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Abstract: In this paper, a fractional-order model of the gas film is proposed for the dynamic char-
acteristics of an air bearing. Based on the dynamic characteristics common between gas film and
viscoelastic body, the idea of the fractional-order equivalent modeling of the dynamic characteristics
of the gas film is presented to improve the modeling accuracy. Four fractional-order gas film (FOGF)
models are introduced based on generalization of traditional viscoelastic models. The analysis of the
characteristics of the FOGF models shows that the FOGF model can capture more complex dynamic
characteristics and fit the real dynamic data of the gas film better than traditional models. A genetic
algorithm particle swarm optimization (GA-PSO) method is used for parameter identification of
the proposed models. The experimental results tested on the air bearing motion platform show
that the FOGF models are superior in accuracy to the traditional equivalent models for the gas film.
In particular, the fractional-order Maxwell gas film (FOMGF) model has the best capture accuracy
compared to the other FOGF models and traditional models.

Keywords: fractional-order model; gas film model; dynamic characteristics of the air bearing

1. Introduction

Compared with the contact bearing, the air bearing has the advantages of high speed,
high precision, low power consumption, and a long service life. It can meet the requirements
of ultra-precision equipment such as IC manufacturing and optical element processing for
motion support. Since the concept of air lubrication was put forward in the Mid-19th Cen-
tury [1], the air bearing has gradually shifted from theoretical research to practical design
and application, such as ultra-precision machine tools [2–4], measuring instruments [5],
computer storage equipment [6,7], and other ultra-precision fields.

The research core of the air bearing is the dynamic/static characteristics and stabil-
ity. The air bearing fluid follows the Navier–Stokes (N-S) equation of macroscopic fluid
motion based on the continuity assumption. The N–S equation is a nonlinear partial
differential equation, and there is no general method to solve it accurately at present.
Based on some assumptions, Harrison [8] simplified the N-S equation, deduced the one-
dimensional compressible Reynolds equation with infinite width, and established the
foundation of the early hydrostatic gas lubrication theory. The current research on dy-
namic and static characteristics needs to find the solution of the Reynolds equation [9].
The solution of the static characteristics mainly includes the finite element method [10,11],
finite difference method [12–15], and finite volume method [16,17]. To solve the dynamic
characteristics, the primary methods include the perturbation method [18–21], finite el-
ement method [22–24], numerical calculation [10,25–28], approximate solution [29], and
finite difference method [20,21]. These methods are mainly based on fluid theory, and the
dynamic/static characteristics of the air bearing are obtained by solving the N-S equation.
The complicated methods are inconvenient to model the air bearing in the control system.

The complex stiffness characteristics of the air bearing can be obtained by the per-
turbation method, finite element method, and so on. It can be found that the gas film
formed between air floating platforms has similar dynamic and static characteristics to
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viscoelastic materials. On this basis, the gas film of the air bearing system can be abstracted
as a nonlinear dynamic model system. Furthermore, the gas film of the air bearing can
be abstracted as a unique viscoelastic body [30]. Generally, the viscoelastic behavior is
described as a combination of ideal elastic and viscous components. In the application
field of air bearings, some scholars use a simple spring–damper (SD model) system to
model and control the system equivalently [31,32]. The dynamic characteristics of the gas
film have frequency correlation and significant differences under different air flotation
conditions, which limits the fitting effect of the simple model. Al-Bender et al. [33,34]
introduced a more complex spring-damping system (Zener model, etc.) for equivalent
modeling. However, these traditional viscoelastic models still have undesired errors and
limitations in the equivalence of gas film characteristics.

Fractional calculus is an effective mathematical tool. It has been shown by many stud-
ies that fractional-order models can simulate complex systems well, especially in the mod-
eling of nonlinear dynamic systems. The fractional calculus tool is introduced into the vis-
coelastic model to better explain some complex viscoelastic properties. Sahraoui et al. [35]
used the fractional-order Zener model to characterize viscoelastic foam. Liang et al. [36]
used the fractional-order Maxwell model to describe the ultra-low creep behavior of con-
crete. The method also has been successfully applied to other viscoelastic materials [37–39].
It should be a reasonable and feasible method to accurately describe the nonlinear dynamic
characteristics of the air bearing by using the fractional-order model.

In this paper, four fractional-order gas film (FOGF) models are proposed to accurately
capture the dynamic characteristics of the gas film. The FOGF models have more variable
dynamic characteristics, which can better match the dynamic characteristics of the gas
film in different states. Based on the proposed FOGF models, a parameter identification
method based on experimental measurement is also proposed. Compared with the existing
equivalent models, the experimental results show that the FOGF models can effectively
improve the fitting accuracy of the transfer function. The FO-Maxwell gas film (FOMGF)
model has the best fitting accuracy compared to the other FOGF models and traditional
models.

