i fractal and fractional

[

Article

An Investigation on the Optimal Control for Hilfer Fractional
Neutral Stochastic Integrodifferential Systems with

Infinite Delay

Murugesan Johnson

check for
updates

Citation: Johnson, M.; Vijayakumar,
V. An Investigation on the Optimal
Control for Hilfer Fractional Neutral
Stochastic Integrodifferential Systems
with Infinite Delay. Fractal Fract. 2022,
6,583. https://doi.org/10.3390/
fractalfract6100583

Academic Editors: Gaston M.
N’Guérékata, Mouffak Benchohra
and Abdelkrim Salim

Received: 3 September 2022
Accepted: 7 October 2022
Published: 11 October 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Velusamy Vijayakumar *

Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology,
Vellore 632 014, Tamil Nadu, India
* Correspondence: vijaysarovel@gmail.com

Abstract: The main concern of this manuscript is to study the optimal control problem for Hilfer
fractional neutral stochastic integrodifferential systems with infinite delay. Initially, we establish the
existence of mild solutions for the Hilfer fractional stochastic integrodifferential system with infinite
delay via applying fractional calculus, semigroups, stochastic analysis techniques, and the Banach
fixed point theorem. In addition, we establish the existence of mild solutions of the Hilfer fractional
neutral stochastic delay integrodifferential system. Further, we investigate the existence of optimal
pairs for the Hilfer fractional neutral stochastic delay integrodifferential systems. We provide an
illustration to clarify our results.
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solutions; neutral integrodifferential equations

MSC: 34A08; 58C30; 60H10; 93E20

1. Introduction

In mathematics, the study of fractional calculus and fractional differential equations
has received more attention in the last two decades. The memory and heredity properties
of several essential materials and processes can be described using differential equations of
arbitrary order. Several physical problems that cannot be solved by differential equations
of integer order are solved by differential equations of fractional order. Such problems have
been successfully modeled in various areas of science and engineering, such as biomechan-
ics, electrochemistry, electromagnetic processes, electrical circuits, fluid mechanics, and
viscoelasticity. For more details, we refer interested readers to the monographs [1-3] and
the references therein. Many articles have been devoted to the existence of solutions for
fractional differential equations, for instance [4—6]. Recently, the authors of [7] investigated
the existence of Atangana-Baleanu semilinear fractional integrodifferential equations with
noninstantaneous impulses.

On the other hand, along with Riemann-Liouville and Caputo fractional deriva-
tives, Hilfer [8] pioneered the Hilfer fractional derivative, which is a generalization of the
Riemann-Liouville derivative. The Hilfer fractional derivative is used, for example, in the
theoretical simulation of dielectric relaxation in glass-forming materials. Many researchers
have focused on these Hilfer fractional differential equations. For more information on
Hilfer fractional differential equations and their application, readers may refer to [9-13]. As
deterministic models often fluctuate due to noise, naturally such models must be extended
to take into account stochastic models, where the corresponding parameters are accounted
for as suitable Brownian motion and stochastic processes. Instead of deterministic equa-
tions, stochastic differential equations explain the modeling of the majority of issues in
real-world contexts. Moreover, using different fixed point theorems with stochastic analysis
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theory, fractional calculus, operator semigroup theory, and cosine families, authors have
studied the approximate controllability of stochastic systems [14-19]. For more details, we
refer readers to the monograph [20] and the references therein. Stochastic differential equa-
tions with infinite delay have become important in recent years as mathematical models of
phenomena in both the physical and social sciences [21,22].

The optimal control problem plays a significant role in the design and analysis of con-
trol systems. It has several applications in diverse fields, for example, robotics, the control
of chemical processes, power plants, and space technology. In [23], the authors studied op-
timal control and time-optimal control problems for a class of semilinear evolution systems
with infinite delay. The existence and optimal controls for fractional stochastic evolution
equations of the Sobolev type have been studied in [24] using fractional resolvent operators.
The problems of optimal control have been investigated in [25] through sectorial operators,
fractional calculus, the fixed point technique, and the Wiener process for the stochastic
fractional in infinite dimensions with non-instantaneous impulse. For more details about
optimal controls, we refer readers to [26-29]. In addition, integrodifferential equations are
used in a variety of scientific fields where an effect or delay must be considered, including
biology, control theory, and medicine. By means of noncompact measures and Ménch'’s
fixed point approaches, in [30] the authors verified the existence of the mild solution of a
Hilfer fractional integrodifferential system. The authors of [31] evaluated the existence of
mild solutions for the fractional integrodifferential systems of mixed type through a family
of solution operators and the contraction mapping principle. Due to wide application of
integrodifferential systems, fractional integrodifferential systems have been studied by
many scholars and have been reported in the literature [32-35].

Recently, the author of [36] investigated fractional optimal control of a semilinear sys-
tem with fixed delay in a reflexive Banach space. Furthermore, the authors of [37] evaluated
the solvability and optimal controls of a class of fractional integrodifferential evolution
systems with infinite delay. By utilizing analytic resolvent operators, the solvability and
optimal controls for impulsive fractional stochastic integrodifferential equations have been
investigated in [38]. Moreover, in [39,40], the authors examined the outcomes for approxi-
mate controllability with infinite delay of order r € (1,2) and verified the existence of an
optimal control for the Lagrange problem. However, there have only been a few studies
on the existence, stability, and optimal control of Hilfer fractional stochastic differential
systems. It is therefore essential to extend the concept of optimal control to such systems.

In particular, in [41,42], the authors investigated the existence of Hilfer fractional
stochastic differential systems both of the Sobolev type and not by referring to fractional
calculus, Holder inequality, stochastic analysis, and fixed point theorems. In addition, they
discussed the existence of optimal pairs for the corresponding Lagrange control systems.
To the best of our knowledge, there are no results in the literature on the optimal control
for Hilfer fractional stochastic integrodifferential systems with infinite delay and neutral
systems using Banach fixed point theorem.

