃i and σi represent the discretized stress of the experimental point and calculated the nu-
merical stress solution of the proposed model. The Newton backward difference algorithm
performed all the calculation steps in MATLAB (Version: R2016a). For the sake of simplicity,
herein, the fractional order for each simulation is set to a constant considering the uniform
mechanical properties reflected by the stress-strain curves with j = 1200. Table 1 shows
the derived optimal material parameters of the predicted stress response for the uniaxial
tensile regime at four different stretch rates.

Table 1. Derived material parameters and error values of four uniaxial tests for nitrile rubber.

E(MPa) θ(s)
20/min 50/min 200/min 500/min

SSE

15.16 10.98 1.81 × 10−5 3.29 × 10−5 6.72 × 10−5 2.48 × 10−4

Figure 1 shows the calibrated stress response against the experimental stress data of
described rubber materials at four stretch rates. Based on the experimental and numerical
results of the discrete variable fractional order model, it is inferred that the proposed model
gives the perfect description of the rate-dependent mechanical responses of the described
rubber material. Furthermore, Figure 2 displays the variance of obtained fractional orders
plotted as a function of the stretch rate. It is observed that the order decreases with the
increasing stretch rate. As an essential parameter in characterizing the material behavior
during the process of fractional modeling, it is of great importance to illustrate the physical
significance of the fractional order. For the sake of brevity, the discussion by introducing
the equivalent viscoelasticity between the time-varying viscosity model and the fractional
viscoelastic model in terms of the physical meaning of the fractional order is available in
the Appendix A. The results indicate that the fractional order α is commonly identified
as an index of material properties, which changes continuously from Hooke’s elasticity
to Newtonian viscosity as α varies from zero to one. The described soft material thereby
depicts the viscoelastic solid-like behavior during stretching, and the observed descending
trend of order variation shown in Figure 2 vividly reflects that the rubber material exhibits
less viscous behavior at a high loading rate and, conversely, becomes softer at a low
stretch rate.
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4.2.2. Results for Soft Elastomer

The mechanical response of soft elastomer is conventionally studied in uniaxial de-
formation at constant stretch rates. This typical soft material can generate a fast and large
deformation in response to external environmental factors. In this subsection, to further
verify the performance of the proposed discrete fractional model with variable order, the
uniaxial tensile test data of VHB 4910 soft elastomer [51] is adopted for calculation.

From the outset, a representative set of uniaxial tensile experimental data of VHB
4910 at the stretch rate of 0.065/s is employed to exemplify the application of the discrete
variable fractional order model in characterizing the deformation process under tensile
tests. As shown in Figure 3, the stress-stretch curve (empty blue circle) exhibits a typical
sigmoidal diagram with intervals of strain hardening. This stark distinction from the
previous observations in Figure 1 demonstrates a complex material property of mixed
elasticity and viscosity. As seen in Figure 3, the initial stress response first goes through an
elastic region. This stage can be described by a constant fractional order α0, as reported in
Section 4.2.1, followed by a sudden increase during stretching. This implies that a mutation
of material properties appears before and after crossing the yield point, and the material
behavior exhibits more nonlinear. In Figure 4, it can be observed that the strain hardening
behavior can be well depicted by a variable order function rather α1(λ) than a constant
order, which is defined as a linear trend to decrease according to our previous work [45–47],
namely, α1(λ) = −mλ + β0 where β0 is the initial value of variable fractional order and m
denotes the rate of variable order change.
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As shown in Figure 3, it can be observed that the proposed fractional model provides
an excellent description of the uniaxial tensile stress response of described soft material.
All the calculated material parameters are listed in Table 2. The above analysis indicates
that the nonlinear mechanical response of the described elastomer, including the initial
elastic stress response and the followed strain hardening behavior, was well-controlled by
the two-stage fractional order variation comprising a fixed order α0 and variable orders
α1(λ). To illustrate the impact of the fractional order, a parameter study is performed in
terms of the fixed order α0 and the initial order β0. As shown in Figure 5, the variance
of the fractional order has a significant influence on the stress response of soft elastomer:
increasing α0 will result in significant softening effects, making the elastomer exhibit more
viscous behavior and, conversely, the strain hardening becomes more pronounced as the
material property changes with decreasing the initial order β0. According to the physical
significance of the fractional order discussed in the Appendix A and the basic theory of
fractional viscoelasticity, the “hardening” behavior of the described soft material can be
characterized by the decreasing variable orders, which corresponds to the relaxation of
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polymer chains during the deformation process, namely, the faster-growing stress response
will induce a dramatically declining of the related variable fractional orders.
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Figure 5. The sensitivity of stress response to order parameters; (a) α0, (b) β0. (The experimental data
was taken from the uniaxial tensile tests of VHB 4910 at a rate of 0.065/s, as reported in [51]).