The main contributions of this paper include the following: (1) The idea of fractional-
order modeling is introduced to the equivalent modeling of the gas film, and four fractional-
order gas film (FOGF) models are established. (2) The dynamic characteristics of the
established FOGF models are analyzed and compared with existing traditional models to
show the advantages of the proposed models. (3) The genetic algorithm and particle swarm
optimization (GA-PSO) are presented to identify the parameters of the FOGF models.
(4) The experimental verification is carried out on the H-type air bearing floating motion
platform, and the modeling accuracy of the proposed FOGF models is compared with that
of the existing equivalent models.

The structure of this paper is as follows: Section 2 introduces the dynamic characteris-
tics of the gas film. Section 3 introduces the specific implementation and characteristics of
the FOGF models. Section 4 introduces the parameter identification method of the FOGF
models. In Section 5, experiments conducted on an H-type air bearing floating motion
platform are demonstrated, and the FOGF models are compared with the conventional
spring-damped model for modeling accuracy. The conclusion is provided in Section 6.

2. Gas Film Dynamic Characteristics

As shown in Figure 1, to better discuss the dynamic characteristics of the gas film,
the dynamic characteristics of an infinite flat air bearing are obtained by the perturbation
method.
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Figure 1. Schematic diagram of gas film lubrication.

In the derivation process, the basic assumptions are: (1) isothermal; (2) the gas flow is
laminar; (3) ignoring the inertia force of the gas flow; (4) there is no slip phenomenon at the
contact boundary between the gas and solid; (5) the air bearing support object is a rigid
body and has no tangential relative motion.

From the Navier–Stokes (N-S) equation, the Reynolds equation for the gas film can be
derived [28]:

∂

∂x
(ρh3 ∂p

∂x
) +

∂

∂y
(ρh3 ∂p

∂y
) + 12δµq = 12µ

∂

∂t
(ρh) (1)

where p is the pressure distribution in the gas film, h is the thickness of the gas film, ρ is the
gas density, µ is the dynamic viscosity of the gas, q is the flow at the orifice, t is the time,
and δ is the Kronecker number. When considering the slight disturbance of the gas film,
the gas film thickness at any time can be expressed as:

h = h0 + ∆h = h0 + h1ejwt(j =
√
−1, h1 � h0) (2)

where w = 2π f , f is the frequency, h0 is the initial film thickness, and ∆h and h1ejwx are the
disturbance quantities. From the change of the gas film thickness, the flow rate equation of
the air bearing can be obtained:

q = q0 +
∂q
∂p

∣∣∣∣
p=p0

∆p (3)

where q is the flow rate, p is the air pressure, p0 is the air pressure in the state of the
gas film h0 state, and ∆p is the air pressure change caused by the disturbance. Based on
the Reynolds equation, considering gas compressibility, the equation can be deduced as
follows:

∂

∂x
(h3 ∂p2

∂x
) +

∂

∂x
(h3 ∂p2

∂y
) + 24δµRTq = 24µ

∂

∂t
(ρh) (4)

where R is the molar gas constant and T is the absolute temperature. Assume that the
change in the frequency of ∆p and ∆h is the same. The disturbance equation can be solved
as follows:

2
[

∂

∂x
(h0

3 ∂p0∆p/∆h
∂x

) +
∂

∂y
(h0

3 ∂p0∆p/∆h
∂y

)

]
+ 24δµRT

∂q∆p/∆h
∂p

+

3
[

∂

∂x
(h0

2 ∂p0
2

∂x
) +

∂

∂y
(h0

2 ∂p0
2

∂y
)

]
= 24µ(w∆p/∆h + p0w) · j

(5)

The solution of Equation (5) can be expressed as:

∆p
∆h

= Real(w, p0, h0) + Imag(w, p0, h0) · j (6)

where Real(w, p0, h0) is the real part of the solution and Imag(w, p0, h0) is the imaginary
part of the solution. Equation (6) is written in complex stiffness form as:

K∗ =
∫

Real(w, p0, h0)dA + j ·
∫

Imag(w, p0, h0)dA (7)
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where K∗ is the complex stiffness. Based on Equation (4) and perturbation theory, the
general solution of the two-dimensional gas film can be obtained as follows:

∆p =
Pa∆h

h0

 ch(
√

12µjw/Pah2
0x)

ch(
√

12µjw/Pah2
0B/2)

− 1

 (8)

where ch() stands for the hyperbolic cosine function, B is the plate width, and Pa is the
boundary pressure. Introduce the extrusion number:

σ =
12µB2w

Pah2
0

(9)

The dynamic bearing capacity is obtained by integrating the dynamic bearing pressure
generated by extrusion on the plate:

∆F =L
∫ B/2

−B/2
∆pdx = LBPa

∆h
h0

[
2th(
√

σeπ j/4/2)√
σeπ j/4 − 1

]
(10)

where th() stands for the hyperbolic tangent function and L is the length of the plate.
According to Equation (10), the dynamic characteristic stiffness K and damping C of the
infinite flat air bearing are as follows:

K =
LBPa

h0
Real

[
1− 2th(

√
σeπ j/4/2)√
σeπ j/4

]
, C =

LBPa

h0w
Imag

[
1− 2th(

√
σeπ j/4/2)√
σeπ j/4

]
(11)

where Real[x] represents the real part of x and Imag[x] represents the real part of x. Making
it dimensionless, the dimensionless stiffness K̂ and dimensionless damping Ĉ are obtained:

K̂ =
Kh0

LBPa
= Real

[
1− 2th(

√
σeπ j/4/2)√
σeπ j/4

]
, Ĉ =

Ch0
3

12µLB3 = σ−1 Imag

[
1− 2th(

√
σeπ j/4/2)√
σeπ j/4

]
(12)

where Real[x] represents the real part of x and Imag[x] represents the real part of x. The
expressions of the stiffness and damping of the infinite plate air bearing based on the
perturbation method are obtained as shown in Equation (12). Due to many assumptions,
the derived results can only be solved to obtain the approximate solution of the dynamic
characteristics of the air film under certain conditions. As shown in Figure 2, it can still
be seen from this result that the dynamic characteristics of the gas film are essentially
nonlinear and unsteady, and there is a frequency correlation. The gas film characteristics
are similar to those of the viscoelastic body [38–40].
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Figure 2. Dimensionless dynamic stiffness and damping characteristics of the gas film.
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In fact, the dynamic characteristics of the gas film are affected by different supporting
structures, air supply pressure, film thickness, disturbance amplitude, and so on. The gas
film can show more complex characteristics than the viscoelastic body. Zhu [41] discussed
the influence of the air film thickness, air supply pressure, and disturbance amplitude on
the dynamic characteristics of the air bearing. Bhat et al. [9] presented the influence of
different pore sizes on the gas film characteristics. Arghir et al. [33] showed the effect of gas
compressibility on the gas film properties. Yoshimoto et al. [25] discussed the influence of
different air supply modes on the gas film characteristics. Long [42] investigated the effect
of different throttling types on the gas film dynamic characteristics.

As shown in Figure 3 [41], it can be seen that the air supply pressure can greatly
change the damping variation characteristics of the low frequency. Figure 4 [41] shows that
the film thickness can greatly change the damping change characteristics of medium and
low frequencies. It can be seen from Figure 5 [9] that the pore size can affect the upward
trend of stiffness (produce the minimum peak of stiffness) and even produce negative
damping. According to these scholars’ discussion on the film characteristics of the air
bearing, it can be seen that, besides the disturbance amplitude, other factors, such as the
gas film thickness, also have an influence on the dynamic characteristics. The dynamic
characteristics of the gas film not only have a frequency correlation, but also have great
differences under different conditions. In the past modeling of multibody dynamics, the
gas film was often simplified as a linear and steady spring damping element. The simple
equivalence cannot effectively capture the dynamic characteristics of the gas film under
various conditions. The motion control accuracy of ultra-precision air flotation equipment
is limited to some extent. Therefore, it is necessary to introduce an equivalent model that
can capture more dynamic characteristics of the gas film.
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Figure 3. The dynamic characteristics of the gas film under different air supply pressures [41] (orifice
diameter = 0.3 mm, gas film thickness = 10 µm). (a) Change of dynamic stiffness with air supply
pressures. (b) Change of damping with air supply pressures.
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diameter = 0.3 mm, gas supply pressure = 4 Mpa). (a) Change of dynamic stiffness with film thickness.
(b) Change of damping with film thickness.
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Figure 5. The dynamic characteristics of the gas film under different orifice diameters [9] (gas film
thickness = 15 µm, gas supply pressure = 4.8 Mpa). (a) Change of dynamic stiffness with orifice
diameter. (b) Change of damping with orifice diameter. Reprinted with permission from ref. [9].
Copyright 2022 Elsevier.

3. Fractional Calculus Definition and Fractional-Order Model

In this section, four fractional-order gas film (FOGF) models are proposed and the
stiffness and damping characteristics of the established FOGF models are analyzed.

3.1. Fractional Calculus Definition

Fractional calculus is an important branch of mathematics. Along with the con-
tinuous research of the theory of fractional calculus, researchers found that fractional
calculus can depict many non-classical phenomena in natural science and engineering
applications [43,44]. Generally speaking, obtaining the analytical solutions to most frac-
tional differential equations is difficult. With the development of computers in recent
years, numerical methods such as the finite element method [45–47], variational iteration
method [47,48], finite difference method [49], operational matrix method [50], and B-spline
collocation method [51] have been used to solve fractional models. Shymanskyi et al. [45]
calculated the main relationship of the rheological properties of biomaterials with a fractal
structure by the finite element method. The fractional model can be solved discretely by
the impulse response invariance method.

The common definitions of fractional operators are the Riemann–Liouville (R-L) defini-
tion, Caputo definition, and Grunwald–Letnikov (GL) definition [52–54]. In this paper, the
common Caputo definition was adopted (Equation (13)), which has the advantage that the
physical meaning of the initial value is the same as that of integral calculus.