Motivated by this consideration, in this paper we study the optimal control of the
following Hilfer fractional stochastic integrodifferential system with infinite delay:

DYy(s) = Ay(s) + B()2() + £ (5,95, J§ 8065 y:)id)

(3,3, J3 8o 20, :0)d) 2 5 € £ = (0,9), M

1790 yG6) = ¢6) € 12(Q,9)), 5 € (—o0,0],

where Dg{ is the Hilfer fractional derivative of type é € [0,1] and order r € (0,1) and A :
2(A) C Y — Y stands for an infinitesimal generator of a strongly continuous semigroup
{G(3)};>0 on a separable Hilbert space ) with (-, -)y and norm || - [|y. Let £ = [0, 9]; then,
control function z receives values from another separable reflexive Hilbert space K. Here,
B : £ — Y is the bounded linear operator, f : £ x4, xY — YV, h: E XY x )Y — LY,
and g,8 : £ x £ x4, — Y are appropriate functions. Let Z be another real separable
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Hilbert space with (-, -) z and the norm || - || z. Assume that {W(3), 3 > 0} is a Z-valued
Brownian motion or Wiener process with a finite-trace nuclear covariance operator Q > 0.
The element y; : (—oco0,0] — ) is described by y;(5¢) = y(3 + ») and belongs to the abstract
phase space ¢,. The initial condition { = {{(3) : 3 € (—0c0,0]} is an Jp-measurable and
4,-valued random variable independent of the Wiener process {W(3)} with a finite second
moment.

The contents of the rest of this manuscript are as follows. In Section 2, we present a
few necessary preliminaries related to our study. In Section 3, we discuss the existence and
uniqueness results of mild solutions for system (1). In Section 4, we prove the main results
concerned with the existence results of mild solutions for the neutral system (7) using
Banach fixed point theorem. The existence of the optimal control for the corresponding
Lagrange problem is examined in Section 5. The last section shows the applicability of our
obtained theory.

2. Preliminaries

Let (0, J,P) be a complete probability space and let the normal filtration be {J; };c¢,
which is right continuous, and let {Jo} contain all P-null sets. Assume that Y, Z are
separable Hilbert spaces and W is a Q-Wiener process on (2, Jgs, P) with the covariance
operator Q such that TrQ < co. Consider the case where there exists a basis {y }i>1 in Z,
with complete orthonormal and a bounded sequence of non-negative real number {f } > 0
such that Q& = &, k=1,2,---,anda sequence {wy }x>1 of independent Brownian
motions such that (W (3), &) > = Ty v/ (&, Swi(s), £€ 2, 3 € .

Consider L = L,(Q/2Z;Y) to be the space of all Hilbert-Schmidt operators from
Q22 to Y with loll5 = Tr(9Qe*), where the adjoint of the operator ¢ is ¢*. The set
of all strongly measurable square integrable V-valued random variables is represented by
L2(Q,3,P;Y) = Ly(Q; V), which is a Banach space equipped with the norm ||y(-) I, =
(Elly(-;x0)[13)"/2, where E||g|| = [q Jio(x0)dP defines the expectation E. Let C (&, Ly((%; )))
demonstrate the Banach space of all the continuous functions from £ into L, ((); )) that fulfill
sup, ¢ Elly(3) |2 < oo, and let LY(Q), V) denote the family of all Jp-measurable V-valued
random variables.

Definition 1 ([43]). The fractional integral of order r for h : [0,00) — R with the lower limit zero
is represented by

T _ 1 /3 h(%) +
0+h(3) - T(r) 0 (3 — %)17;,‘1%/ 3> Or reR ’

provided that the RHS is point-wise determined on [0, o).

Definition 2. Riemann-Liouville’s derivative of order r for h : [0,00) — R with the lower limit
zero is represented by

1 dm s h(%)
Ly
D = v N T —1 cR™.
0+h(3) I(Wl - 7’) dz™ /O (3 — J{)r+1*md%' 3>0,m <r<m,r

Definition 3 ([43]). Caputo’s derivative of order r for h : [0, 00) — R with the lower limit zero is
represented by

1 5 M (5)
Cpr _ . +
D0+h(5)71"(m—r)/o (5_%)”17”107%, 3>0,m—1<r<m reRT.
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Definition 4 ([43]). The Hilfer Fractional Derivative of type 0 < 6 < 1 and order 0 < r < 1 with
the lower limit zero is represented by

DY/h(3) = Igil );5151 D (3), 5> 0.

Remark 1 ([8]). The Hilfer fractional derivative is related to the classical Riemann-Liouville
fractional derivative and the classical Caputo fractional derivative as follows:

107 h(3) = Dgvh(3), 6 =0,0 <7 < 1;
Iy h(3) = CDo+h(3), 6 =1,0 <r < 1.

Dylh(3) = {
Wi (§) is a Wright function that is described as follows:

(="
(m—1)IT(1—rm)

agk

Wi(3) = ,0<r<1,¢€eC,

m=1

and fulfills

I(1+o)

[ ewi@az = g [ w@ae=1 =0

Fory € Y, we define {S;(3) : 3 > 0} and {G;,(3) : 3 > 0} by

S5 =5 N5 Gos9) = 10 N = [ rem(@g(rede.

Now, we present the abstract phase space %, which has previously been used in [44,45]. Let

7t (—00,0] — (0,+400) be continuous with £ = fgw](g)dg < +-co. The abstract phase space ¥, is
defined as follows:

1
g {:(=00,0 = Y, V>0, (E|C(n)|?)2is a bounded and measurable
= 1
function on [—c, 0] with f_Ooo](%) Sup,,<,<o (E|g(n7)]|?)2ds < +oo,

and

0 1
I8l = [ 1G4 sup (ENZ()|)2ds, foraiig € 9,

2<n<0

therefore, (4, || - Hfg}) is a Banach space. The space of all continuous Y-valued stochastic processes
{&€(3) :3 € (—o0,0]} and is considered as C((—o0,9],)), and

9 ={y:y € C((—0,8],Y), yo=C €%}

Let us take || - [|g be a seminorm in &) defined as

1
lylls = IIClls; + sup (Elly()|*)2, v € 4.

»€[0,9]

Lemma 1 ([44]). Ify € &/, then for 5 € £,y; € 9. Furthermore,

~

1 1
CENYGIP)? < llyslly < llvolly, + ¢ Sl[lp] (Elly()1%)?
#€10,3

where ( = fgoo](%)d% < +oo.
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Lemma 2. Provided that ||P|| is Lebesgue integral, then a measurable function P : £ — Y isa
Bochner integrable.