To further demonstrate the applicability of the discrete fractional model to the tensile
mechanical response of soft materials, the uniaxial stress-stretch experimental data [51]
of soft elastomers at diverse loading rates are predicted. As described above, for each
data set of tensile stress-stretch response, the modeling approach would be illustrated
by the variance of the fractional order comprising an initial constant and a consequent
variable. For the sake of comparison, the existing two fractional modeling methods are
adopted to simulate the described stress response, where the order function of the former
is piecewise-constant (CO model) [52] and that of the latter is assumed as piecewise-linear
(VO model) [16,53]. The simulation results of these two fractional models and the prediction
of our discrete fractional model are plotted in Figure 6a. All the fitted model parameters
are listed in Tables 3 and 4 for the CO and VO models, respectively. The calculated order
curves of our model are displayed in Figure 6b.
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Figure 6. (a) Comparison of the simulated results of different fractional models and the experimental
data at stretch rates of 0.0065/s and 0.1613/s; (b) Derived order variance of the presented numerical
stress response. (Experimental data were taken from [51]).

Table 3. Derived model parameters of constant-order (CO) fractional model.

Model Parameters Stretch Rate E(MPa) θ α SSE

Before yielding 0.0065/s 0.9621 0.6044 0.5105 9.6 × 10−6

0.1613/s 1.107 0.9647 0.462 1.7 × 10−4

After yielding 0.0065/s 0.6412 0.7345 0.2 4.9 × 10−3

0.1613/s 0.8307 0.6957 0.1 2.5 × 10−3

Table 4. Derived model parameters of data fitting of the variable-order (VO) fractional model.

Model Parameters Stretch Rate E(MPa) θ m β0 SSE

Before yielding 0.0065/s 0.2997 4.819 0.07 0.5126 3.6 × 10−3

0.1613/s 1.302 0.5482 0.0336 0.295 2.1 × 10−4

After yielding 0.0065/s 0.5976 1.355 −0.1016 0.8475 7.2 × 10−3

0.1613/s 0.455 485.1 0.0131 0.0191 5.7 × 10−4

As shown in Figure 6a, the solid red line represents the predicted results of the pro-
posed variable-order fractional constitutive model. The blue solids line and the black dash
line denote the simulated results obtained by the CO and VO fractional models, respec-
tively. As can be seen, the proposed variable-order fractional model provides an excellent
description of the nonlinear rate-dependent mechanical behavior of the soft elastomers. In
contrast, the simulation result of the CO fractional model exhibits large deviations from
the experimental data, especially during the subsequent development stage of applied
stretches. Otherwise, although the model with piecewise-linear orders (VO) can describe
the stress response with acceptable accuracy, it is crucial to emphasize that the existing
approach of the VO model is merely appreciable by the simplest fitting to the experi-
mental data. And by contrast, the proposed variable-order fractional constitutive model
is numerically discretized by the GL derivative, where the recursive matrix coefficients
approximately substitute the fractional operator with variable order. This discretization
scheme dramatically simplifies the operation of fractional calculus and makes the whole
characteristics of the deformation process described by the proposed model much clear.
As illustrated, all the precedent values of the function until the lower derivative limit are
considered in numerical form. Namely, the predicted stress responses σn at t = tn is entirely
consistent with the whole stress history until t = tn−1 and with all the path-dependent
values of variable order αk.
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Furthermore, the calculated evolutions of the variable fractional order over increasing
stretches are plotted in Figure 6b. To characterize the deformation behaviors of the described
soft elastomer, the fractional order includes two portions: an initial constant order for
depicting the initial elastic response, and the declining order is utilized to account for the
strain hardening behavior after crossing the yield point. The above analysis indicates that
the proposed discrete fractional model is more suitable for depicting the nonlinear stress
response of soft materials.