Dα
t f (t) =

dα f (t)
dtα

=
1

Γ(n− α)

∫ t

0

f (n)(τ)

(t− τ)α+1−n dτ (13)

where n− 1 ≤ α < n (n is an integer), α is the order of the fractional derivative, and f (n)(τ)
is the nth derivative of f (τ). Γ(x) is the Gamma function:

Γ(x) =
∫ ∞

0
e−ttx−1dt (14)

These operators can be expressed mathematically for any order α as follows [55]:

t0 Dt
α =


dα

dtα Re(α) > 0
1, Re(α) = 0∫

t0
(dτ)−α, Re(α) < 0

(15)
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3.2. Model Component

The equivalent model of the fractional gas film is composed of the spring, damper,
and fractional-damper, as shown in Figure 6. Its general expression is as follows:

F(t) = ηDα
t x(t) (16)

where η is the stiffness or damping coefficient, Dα
t x(t) is the α-order derivative of displace-

ment x(t) with respect to time t. When α = 0, the model is a typical hooker spring, as
shown in Figure 6a. When α = 1, the model is a typical damper, as shown in Figure 6b.
When α 6= n (n is an integer), it is a fractional element, as shown in Figure 6c.

(a) (b) (c)

Figure 6. Model component. (a) Spring element. (b) Damper element. (c) Fractional-damper element.

The results of the Laplace transformation of the model elements are as follows:

F(s) =
ηX(s)

sα
(17)

The fluid shows viscoelasticity in the practical application of some materials or devices,
and its mechanical properties show the characteristics of the spring and damper. This phys-
ical characteristic can be described as the fractional-damper [56]. The fractional-damper
describes the evolution of the physical system with loss, and the fractional order of the
derivative represents the share of the system state that persists in the whole evolution
process. Figure 7 shows the transfer function curves of a single component after the Laplace
transformation in different α orders when the correlation coefficient η = 1. The fractional-
damper can have the properties between the spring and the damper. The establishment
of the fractional-damper fills the gap between the spring and damper properties. The
fractional-damper can be considered when the model composed of the spring and damper
cannot accurately characterize the material properties. A separate fractional-damper cannot
represent the substantial viscoelastic body, so it needs to be combined with other compo-
nents to establish a model. The model established by the fractional-damper can represent
more complex viscoelastic behavior with the change of order. The intermediate property
of the fractional-damper brings excellent convenience to the modeling of the complex
characteristics of the gas film.
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3.3. Fractional-Order Gas Film Models

In this paper, based on the traditional model, four FOGF models (Figure 8) are estab-
lished: FO-Zener gas film model, FO-Maxwell gas film model, FO-three-parameter gas film
model, FO-Burgess gas film model. The purpose is to show that the FOGF models are more
suitable for capturing the gas film characteristics than the traditional models.

(a) (b) (c) (d)

Figure 8. FOGF models. (a) FOZGF model. (b) FOMGF model. (c) FOTGF model. (d) FOBGF model.

3.3.1. Fractional-Order Zener Gas Film Model

The structure of the fractional-order Zener gas film (FOZGF) model is shown in
Figure 8a. The FOZGF model is obtained by replacing the damper of the Zener model with
the fractional-damper. As for this model, it can be obtained by the Laplace transformation
and Euler formula, where its transfer function expression is as follows:

Z =
F(w)

X(w)
=

k1η1wα cos(π
2 α) + k1η1wα sin(π

2 α) · j
k1 + η1wα cos(π

2 α) + η1wα sin(π
2 α) · j + k2 (18)

where w = 2π f , f is the frequency, k1,2 is the stiffness coefficient of the corresponding
springs, η1 is the fractional-damper coefficient, and α is the fractional order. According to
the complex stiffness expression:

K∗ = K + j · wC (19)

where K∗ is the complex stiffness, K is the stiffness coefficient, and C is the damping
coefficient. The stiffness and damping of the model are as follows:

K(w) = Real(Z)

C(w) = Imag(Z)/w
(20)

where Real stands for the real part and Imag stands for the imaginary part. For the
convenience of presentation:

a1 = k1 + η1wα cos(
π

2
α)

b1 = η1wα sin(
π

2
α) · j

c1 = k1η1wα cos(
π

2
α)

d1 = k1η1wα sin(
π

2
α) · j

(21)

The expressions of the stiffness and damping are obtained as follows:

k(w) = k2 +
a1c1 + b1d1

a2
1 + b2

1

c(w) =

(
a1d1 − b1c1

a2
1 + b2

1

)
/w

(22)

Change the order α of the fractional-damper with the other parameters unchanged
(keep k1 = 3× 106 N/m, k2 = 160× 106 N/m, η1 = 0.1× 106 N·s/m). The stiffness and
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damping of the model changing with the fractional order can be obtained. The maximum
stiffness of the model decreases with the increase of the order, and the maximum stiffness
peak appears when the order is greater than a certain degree, as shown in Figure 9a. As
shown in Figure 9b, with the increase of the order, the low-frequency damping of the model
becomes larger, showing obvious viscous characteristics.
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Figure 9. Effect of the fractional order on dynamic characteristics of the FOZGF model. (a) Change of
dynamic stiffness with the α order. (b) Change of damping with the α order.