Definition 5 ([10]). An J;-adapted stochastic process y : (—oo,8] — Y is known as a mild

solution of (1) provided that yo = { € L?(Q, %) on (—oo,0] satisfying yo € LY(Q, V) and the
following integral equation

y(3) = Gs,(5 +/873— (3)z(5¢)dse
+/ Srls =2 ,y%,/o 3(34,0,yo)dg) ¢
+%f$@—%h%ﬂm%fﬁ%@wwdﬂwmdesc

is fulfilled. Because S;(3) = 3" ~'N; (3) is identical with

¥(3) =G5 +/ ) TN (5 = ) B0z () e
+ / )N G = ) f (v /0%8(%/@?9)019)”1%
+/O 53— N (G- %)h(%,ym /OKgN(%, e/ye)de)dw(%), 3el,

we introduce the following assumption.

(HO): In the uniform operator topology, G(3) is continuous for 3 > 0 and {G(3)};>0 is uniformly
bounded, i.e., there exists K > 1 such that sup, (o . 1G(3)| < K.

Lemma 3 ([8,46]). Suppose that (HO) is fulfilled; then, the characteristics are as follows:

o {Gs5,(3)}, {S:(3)} and {N:(3)} are strongly continuous for 3 > 0.
*  forany fixed 3 > 0, the linear bounded operators {Gs ,(3)}, {Sr(3) }, and N (3) are defined as

1Syl < r( ] H]/H IV (3)yll < I(r )Ilyl\and

1G5, )yl < K(NMIﬁ=5+r5n

3. Existence of Mild Solution

Useful assumptions are made to investigate the existence of mild solutions to Equation (1)
as follows.

(H1): f: E % ¢, x Y — Y is a continuous function and there exist positive constants K fr
Kf such that for3 € £, u1,1; € 9, wp,lp € Y
E[|lf(3,u1,m2) — £(3,81,12) |* < Kf(llw — |7 , + Elluz — m[1%),
Ellf (3w u)l? < Ky (1+ w17 + Elluz]?).
(H2):h:EXx Y x Y — Lg is a continuous function and there exist positive constants Ky,
Kj, such that for3 € £, w1, € 9, wp, 0 € Y
E|[h(3,mw,w) — h(3, 1, 52)||* < Ky ([Jug — ule + Elwp — 12]|?),
E[[h(3,u1,u2) > < Kj(1+ w13 + Elluz|?).

(H3): For each (3, ) € & x £, the functions g,§ : £ x £ x4, — ) are continuous and
there exist positive constants my, my, 7111, 7y such that for all u, it €



Fractal Fract. 2022, 6, 583

6 of 22

Ellg(s, 52,u) — 83,0, 0)|1* < myflu—ul|3,,
ElI§(5, 52,u) = 83,0, 0)|1* < malu —ul|3,,
Ellg (3,22, w) 1> < 711 (1 + [[ullF,)

(3, 2,u)

(H4): Let z € K be the control function and the operator B(-) € Lo (E,L(K,))), || B/
denote the norm operator B.

(H5): Multivalued maps A : £ — M(K) (where M(K) is a class of nonempty closed,
convex subsets of K) are measurable and A(-) C ©, where © is a bounded set of K.

Admissible set A, is defined as, the set of all v(-) : £ x Q3 — Y such that v is a

J;-adapted stochastic process and E fo lo(3)|?d3 < oo. Clearly, A,y # @ and A,y C
LY(E,K)(1 < q < +00) is bounded, closed, and convex. It is evident that Bz € L(&,)) for
all z € Agy.

Theorem 1. Under the assumptions (HO)—(H5), Equation (1) has a unique mild solution provided
that

ﬂ2_2ﬁ+2qK2E§f
- T 14+ m
r2(r+1) (+ml >+

19172[3+2rK2T1,( Q)Kh
(2r —1)T2(r)

12¢2 [ (1 +%ﬂz)

Proof. Define an operator ¥ : 4/ — ¢/ as

¢(3), 3 € (—,0]
- B -I-f(f —30)" 7 ING (3 — 50)B(5)z(3¢)d > ;
VO =1 4 36— 5 Wala — )f (390 " 8005, 0,0 die ®
+f6" — )7 IN (53— %)h(%,y%, Jo 80, Q,yg)dg)dW(%), for 3 > 0.

For { € ¢, we define { as follows:

=« J2G), 3€(—00,0],
te) = {gé,xz)@(o» s

then, { € 9. Lety(s) = w(3) + {(3), —o0 < 3 < 9. Clearly, y fulfills (3) if and only if w
fulfills wy = 0 and

w(s) = [ — 0 TN s — 2)B()2(2)d
+/ Y ING (5 — 3¢ )f(%,w%+§%,/()%g(%,g,wg+§_Q)dg>d%
[ 6= NG = (60t L [ U000, 100 4 L)) AW (50).

Let us consider 4" = {w € 4/ 1wy =0 € %, }. Forany w € ¢/,

1
[wllo = llwolly, + sup (Efw(>)]?)?

0<x<9

= sup (E[w(=)[?)?.

0<x<9
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Therefore, (4, | - [|4) is a Banach space. For some p > 0, we consider By = {w € ¢/ :

||w|\§ < p}; then, for each p, B, C g]” is uniformly bounded, w € By, and referring to
Lemma 1,

[|w; + 53||2<ﬁ < 2(”“’3“(24 + ||§_3||(2¢])

< 4(lfwolly, + 2 sup (Ellw()[1?) + 5ol + ¢ sup (EIZ(2)|?))
€[0,3] #€[0,3]

4(0 + Cllwll + 11515 +€2E||g,s,r(%)€<0>llz>

IN

p-12
s el + 2 (o) E||§<o>||2)
p-1\2
<4 <p+ (”?(’ﬁ)) E||@<o>||2> +40¢15,
<42(p-+ MUEJCO) ) + 4121, =¥ @

where M; = (Kr}zif;l)z.

We define ¥ : %’ I %]’ " as follows:

0,3€ ( oo, 0],

_ Jo (3= )" NG (3 — 20)B(50)z(¢)d>e

e A %)f(”' W + $oer Jo (540,00 + gg)dg)d% B
S8 = TN — 5 (60 T [ 800,100+ )0 ) AW (), 5 € &,

which demonstrates that ¥ has a unique fixed point. For greater convenience, we divide
the proof into two steps.