4.3. Validity of the Proposed Model under Compression

In this subsection, the proposed discrete variable fractional order model is applied to
describe the compressive stress-strain behavior of aluminum foams with different porosities.
The loading rate is 5 mm/min, as reported by [54]. Our model’s predicted mechanical
responses under compression are shown in Figure 7a, with the calculated parameters listed
in Table 5.

As displayed in Figure 7a, the compressive stress-strain curve of closed aluminum
foams exhibits three obvious stages: linear deformation stage, plastic plateau stage, and
densification stage. Furthermore, the yield stress increases at a faster rate with the decrease
in porosity. The proposed variable-order fractional constitutive model is further used to
describe the nonlinear mechanical behavior of aluminum foam soft materials under large
plastic deformation. The simulated stress response is denoted by the solid red lines, as
shown in Figure 7a. Based on the experimental and modeling observations in Figure 7a,
our model’s predictions agree with the test data of described aluminum foams. Moreover,
as displayed in Figure 7b, the curves of fractional order are divided into two similar
regions: a fixed order α0 and a variable order function α1(λ) = −mλ + β0 to consecutively
illustrate the compressive mechanical behavior of described aluminum foams, where
the initial purely elastic response is reflected by the constant order close to zero. The
linear variable order trend subsequently depicts the densification phenomenon under
compression to decrease. Additionally, the mutation of fractional order at λ0 suggests that
the mechanical property is mutated and departs from the linear elasticity at the yield point.
Furthermore, as shown in Figure 7b, the fractional order increases along with the decrease
in material porosities, suggesting that the aluminum foam exhibits more viscous behavior
at lower porosity. This observation is also in line with the explanation of fractional order in
characterizing the softness of described soft materials by the theory of fractional mechanics.
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Figure 7. (a) Comparison of the compressive experimental data of described aluminum foams with
different porosities and the prediction of our model; (b) Derived order variance of the proposed
numerical stress response. (Experimental data were taken from [54].).



Fractal Fract. 2022, 6, 590 13 of 17

Table 5. Derived model parameters of predicted compressive stress response.

Porosity (%) E1(MPa) θ1 E2(MPa) θ2 SSE

Case 1: 48.80 460 8 460 0.00056 3.25 × 10−5

Case 2: 58.74 325 12.9 325 0.00071 2.23 × 10−5

5. Conclusions

In this paper, we develop a nonlinear variable-order fractional constitutive model
to predict the rate-dependence viscoelastic response of soft materials, in which the frac-
tional operator with variable order is numerically approximated by the Grünwald-Letnikov
derivative. Moreover, the physical meaning of the fractional order is also explored by
introducing the principle of equivalent viscoelasticity between the fractional viscoelas-
tic model and the time-varying viscosity model. The proposed discrete variable-order
fractional model is applied to predict the mechanical response of several soft materials.
The main conclusions can be summarized as follows. Firstly, the proposed variable-order
fractional model can depict the tensile behavior of described soft materials, including the
rate-dependent response and strain-hardening effect, which exhibits higher accuracy and
more convinced reliability compared with the existing fractional models with piecewise-
constant and piecewise-linear orders. Secondly, the proposed model can also well predict
the compressive stress-strain response. The fractional order contains a constant initial
order, and a linear variable-order function is proved to be able to characterize the whole
deformation process of soft materials, where the former is used to depict the initial elastic
response and the latter is utilized to account for the strain hardening behavior after crossing
the yield point.
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Appendix A. Physical Interpretation of Fractional Order