3.3.2. Fractional-Order Maxwell Gas Film Model

The structure of the fractional-order Maxwell gas film (FOMGF) model is shown in
Figure 8b. The FOMGF model is obtained by replacing the damper of the Maxwell model
with the fractional-damper. As for this model, we can obtain its transfer function expression
by the Laplace transformation and Euler formula as follows:

Z =
F(w)

X(w)
=

k1η1wα cos(π
2 α) + k1η1wα sin(π

2 α) · j
k1 + η1wα cos(π

2 α) + η1wα sin(π
2 α) · j +

k2η2wβ cos(π
2 β) + k2η2wβ sin(π

2 β) · j
k2 + η2wβ cos(π

2 β) + η2wβ sin(π
2 β) · j

+ k3 (23)

where w = 2π f , f is the frequency, k1,2,3 is the stiffness coefficient of the corresponding
springs, η1,2 is the fractional-damper coefficient, and α, β is the fractional order. For the
convenience of presentation:

an = kn + ηnwθ cos(
π

2
θ)

bn = ηnwθ sin(
π

2
θ) · j

cn = knηnwθ cos(
π

2
θ)

dn = knηnwθ sin(
π

2
θ) · j

(24)

where θ = α when n = 1 and when n = 2, θ = β. The expressions of the stiffness and
damping of the model can be obtained from Equations (19) and (20) as follows:

k(w) = k3 +
a2c2 + b2d2

a2
2 + b2

2
+

a1c1 + b1d1

a2
1 + b2

1

c(w) =

(
a2d2 − b2c2

a2
2 + b2

2
+

a1d1 − b1c1

a2
1 + b2

1

)
/w

(25)

Change the order α of the fractional-damper with the other parameters unchanged
(keep k1,2 = 3× 106 N/m, k3 = 160× 106 N/m, η1,2 = 0.1× 106 N·s/m, β = 1). As shown
in Figure 10, the stiffness and damping of the model changing with the fractional order can
be obtained. The main performance is that with the increase of the α value, the stiffness
rising rate increases and the stiffness minimum peak appears. As the value of α changes,
the damping characteristics change. At higher order, the damping first increases, then
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decreases, and then stabilizes (damping peak). At low order, the damping decreases first
and then stabilizes. The stiffness and damping expressions (Equation (25)) of the FOMGF
model show that the effect of changing α and β is the same.
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Figure 10. Effect of the fractional order on the dynamic characteristics of the FOMGF model.
(a) Change of dynamic stiffness with the α order. (b) Change of damping with the α order.

3.3.3. Fractional-Order Three Parameter Gas Film Model

The structure of the fractional-order three-parameter gas film (FOTGF) model is shown
in Figure 8c. The FOTGF model is obtained by replacing the damper of the three-parameter
model with the fractional-damper. As for this model, it can be obtained by the Laplace
transformation and Euler formula, where its transfer function expression is as follows:

Z =
F(w)

X(w)
=

c + d · j
a + b · j (26)

where a, b, c, d are equal to:

a = k1 + η1wα cos(
π

2
α) + η2wβ cos(

π

2
β)

b = η1wα sin(
π

2
α) + η2wβ sin(

π

2
β)

c = k1η2wβ cos(
π

2
β) + η1η2wα+β cos(

π

2
α + β)

d = k1η2wβ sin(
π

2
β) + η1η2wα+β sin(

π

2
α + β)

(27)

where w = 2π f , f is the frequency, k1 are the stiffness coefficients of the corresponding
springs, η1,2 is the fractional-damper coefficient, and α, β is the fractional order. The
expressions of the stiffness and damping of the model can be obtained from Equations (19)
and (20) as follows:

k(w) =
ac + bd
a2 + b2

c(w) =

(
ad− bc
a2 + b2

)
/w

(28)

Change the order α of the fractional-damper with the other parameters unchanged
(keep k1 = 160× 106 N/m, η1,2 = 0.1× 106 N·s/m, β = 1). The stiffness and damping of
the model changing with the fractional order can be obtained. The stiffness of the model
changes in the middle- and high-frequency characteristics, especially in the high-frequency
region. As shown in Figure 11a, when α < 1, the high-frequency stiffness keeps rising.
When α > 1, the stiffness has an extreme peak, even a negative stiffness. The damping
characteristic changes with the change of the α value, as shown in Figure 11b. At higher
order, the damping first increases, then decreases, and then stabilizes (damping peak). At
low order, the damping decreases first and then stabilizes.
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Figure 11. Effect of the fractional order on the dynamic characteristics of the FOTGF model.
(a) Change of dynamic stiffness with the α order. (b) Change of damping with the α order. (c) Change
of dynamic stiffness with the β order. (d) Change of damping with the β order.