Step 1: We claim that there exists p > 0 such that ‘?(Bp) C By. If this is not true, then for

all p > 0 there exists a function w?(-) € By and ¥ (w?) ¢ By, that s, E||(¥wP)(3) > > p for
some 3 € £.

From Lemma 3, (H1)-(H5), and Holder’s inequality, we obtain

p < sup2PE|(FwP)(3)|?
;€€

< 3{ supgz(lfﬁ)EH /03 (3— ) N, (3 — %)B(%)z(%)d%”z

;€€

4—sup3,2(1 ISEH/ ) TIN GG — 3 )f(%’w5r+€_%’/0 g(%,g,wQ—FCQ )d%H

3€€

+ sup 521 ﬁEH/ VTIN5 = ) (2,08, +g%,/% 35, 0,0} + {)do) W(%)Hz}

;€€
= 3{S1 + S, + Sg},

where
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g 0] [0t

565

2
922PK2|IB go 3 _
SHE[ L6y 1||z<%>||d%]

I2(r)
(g e o |

2—-2B1k2 2
LPRBIE,

- T(r)
B 2(a-1)
e B e (A1)
s, _iggaz(l_ﬁ)EH [ 6= N = f (el 4 8 [ (0,08 + Ze)d) i
192r22</®1)<2/05<;j _%)rfld%/z(z,_%)’*1E\|f(%,w§f+é%//%g(%’e’wg +§q)dQ)‘|2d%
slgzr;f:r)Kz/ (o) Ry (1l + Bl [ gtom 0t + L)l
W/o (5 )" "R (1 + [l + Lully, + 70 02(1 + [ +oll) ) doe
gﬂzrrzf:r)Kz LG R (149 + P (144 )
SWKf(l—f—p + (14 1)),

-] i et e st o]
3192_2[;[2{(?(@)/5(5 3) 2| (¢, w8, +€w/ 80 0wl +Lo)de) |Pds
gw?f(zf(@ 6= 52 VRy (1 + Ll + Il [ 8008+ Eo)do)?)doe
<P T [ 2R (1 o+ Gl + (1 + R + o) )
31922?12&(23(@) /Of’ (5= )2 VRy (149 + 0% (1+ ') )de

19172/3+2rK2T1’( Q)
(2r — 1)T2(r)

K, (1 +p’ + 7 0? (1 + P'))-
Therefore,

3192 2,3+27*’ , qg—1Y\
b < rzi()K IBI% N1zl 74 EIC)(1>
392 2P
T2(r+1)
391 2P+ R2Tr(Q)
(27—1)r2(r)

Kf(1—|-p + (1 +p/ ))

K (140 +m02(1+)). ©
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Now, by dividing (6) by p and taking p — oo, we obtain

19272/3+2rK2Kf
I2(r+1)

l91—2[3+27’K2Tr( Q)Kh
(2r — 1)T2(r)

122 l (1 +ﬁ1192) n (1 +m2192)

which contradicts our assumption. Thus, for some p > 0, ¥(B,,) C By.
Step 2: ¥ is a contraction on By.

We take w, W € By, to obtain

E[[¥w(3) — Y (3)[?

SZS;eA}ga 1-#) EH/ ) TIN5 — ){f(%,w%ﬂ%_m/o%g(%/e/w@+5a)de)
—f(% w;{-l-gm/ g(52,0,Wg +€Q)dQ)}d%H
anp V] [y s i [ S 20

—h(%w%—i—@%,/ 3 Q,wc»+§e)d@)] WHZ

2K2192 28
S 1—-2( ) / 3— 1’ 1d%/ 2(7‘ 1 EHf(%,w;,«‘l'C;{,/ (%,Q,WQ"'gQ)dQ)
_f<% w,{+§%,/ g(5t,0,Wy+ ) dQ)H dsx
IK292-2P

+ B TQ) [ 6= P2 VE| (st w0+ L [ Flot 00+ L))

—h(% w;ﬁ-ém/ (%/Q/wq‘|’ge dQ)H dsx

2K292—2B+r 1 S ) I
= W/O (3= 2) Kf(”w%_w%”%, +m? ||we_we||éz)d%
2K2192 26 5 ) - R
+ ey I (Q)/O (G- %>2(r l)]Kh (Hw% - ZU,:HZ% + TH2192||ZUQ — wQH{%)d%
2K2192 2[3+2r K21 —2p+2r )

X ||w% - w%Hg]

2K2192 2/3+2r ) K291 —2p+2r )

(ezsupfsnw( ) - (%)||2+||w0||2g]+\|@0||?¢])

nel
2K2192 2B+2r 2K219172ﬁ+2r
2 2

x sup E|[w(>) — () |?
nel

L sup E||w () — ©(5) 1%,

wel
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x 2 [ K292-2B+2r ) K291—2p+2r )
where Z* = 2( (me (14 m182) + BT (Q)K,, (1 + mad )) < 1. Here,

we have used the fact that ||wy H% = 0 and ||@ ||2% = 0. Taking the supremum over 3, we

obtain N N
[Fw — ¥ol|§ < Z*||w — @[3

Thus, ¥ is a contraction on B, and has a unique fixed point w(-) € By, which is a mild
solution of (1). This concludes the proof. [

4. Hilfer Fractional Neutral Stochastic Integrodifferential Systems with infinite Delay

In recent years, neutral differential systems have drawn a great deal of interest in
applied mathematics. Several partial differential systems, including heat flow in materials,
viscoelasticity, wave propagation, and a variety of natural developments, receive support
from neutral systems with or without delay. The authors of [35] studied the optimal control
and time-optimized control for a neutral integrodifferential evolution system.

Moreover, in [14], the authors investigated the existence and uniqueness of mild
solutions for these equations by means of the Banach contraction mapping principle. Using
fractional calculations and a fixed point technique, investigators have recently established
the existence of mild solutions for Hilfer fractional neutral evolution systems in [13]. For
more details on fractional neutral differential equation, see [32,47,48] and the references
therein. To date, the existence of and optimal control results for Hilfer fractional stochastic
integrodifferential equation with infinite delay have not been investigated. Motivated by
the above facts, we consider a Hilfer fractional neutral stochastic delay integrodifferential
system of the following form:

DY [y(3) — 2 y3)] = Ay(s) + B(3)z(5) + f(:a/yz,, 158G, %,y%)d%)
+h (5,5 3 8,2 y)d) B, s e € = (0,8, @)
0 y6) = 26) € 12(Q,9), 5 € (—0,0),

where A is the infinitesimal generator of an analytic semigroup {G(3)};>0 on Y, A7 is a
fractional power, and 0 < 7 < 1 as a closed linear operator on (A7) along inverse A~ 7.
The following are the properties of A7:

(i) Let Z2(A") be a Hilbert space along ||y|, = ||A7y|| fory € 2(A").