For interpretation, the equivalent creep of the Kelvin-like viscoelastic model [47] is
adopted here to illustrate the physical meaning of fractional order. The 1D fractional Kelvin
model states

σ(t) = Eε(t) + υ
(

RL
0 Dα

τε
)
(t), 0 < α < 1, (A1)

where E is the elastic modulus, υ is the material parameter, and
(RL

0 Dα
τ f
)

denotes the
Riemann-Liouville fractional derivative operator with a nonsingular power-law kernel
function [55]

(
RL
0 Dα

τ f
)
(κ) =

1
Γ(1 + α)

d
dτ

κ∫
0

(κ − t)α f (t)dt, κ > 0 and 0 < α < 1. (A2)

In contrast, the counterpart of the model (A1), namely the time-varying Kelvin (TVK)
model with integer-order is expressed as
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σ(t) = Eε(t) + η(t)
dε(t)

dt
, (A3)

where η(t) represents the time-varying viscosity function of the TVK model.
Herein we are focusing on the equivalent creep (the equivalent relaxation can be

achieved similarly, refer to [47,56]), setting σ(t) = σ0H(t), the creep compliance of both
fractional Kelvin model Equation (18) and time-varying Kelvin model Equation (20) can be
respectively formulated as

JFK(t) =
1
E

Mα

[
− υ

E
tα
]
, (A4)

JTVK(t) =
1
E

exp
[
−E

∫ ∞

τ=0

dτ

ηc(t)

]
, (A5)

where the subscript FK and TVK stand for the Fractional-Kelvin and the Time-Varying
Kelvin, respectively, Mα(·) is the Mittag-Leffler (M-L) function with a single parameter
defined as [33]

Mα(z) =
∞

∑
k=0

zkα

Γ(1 + kα)
. (A6)

Subsequently, by comparing Equations (21) and (22) in virtue of the equivalent creep
for the above two models JFK(t) = JTVK(t), one can obtain the function of time-varying
viscosity as

ηc(t) = Eταt1−α Mα

[
−
(

t
τ

)α]
/Mα,α

[
−
(

t
τ

)α]
, (A7)

where the subscript c represents the creep and τα = υ/E, Mα,α(·) denotes the M-L function
with two equal parameters α = β. Di Paola et al. [42] have pointed out that material
elasticity dominates when fractional order α < 0.5, while material viscosity plays the
leading role when α > 0.5. Meanwhile, Metzler et al. [57] introduced a modified Deborah
number to bridge the fractional order and the variance of material properties during the
relaxation process, which gives

De =
1
α

, (A8)

where the larger values of De, the closer it is to the fluid property, and the smaller values of
De, the closer it is to the solid-like material property [56].

For more clarity, Figure A1 displays the variance of the time-varying viscosity function
ηc defined as a function of the fractional order α at τ = 1 s, τ = 10 s, τ = 100 s and τ = 1000 s.
As indicated in Figure A1, the viscosity coefficient tends to be infinite as α approaches zero,
whereas it decreases continuously and finally arrives at a finite value when α is close to
one. From the perspective of rheology, the variance of the viscosity coefficient mirrors
the capability of a given viscoelastic material to resist deformation, where the solid-like
material exhibits extremely high viscosity coefficients as claimed by Su et al. [56]. As α
increases, continuous attenuation of the resistance of flow contributes to the reduction of
the elastic properties, making the material behavior approaches Newtonian fluid as α is
close to 1. To summarize, the order α of fractional derivative is commonly identified as
an index of material properties, which changes continuously from Hooke’s elasticity to
Newtonian viscosity as α varies from zero to one.
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