Change the order β of the fractional-damper with the other parameters unchanged
(keep k1 = 160× 106 N/m, η1,2 = 0.1× 106 N·s/m, α = 1). The stiffness and damping of
the model changing with the fractional order can be obtained. The stiffness of the model
changes in the middle- and high-frequency characteristics, especially in the high-frequency
region. As shown in Figure 11c, when β < 1, the high-frequency stiffness keeps rising.
When β > 1, the stiffness has an extreme peak, even a negative stiffness. The damping
characteristic changes with the change of β, as shown in Figure 11d. The main performance
is that the high-frequency stable damping value increases with the increase of the order,
and the damping minimum peak appears.

3.3.4. Fractional-Order Burgess Gas Film Model

The structure of the fractional-order Burgess gas film (FOBGF) model is shown in
Figure 8c. The FOBGF model is obtained by replacing the damper of the Burgess model
with the fractional-damper. As for this model, it can be obtained by the Laplace transfor-
mation and Euler formula. Make a, b, c, d as follows:

a = k1k2 + η1η2wα+β cos(
π

2
(α + β)) + (k1 + k2)η1wα cos(

π

2
α) + k1η2wβ cos(

π

2
β)

b = η1η2wα+β sin(
π

2
(α + β)) + (k1 + k2)η1wα sin(

π

2
α) + k1η2wβ sin(

π

2
β)

c = k1η1η2wα+β cos(
π

2
(α + β)) + k1k2η1wα cos(

π

2
α)

d = k1η1η2wα+β sin(
π

2
(α + β)) + k1k2η1wα sin(

π

2
α)

(29)
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where w = 2π f , f is the frequency, k1,2 are the stiffness coefficients of the corresponding
springs, η1,2 is the fractional-damper coefficient, and α, β is the fractional order. The model
transfer function is as follows:

Z =
F(w)

X(w)
=

c + d · j
a + b · j (30)

The expressions of the stiffness and damping of the model can be obtained from
Equations (19) and (20) as follows:

k(w) =
ac + bd
a2 + b2

c(w) =

(
ad− bc
a2 + b2

)
/w

(31)

Change the order α of the fractional-damper with the other parameters unchanged
(keep k1 = 160× 105 N/m, k2 = 3× 105 N/m, η1,2 = 0.1× 106 N·s/m, β = 1). The stiffness
and damping of the model changing with the fractional order can be obtained. As shown in
Figure 12a, the characteristics of the model stiffness change in the intermediate frequency
region. The main performance is that the stiffness rising rate increases with the increase of
the value. As shown in Figure 12b, the damping characteristic changes with the change of
the value. At higher order, the damping first increases, then decreases, then stabilizes, then
increases, and finally, stabilizes. When the order is low, the damping decreases first and
then stabilizes.
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Figure 12. Effect of the fractional order on the dynamic characteristics of the FOBGF model.
(a) Change of dynamic stiffness with the α order. (b) Change of damping with the α order. (c) Change
of dynamic stiffness with the β order. (d) Change of damping with the β order.

Change the order β of the fractional-damper with the other parameters unchanged
(keep k1 = 160× 105 N/m, η1,2 = 0.1× 105 N·s/m, α = 1). The stiffness and damping of
the model changing with the fractional order can be obtained. As shown in Figure 12c,
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the stiffness change is similar to the change of α. As shown in Figure 12d, the damping
characteristic changes with the change of the value of α. The low-frequency change of
the damping characteristic is opposite to the change of α. The damping minimum peak
appears. The change of the damping medium and high frequency is similar to the change
of α.

4. Parameter Identification for the FOGF Models

In this paper, a variety of FOGF models are established. In order to identify the
model parameters, a genetic algorithm-particle swarm optimization (GA-PSO) algorithm
for parameter identification of the FOGF models was used [57,58].

The genetic algorithm (GA) is an algorithm that simulates the rules of the survival of
the fittest in the process of biological evolution. It is widely used in optimization control
and other fields [59,60]. The GA operator has selection, crossover, and mutation. The
fitness function measures each individual’s fitness to the environment, and each individual
corresponds to a fitness value. The selection operator eliminates inferior individuals, and
crossover and mutation produce new individuals. The population of individuals continues
to evolve until the best individual is produced. Different from the PSO algorithm, the
GA has a better global searching ability, but the GA cannot guarantee the accuracy of the
solution.

The particle swarm optimization (PSO) algorithm simulates swarm behavior in nature.
Each member (particle) in the swarm constantly changes its search mode by learning from
its own experience and that of other members. Each particle calculates its speed and
position according to Equation (32). Figure 13 is a diagram of the calculation equation.
The PSO algorithm is widely used because of its simple implementation, high efficiency,
and good robustness [61,62]. However, the PSO algorithm is suitable for dealing with
optimization problems with high dimensions, multiple locally optimal solutions, and low
requirements for the accuracy of the results. The PSO algorithm easily falls into local
optima. {

v(i+1)d = w · vid + c1d · (pid − xid) + c2 · (pgd − xid)

x(i+1)d = xid + v(i+1)d
(32)

The GA and PSO algorithm are inspired by nature, and each has its advantages and
disadvantages. To better identify the parameters of the FOGF system, this paper uses a
parameter optimization method of the GA-PSO combined with a search. As shown in
Figure 14, multiple groups of “global optimal values” are quickly searched by the GA,
and then, the slow-speed search is carried out by the PSO algorithm. Ultimately, a more
accurate global optimal value is searched around the “global optimal value”.