(i) G(3):Y — Y, fors>0.

(i) A7G(3)y = G(3)AVy foreachy € Z(AY) and 3 > 0.

(iv) Forevery 3 > 0, A7G(3) is bounded on Y and there exists M, > 0 such that

M
IAYG ()]l < 3—7“’

Consider the following hypothesis:
(H6): 0 : [0,0] x 4, — Y is a continuous function and there exist constants 77 € (0,1) and
7 > 0 such that o is );-valued and fulfills the following requirements:
E[|ATD(,y) = ARG D> < Ty =%, v.7€%, €9,
EATDG, )2 < 70+ yll) v € 9, 5 € .

rCl,,YI"(l-Hi)

For our convenience, ||A~"|| = Py, P} = T(1+r7)
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Lemma4. Foranyy € Y, € (0,1) and v € (0,1], we have

AN;(3)y = AVTING(5) Ally,

H rC’Y (2 '7)
ST r(T—7)

AN, (3) 0<3<0.

Definition 6 ([21]). A stochastic process y : (—co, 8] — Y is a mild solution of (7), provided that

(a) y(3) is measurable and J;-adapted.
(b) y(3) is continuous on [0, 9] almost surely, and for each ¢ € [0,3), the function
(3 — )" INL(3 — ) AD(5¢,y,.) is integrable such that

9(5) = 9,90 ~D(0,0)] +D(5,5) + [ 85— 2)[ 4D, ) + B(34)2(0)|x
+ /05 515 = #)f (20 /O%g(%, 0,¢)de ) dse
+ /02 Si(3— %)h(%,ym /O%gN(%, th))@)dw(%)/ fors e &,
is fulfilled. Because S, (3) = 5"~ N;(5), it is equivalent with
¥(5) =G, (3)IE(0) = 20,0 + (6,55 + [ (6= ) NG~ ) 4D,y e
+ [1 6= NG — Bz
+/ 3—2) TN (G — a f(%,y%,/ %Q,]/Q)dg)d%
(

+/ 3= )N G — ) %,y%,/ %,Q,yg)dQ))dW( ), for; €E. (8)
() Ipi " y(s) = ¢(5) € L2(Q, %) on (—o0,0) fulfilling ||Z]}3, < co.

Theorem 2. Assume that (HO)—(H6) are fulfilled. Next, system (7) has a unique mild solution
provided that

92—2p+2rm _ 92-2p+2r g2

2|g20-pp2 gy 7 77 LAt
24¢ [19 BT+ A Ty

Kf(1+m119 )

12842 2Ty (O)
i (2:_ 1H§rz<§)Q)Kh(l+mzz92) <1 (9
Proof. Define an operator ¢ : 4/ — ¢/ as
¢(), 3€ (=000
Go,(3)[8(0) =2(0,0)] + (3, 95)
+ J5 (6= 2)" TN (5 — 52) AD (5, Y )d e
OVE) = 44 [ = 20 NG — 2)B(e)z (o) 10
+J3 6= ) I = 3 f (36,0 J 80 0,0 )de ) e
—i—foz(z — ) "IN (5 — %)h(% Yser fo Q,yg)dg)dW(%),forg > 0.
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For { € ¢, we define  as follows:

sy )CG), 3 € (=000
g("’)‘{gm(ox e, )

then, { € 4. Lety(3) = w(3) +{(3), —c0 < 3 < 9. Clearly, y is satisfied from (7) if and only
if w fulfills wy = 0 and

w(3) = = Go,(5)2(0,8) + 206w, +83) + [ (6= @) NG = 2) AD (o w0+ )
+ [[6= 0TI — 2Bz
+/0 3= ”Wr(s—%)f(%,w%Jrém/O%g(%,Q,wg+Zg)de)d%
[ 6= NG = s (5610t B [ (060,100 4 Eo)d0) AW ().

Let9' ={we ¥ :wg=0€%} Foranyw € ¥/,
1
lwlls = llwolly, + sup (Ellw(>)]?)?
0<0<?

— sup (E[w()|P)*.

0<»<9

Hence, (4", | - ||s) is a Banach space. For some p > 0, we set By = {w € 4" : wl|3 < p};
then, B, C g]’ " is uniformly bounded, w € By, and referring to Lemma 1,

l|w; + 55”{2? < 2(”%“?& + ||§_3||52¢])

< 4(lwolZ, + 2 sup (Ellw()?) + 1G], + 2 sup (EIZ()I?))
#€[0,3] #€[0,3]

§4<0+€2|w||19+|5|| +E|1Gs (3G (0)||2>

KoP~1\?
<a( o 12l + 2 (7 )E|I€(0)||2>

r'(p)
sP~1 2
<4 <p+ (Kr(ﬁ)) E||€<o>||2)> + 4]l
< 4(p+ MiE[IZ(0)]1%) + 412117, = p1, (12)

where M; = (Kr’(‘i;l)z

We define { : 9 — 9" as follows:

0, 3€ (—00,0]
—Gs,(3 ) (0 7) +0(3, w; + 53) + f()?j (G- %)771-/\/‘7(5 — 3) AD (56, W, + g%)d%
gw(s) = { T Jo 6= 2) N (5 — 5)B(30)z(3)d3 (13)
+ fo V. )r N (G- %)f(% Wi 4 Coes fo% #,0,Wo + gq)dg)d%
+ 3G =) N (5 — =)k (% Wi + s J3 §(56, 0,0y —i—ég)dQ)dW( ), 3€€&,

which demonstrates that p has a fixed point. For ease of understanding, we split the proof
into two steps.
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Step 1: We claim that there exists p > 0 such that {(By,) C By. If this is false, then for each

p > 0 there exists a function w?(-) € By, and p(wP) & By, that is, E||(pwP)(3)[|> > p for
some ; € £.

Furthermore, from Lemma 3, (H1), (H2), and Holder’s inequality, we have

p < sup 321PE|| (pw) (5)]12

;€€
< 6sup 321 PE(|Gs,(3)0(0,0)|1* + 6sup 2P ED(5, w; + T |12
;€€ ;€€
3 _

+65up 2T PIE| [(5 = 52)' NG (5 = ) AD (ot w0 4+ L)t
;€€

+65up 321 PIE| [ — 20N — )B(0)z ()i
;€€

+6sup 1 ~PE| / ) NG = 59)f (2,0 + Lo [ 800,00 4+ Eg)de ) de|?
;€€ 0

-i-6sup;«,2(1 p) E||/ ) TIN (G — )h(%,w%+zm/0 §(%/Q,wg+§_g)d€’)dw(%)”2
;€€

=51+ Sy 4+ S5+ Sy + S5+ Sg,

where
S = 6sup;,z(l_ﬁ)EHg&,r(é)a(O/ DI

;€€
692(1-PIK292(F-1) || A1 |2
< T (14|22
6K?Pg

= Wﬁ(l +1¢lI).

Sy = 6sup 321 PE|D(5,w; + {3 |12
;€€

< 6P P AT (1+p)
< 60?1 PRR7(1+p),

S5 = 6sup32(1_ﬁ)E||/ VTIN5 — 2)AD (5, w,, + T )d ||
;€€

< 6820 PE| [*(5— @) TATING (s — ) ATD 60, + L)t

~ [3 3 2
< 6020 PR (5 — sy Ve [ (5= ) B ATD (0 + ) Pt

692—28+2ry _
7P T(1+pq1),
(;,17) 1 ( pl)
2
S = 6sup2PIE| [ Y3 ) W — ) B()2(0)
;€€

6 PR BIL [ o ’
< 1"2(1’)El/0 (3—») 1|Z<%)||d%]

2
22812 || I12 3 (r
< PR (L) " (k[ i)’
0
6192 2,B+2r77

- I2(r)
2 2 q—1 o
< in()K IBII% ||Z|Lq(5,m)(qr_1) ,
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_ “ _ 2
S5 = 6sup 321 F) EH/ ) TING (3 — )f(%,wiﬂ%,/ g(%,e,wg+ég)de)d%H
;€€ 0
692 2P K2 _
<y [ 6T %m/ 5= ) ENF (e, wk + E [ 8(06,0,0F + o)de) e
6192 2ﬁ+rK2
< rmy 6 TR (1 ke Ll I [ (o 0 0+ L)l e
6192 2ﬁ+rK2
< rmy 6 TR (L ek Ll P+ L))
6022+ K2 .
_T/ 3—x)" Kf( +p1 +mt (1+P1))d%
602 2B+2r K2
< WK]’(1+]J1 +m1d (1+P1))
'3 _ o _ 2
Se = 6su532<1-ﬁ>EH |6 =2 N = (et Loy [ @oe, 0,008 + Eo)do) aW ()|
3€ .

619272‘8K2T7‘( Q) 3 2(r-1) » _ » P _ )
< 1"2—(r)/o (3— ) EHh(%,w,{—i—C%,/O g(3¢, 0, wg +§Q)dg>|\ dsx

602" 2PK2Tr(Q) (3 - i} o _
<y Q26— s VR (14t + Ll + I [ 8o 0,008 + L)l e

692 2PK2Tr(Q) [3 - _ _ _
< m)” |6 = PR (1 0t + Ll 4+ 28 (14 [0} + Colly) )

60> 2PK>Tr(Q) [3 2r-1)7F = 92
STZ—(I”)/O (3—») Kh(1+p1+m219 (1+P1))d%

691 —2B+2r g2 TT( Q)
(2r — 1)I2(r)

K, (1 + p + 9% (1 +p1)).

Therefore,

<—6 209(1 1211 )+6192(1 PIRS7(1+ )+762 i sz 27(1+p1)

b + 61l P; b b

I'2(B) 9 0 1 (rn)2 1 1
2(a=1)

619272[3+2r7% ) q—1 ;
+ S I el ey (227 )

2-2B+2re2

WH@ (1 +py 4+ 03(1 +p1))

6191_2ﬁ+2rK2T1’(Q)
(2r — 1)T2(r)

_ 6K?F§

- T2()

Kh(l +p1 + 7 0%(1 +p1))

6192(:7/3;2”7 Pt
2 2(q—1)

v MZFZTKZIEI Ee=

+ 6l9r22_(2rﬁfg<2 Ky (1+7m0%) + 6ﬁ1(;iﬁ+2;§22€:§Q)

2-28+2r _ 692—2B+2rg2__
2(1-p) p2 69 2 = 42
(PRSI e Ky (1+me?)

T(1+ ||§|y(/) +620-Pp27 +

K, (1 + %192)

6191—2ﬁ+2rK2 TT( Q)
(2r — 1)T2(r)

K, (1 +m2ﬁ2)1 Pr. (14)
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Now, by dividing (14) by p and taking p — oo, we obtain

192 2/5+2r7] 192 2/5+2rK2
Z  p? -
2 VT e

19172/3+2rK2Tr<Q>7 — a2
@ —12(r) Ry (1+m0) | 21,

which contradicts assumption (9). Hence, for some p > 0, 5(By) C By.

2402 | 920-FIp2 7 1 Ky (1+7m62)

Step 2:  is a contraction on By,.

For each w, @ € By, we have

El|pw(s) — po(s))1?