Figure 13. Schematic diagram of Equation (32).
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Figure 14. The GA-PSO iterative flow chart.

The GA-PSO algorithm was applied to the parameter identification of the FOGF
system, and the root-mean-squared (RMS) error was introduced as the fitness function. The
minimum RMS value was taken as the objective, and the model was iteratively identified.
The RMS value was used to evaluate the modeling accuracy of the different models. The
algorithm was considered convergent if the RMS value remained unchanged in many
iterations (e.g., 50 iterations).

RMS =

√
1
n

n

∑
k=1

(|(Hd(k)− H(k))|)2 (33)

where Hd(k) is the experimentally measured transfer function value, H(k) is the FOGF
model value, and n is the data length.

5. Experimental Validation
5.1. FOGF Vibration Test System

In this paper, the transfer function of the gas film was evaluated by the vibration test,
so as to verify the precision and accuracy of the established FOGF model. As shown in
Figure 15, M is the mass, F(w) is the external force, K(w) is the system stiffness varying
with frequency, and C(w) is the system damping varying with frequency. The gas film
mass system in this paper is a single-degree-of-freedom vibration system.

Figure 15. Single-degree-of-freedom vibration system.

In this single-degree-of-freedom system, the transfer function of the gas film vibration
with the frequency dependency can be obtained as follows:

Ha f (w) =
A(w)

F(w)
=

−w2

k(w)−mw2 + c(w)w · j
(34)



Fractal Fract. 2022, 6, 561 15 of 22

where w = 2π f , f is the frequency, m is the mass, A(w) is the system acceleration frequency
response, and k(w) and c(w) are the equivalent stiffness and damping in the FOGF model.

5.2. Experimental Platform

The experimental platform was an H-type air bearing floating motion platform, as
shown in Figure 16a. We tested the dynamic characteristics of the gas film produced
in the main X-direction. The y-direction mover of the platform forms the rigid mass
(m = 25.05 Kg) of the FOGF vibration system in this setting and provides preload for the
gas film.

(a)

(b)

Figure 16. (a) Schematic diagram of the experimental platform. (b) Physical diagram of the air
floating platform.

Impact testing is a low-cost and reliable test method [63]. Lin and Ali et al.’ s experi-
mental setup of the air bearing [64] and viscoelastic material [65–68] were implemented.
Based on the actual situation of the experimental platform (Figure 16b), the impact test-
ing experiment was applied to test the transfer function of the system. The hammer
(PCB086C02) exerted force along the center of mass, and the response through the ac-
celerometer (352B SN 244343) was measured. The data were collected by NI company’s
acquisition card (NI 9234) and processed by MATLAB (R2018b, MathWorks, Natick, MA,
USA).The dynamic characteristics of the gas film were obtained by the fast Fourier trans-
form (FFT) of the measured impact force and acceleration.

A similar impact force level was applied under the same condition (e.g., keep Ps = 4.8 MPa)
to minimize the influence of the experimental conditions on the dynamic characteristics.
Each experiment collected multiple data. In addition, the initial frequency response function
and coherence function were checked to ensure the quality of the collected data.

5.3. Results and Discussion

After processing the experimental data, the critical frequency range data were inter-
cepted. The repeatability of the data is shown in Figure 17. According to the experimental
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data, the GA-PSO algorithm was used to identify the parameters of the proposed model.
The transfer function of the gas film was obtained. The parameter identification results
after convergence are shown in Table 1. The identification results are shown in Figure 18.
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Figure 17. Schematic diagram of multiple groups of experimental data.
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Figure 18. Comparison of the experimental results and model fitting results. (a) The logarithmic
value of the transfer function Ha f shown in Equation (34). (b) Real part of Ha f . (c) Imaginary part of
Ha f . (d) Phase change of Ha f .
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Table 1. Parameter identification results of different models.

Model Parameter Numbers Identification Results (units: k1,2,3 N/m, η1,2 N·s/m)

SD model 2 k = 3.78× 107, η = 3.45× 103

FOZGF model 4 k1 = 3.20× 105, k2 = 4.61× 109, η1 = 4.33× 108, α = 1.9186

Zener model 3 k1 = 4.85× 104, k2 = 3.81× 107, η1 = 2.75× 105

FOMGF model 7 k1 = 2.91× 106, k2 = 4.89× 108, k3 = 3.27× 107, η1 = 16.14, η2 = 101.81,
α = 1.7472, β = 0.1621

Maxwell model 5 k1 = 3.53× 107, k2 = 2.93× 106, k3 = 1.09× 105, η1 = 2.57× 105, η2 = 5.19× 106

FOTGF model 5 k1 = 2.00× 106, η1 = 3.86× 107, η2 = 1.14× 106, α = 0.0036, β = 0.80

FOBGF model 6 k1 = 4.05× 107, k2 = 3.01× 108, η1 = 1.75× 104, η2 = 1.21× 105, α = 1.3641,
β = 0.0773