= sup 32~ ﬁEH (Gows + ;) =00, @5 + ;)]
;€€

# [16 = TING G = U D6 0+ 8) = (o6, L)
4 [ 6N = ) [f (04 T [ 000+ Zo)ie)
- f(> w%+€m/ﬂ 3(3,0,y + {y)da) |d

4 [1 6= N ) 1 e+ T [ R0 0+ L))

—h(% w%+C%,/% g( Q,wg+Cg)de)} (%)Hz
§4sup5 (1-g) EHD(&,ZU;,JFC_;,)*D(Z)r@3+53)”

;€€
+4su}g)3 (- ﬁEH/ )y 1/\/ (3—»)A [D(%,w%—i-g%)—D(%,fl?%-i-é—%)]d%HZ
3€
+4§1€11€332(1 2 EH/ ) TIN5 — 3 )[f(%fwwr?m‘/oﬂg(%refwg+§g)de)

- f(ﬂf, W, + @;{,/ g(s, 0,y + ég)dg)]d%H

‘|‘4§:l§3 (1= ﬁEH/ r 1N 3* )[ (”/w%+g%f.4%§(%fQ’wQ+€_Q)dQ)

— h(% w%+§%,/ 8(5,0,, +Cg)dg)}dw H

< 4P0P) | A |2E|| ATD 5, w0, + §y) — ATD(5, Ty + )|

B _ 2

+ 4620 EH/ Y TLAYING (5 = 29 [A1D (56, W + L) — ATD (o0, 4+ £) x|
+ 4920) EH/O 3= ) TIN5 — ) [f(%,wwrim/o%g(%,@%+5e>d0)

_f(% w%—l-C%,/ 8(5,0,@Wy + o) dq)}d%H

+ 4020~ ﬁEH/ 3= 2 NG ) (5 w%+€m/ 34,0,y +y)do)

)

_h(%w%+§%,/% (0,000 + G dQ) AW (¢ H
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2—25.,22 2
49228y Clﬂyl‘ (1+17) 9211 y“w s ||2
T2(1+ 1) (rp)2 7 7 T

< 48> PP T |w; — @H?z +

4192_2ﬁ+2rK2Kf(1 + 1111192)
I2(r+1)
491 2P R2Tr( Q) Ky, (1 + mpt?)
(2r — 1)I2(r)

g2 [ oy (CroaTAFmMOTNZ 407 HRIK (1 + g 87)
0 I(1+rn)y T2(r + 1)

e — Dl

+ e — @l

<

+

401262 K2 Tr (Q)K,, (1 + mzﬂz)]

2 5 2 2 ~ 112
D0 {2 sup Elw(5¢) — @ () |2 + [[wol 3, + @013, }

el

<

419272,3{762 <P2 + (Clﬂr(l + 7])197'7 ) 2> 419272,3+21’K2€2Kf(1 + TYZ1192)
0

T(1+rm)y 2(r—1)

I?

+ sup E||w(s) — ()

401282 K22 Ty (Q)K,, (1 + mzﬁz)]
wel

(2r = )r2(r)
< M*sup E||[w(s) — @ () ||%,

nel

which implies that

Ellpw(s) — p@(3)|* < M SugEHw(%) — ()|,
A4S

where
Cr_yT(1+73)0"\?
oA

4022 R2ZK ¢ (1 4 my 62) | AR CTH(Q)Ky (1 4 mat?)
I2(r—1) (2r — 1)T2(r)

<1.

Here, we have used the fact that ||wpl||? = 0 and ||@p > = 0. Taking the supremum over 3,
we obtain [|pw — p@||3 < M*||w — @||3. Thus, & is a contradiction. It follows that { has a
unique fixed point w(-) € By, which is a mild solution of Equation (7). This completes the
proof. [

5. Existence of Optimal Controls

Consider the Lagrange problem (LP).
Find a control 20 € A, such that

ZL(2") < Z(2), Vz € Ay

where
b
L(z) = E{ /O ///(3,%,}/2(3),2(5))&13},

and y* is the mild solution of system (7) related to the control z € A,;. We form the
following hypothesis to illustrate the existence of a solution for problem (LP).

(H7):(i) The functional ./ : £ X %, x ¥ x K — RU {0} is Borel measurable.
(i) The sequentially lower semicontinuous functional .#(3,,-,-) on %, x Y x K for
almostall 3 € £.
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iii) .# (3,v,9,-) is convex on K foreachy € ¢4, j € Y and almostall 3 € £.
.y ye9,y
(iv) There exist constants ab>0>0, g is non-negative, and g € L'(&,R) such
that

a(s) +allylig, + I +Clzlf < 4Gy, 9,2).

Theorem 3. Assume that (H7) and Theorem 2 are true and B is a strongly continuous operator.
The Lagrange Problem (LP) then accepts at least one optimal pair, i.e., there is a control 20 € A4
such that

—E{/ M (3,95,9°(3), 0(3))d5} < Z(z), Vz € Ay

Proof. Provided thatinf{.Z(z) | z € A3} = +0o0, there is nothing to verify. Without loss
of generality, we conclude that infimum of {£(z) | z € Ay} = @ < 4o0. Using (H7),
we have @ > —oo. By definition of infimum, there is a minimizing sequence feasible pair
{(y",z")} C Uy, where U,q = {(y,2) : y is a mild solution of (7) relating to z € A4} such
that Z(y",z") — @, as it — +oo. Then, {z"} C Ay, 11 = 1,2,---,{z"} is a bounded
subset of the separable reflexive Hilbert space L9(&, K), and there exists a subsequence,
relabeled as {z""} and z° € L9(&, K), such that z" — z0 weakly in LI(&, K). Because A, is
closed convex, the Marzur Lemma state that z0 € A,,;.
Consider that {y"} is the sequence of solutions of (7) corresponding to {z"}, that is,

Gir (5)12(0) — D0, 0)] + D y) + i35 — 2" A5 — 36) AD (3, e
+ Jo (5= 2) I Ni (5 — 50)B(50)2" (50)d e

yi(3) = +fo 53— 2) NG %)f(%/wao %,Q,y?)dg)d%
+ 3G -2 N (5 z)h( 7y f 84 0,y0)d Q) dW(x), forj >0,
2(3), 3 € (—o0,0].

By referring Theorem 2, it is easy to see that there exists a T > 0 such that
ly"lI5 < 7, 7 =0,1,2,--.

Let y"(3) = w"(3) + (3), where w € 4/ and { : (—c0,9] — Y are the function
provided by (11). For 3 € £, we can obtain
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E||wﬁ

—w%)uz

< 5sup 2! EHD 3, Wy T4+ - (3/1‘72"‘53)”2
3€E

. _ _ 2
+55up 2P| [ = 50N (5 — 50) [AD (] + ) — AD (w0l + )]

38
+55up 20| [ — 5 ING 6 — ) [B(0)2" () ~ B(o2)2(o0)ldse|
368 0
+ 532552(1*13)]5 /3 (3—2) "IN (3 — %) [f(%, w4+, /O%g(%, 0, wz + C_g)dg)
—f(% w, —i—ém/ gl w +§Q)dg)}d%H
+5sup5 (1- ﬁ)EH/ TIN5 — )[ (%,w’z,—l—é_%,/()%g(%,g,wg+C_g)d(’)

3€E

_h(%w +§%,/ g0, w) +g€,)dg)]dw H
592-2FHcy T2(1+ 1)
72T2(1+4ry)

2(a-1) 2
562 2 GR2 g1\ T [ 3 ; 0 q
— q
o (qr_1> E [ [B(:)2" () — B(0)2" (3¢) |

5192—2‘8-&-21’K2Kf(1 + 1111192) 5 0
1"2(1,_'_1) Hw%_w;{H
519172,B+2rK2Tr(Q)Kh(1 i m2192>
(2r — 1)I2(r)

< 50> P27 |wf — | + 7 ||wy, — willg,

e, — w %

which suggests that there exists #* > 0. Thus, we obtain

su};EHwﬁ(%) ( )||2 <y ||IB%Z —BZOHLq forg, cé&. (15)
®EE

Hence, B is strongly continuous, and we have
| Bz" —IB%:/:OHLEI V) 25 0as 1t — oo. (16)
Then, we have
|w™ — w0||129 2y 0as it — oo,
which is equivalent to
" =013 = 0as it — .

Therefore,
noS. .0 / v
y' =y ing asi — oo.

We can deduce that
-9
(05 % 3,2) = E{ [0 33,005), 2060 |

is sequentially lower semicontinuous in the strong topology of L!(£,%, x V) and weak
topology of L9(E,K) C LY(&,K) from Balder’s theorem in [49]. Hence, .Z is weakly
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lower semicontinuous on L9(&,)) and (H7), £ > —o0, and .¥ succeeds its mimimum at
O .
z0 € Ay, ie,

o= tim { " (6,027 (6), 6

> e{ [ 0600260 | - 26 2 a,

and the proof is completed. [

6. Example

Consider the subsequent Hilfer fractional control system:

083 06— 10t 6] — o) 6
+\Y<3/f5 31(%—5)%%@ de, 3 [0 Sa(se, 6 — 5)y(e, )dsdx)

+N(3/ I3 102 = 3)y (o, ¢)doe, [ [0 Sa(5,6,6 — )y, )dsd%) W) g a7)
193 [y(5,6)]l,20 = wolc), 0< ¢ < 7,

y(,0) =y@G,m)=0,3=0,
y(ﬁ/g) = 4)(3/(;)/ ce [O/ 7'[], —00 <3 <0,

2
where Dgf is the Hilfer fractional derivative, r = 2,6 € [0,1], and b(3, ) represents the neu-

tral function, which is discussed further below. On the filtered probability space (€2, J, @),
W(3) is a one-dimensional standard Wiener process in ). The functions ¢(3,¢), S, X, 32
and 3 are continuous.

Consider K = Y = L2([0,7t]). The operator A : Z(A) C Y into ) is described by
Au=1v",ue 2(A), where

2(A) = {u € Y : u, 1 are absolutely continuous, u” € Y, u(0) = u(m) = 0}.

Then, A generates a strongly continuous semigroup G(3);>0 which is compact, analytic,
and self-adjoint. Further, A has a discrete spectrum, the eigenvalues are —h?,h € N, and
the corresponding normalized eigenvectors are

wi(g) = (i) sin(hc), h=1,2,-- .

Now, we consider the following assumptions:

(i) Provided thatu € Z(A), then Au = Y5> | h(u, wy)wy,.

(i) Foreachue Y, A"Y2 =y L, wy)wy. Inparticular, |/ ~1/2| = 1.

(iii) The operator A'/2 is presented by A'/2u = Y.3° | h{u, wy,)wy, on the space Z(A'/?) =
{ued, TiZi hw, wp)wy €Y}

Consider j(») = ¢?*, 3 < 0, then { = ff’w](%)d% = J. Assume that %, is a phase
space endowed with the norm

121l Z/_Ooo](%) sup (E|Z(n)]| )%

#<n<0

Then, (4, - |l4,) is a Banach space.
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For (3,0) € [0,8] x ¢, where {(6,6) = ¢(6,5), (6,¢) € (—o0,0] x [0, 7], we consider

y(3)(g) = y(g,g),
8(5,0)(c) = | S(36,2)0(0)(c)dx,
£t [[staax) @ =3( [ siGaziaeis [ stao o)
26,06 = [ 956,626 ),
(58 [ 50 )@ =3 ( [ 16201, [ 5 0(0)
2(,8)(¢) = /j) b(3,6)¢ (3, ¢)dg.

It is clear that the functions g, f, g, h, and O satisfy the assumptions (H1)-(H3) and (H6).

Now, we define the function z : Gy([0, 71]) — R as control, such thatz € L?(Gy([0, ])),
which means that 3 — z(3) is measurable. The set A = {z € K : ||z||x < ji}, where
fi € L2(€,RT). We limit the admissible control A, tobe all z € L2(Gy([0, 7t])) 3 ||z(-,3)| <

fi(3)ae. 3€€.
We can describe B(3)z(3)(c) = f[O,l] F (g, 2)z(,3)d> and assume the following:

(i) .7 isa continuous function.
(ii) ze L*([0,n] x E)and A : £ x4, x Y x K — RU {0} are defined by

A (3,597 (3),2(3))(5)

—/ / ly*(3 + 2,¢) 2d%dg+/ g+/ 3)[Pdc.
[0,7]

Then, the system (17) can be written in the form of (7). It is clear to see that all the
requirements of Theorem 3 are fulfilled. Therefore, there exists an admissible control pair
(y,z) such that the associated cost functional

2) = e{ [ #6937 0,206

achieves its minimum.

7. Conclusions

This manuscript has studied the optimal control problem for Hilfer fractional neutral
stochastic integrodifferential systems with infinite delay. We have examined the existence
of mild solutions for the Hilfer fractional stochastic integrodifferential system with infinite
delay by applying fractional calculus, semigroups, stochastic analysis theory, and Banach
fixed point theorem. In addition, we have established the existence of mild solutions of
the Hilfer fractional neutral stochastic delay integrodifferential system. Moreover, the
existence of optimal control for the corresponding system has been discussed. Finally, we
offer an example to demonstrate our results. Our future work shall focus on examining the
optimal control for Sobolev-type Hilfer fractional stochastic integrodifferential inclusions
with finite delay.
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