TGF model 3 k1 = 2.13× 1010, η1 = 2.12× 104, η2 = 4.259× 1010

BGF model 4 k1 = 9.95× 106, k2 = 4.898× 1010, η1 = 4.84× 108, η2 = 1.8× 108,

Except for the three-parameter gas film model (TGF model) and Burgess gas film
model (BGF model), the other models had certain effects on the equivalent fitting of the
gas film. It can be seen from Figure 19 that the different models showed different capture
effects. Due to the poor capture effect of the BGF model and TGF model, these two models
are not added in Figures 18 and 19 so as not to affect the comparison of the other models.
Table 2 shows the specific RMS values and compares the capture effects of different models
with the standard spring–damping (SD) model as the standard error value.

E =
RMSSD − RMSother

RMSSD
× 100%

Em =
eSD − eother

eSD
× 100%

(35)

where RMSSD is the RMS value of the SD model, RMSother is the RMS value of the other
models, E is the percentage of RMS reduction of the model relative to the standard spring
damping model, eSD is the peak error (maximum error) of the SD model, eother is the
peak error of the other models, Em is the percentage of peak error reduction of the model
compared with the standard spring damping model, and E and Em show the improvement
of the model capture accuracy. The larger E and Em values of the model, the higher the
capture accuracy of the model is.

Table 2. Error values of different models.

Model RMS E Peak Error Em

SD model [31,32] 0.0016643 0.00% 0.06095 0.00%

FOZGF model 0.00092817 44.23% 0.03514 42.34%

Zener model [33,41] 0.0011119 33.19% 0.0392 35.70%

FOMGF model 0.00022979 86.19% 0.01041 82.91%

Maxwell model 0.0011131 33.12% 0.03948 35.22%

FOTGF model 0.0011844 28.83% 0.04209 31%

FOBGF model 0.0010477 37.05% 0.03826 37.23%

TGF model 0.0078358 −370.8% 0.3560 −484.09%

BGF model 0.0082992 −398.6% 0.3717 −509.8%
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Figure 19. Comparison of the fitting errors between different models. (a) Error value of transfer
function Ha f . (b) Error value of the real part. (c) Error value of the imaginary part.

For the experimental platform in this paper, the capture effects of different models
were sorted from best to worst as follows: FOMGF model (E = 86.19%, Em = 82.91%),
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FOZGF model (E = 44.23%, Em = 42.34%), FOBGF model (E = 37.05%, Em = 37.23%),
Zener model (E = 33.19%, Em = 35.70%), Maxwell model (E = 33.12%, Em = 35.22%),
FOTGF model (E = 28.83%, Em = 31%), SD model (E = 0%, Em = 0%), TGF model
(E = −370.8%, Em = −484.09%), BGF model (E = −398.6%, Em = −509.8%). The FOGF
model as a whole had a smaller RMS value and a smaller maximum error value, and the
traditional Zener model and Maxwell model also had a better effect. The FOMGF model
had the best performance, and the capture effect was obviously improved. The capture
ability of the BGF model and TGF model was far lower than that of the SD model, and the
model results were greatly optimized after the introduction of the fractional-damper. The
4-parameter FOZGF model was better than the 5-parameter Maxwell model. The results of
the 3-parameter Zener model and 5-parameter Maxwell model had little difference, which
shows that simply adding parameters without introducing the fractional order may have a
limited effect.

The gas film characteristic curve in Section 2 shows that the film had the minimum
stiffness peak and almost no maximum stiffness peak. The maximum peak of film damping
was not obvious. In most cases, the damping changed to decreasing first, then stabilizing,
and then, decreasing. In the characteristic curve of the FOMGF model in Section 3, the
model had the minimum stiffness peak when the order was changed (change α while β = 1,
and vice versa). With the change of the order, the damping trend of the model can change
from a monotonic decrease to the maximum damping peak. The other FOGF models had
some characteristics that the gas film may not have. For example, the FOBGF model had the
minimum damping peak, while the FOZGF model may have a stiffness maximum peak and
no stiffness minimum peak. The characteristics of the FOMGF model changing with the
order can better capture the gas film characteristics in general than the other models. The
experimental results in Section 5 also show this discussion. Some gas film characteristics
cannot be captured by the traditional models, but can be captured by the FOGF models.
With the introduction of the fractional order, the FOGF model had better results than the
corresponding traditional model. The FOGF models had a more complex implementation
form than the traditional models. This gives the FOGF model higher universality and
accuracy in the equivalent process.

6. Conclusions

In this paper, the FOGF model was introduced into the research field of the dynamic
characteristics of the gas film. Four FOGF models were established: FOZGF model, FOMGF
model, FOTGF model, and FOBGF model. The influence of the fractional order on the
dynamic characteristics of these four models was obtained by simulation. The FOGF
models had more complex dynamic characteristics than the traditional equivalent models.
Based on the complex characteristics of the gas film in practice, the FOGF models can better
and more accurately capture the dynamic characteristics of the gas film in theory.

The existing models (spring–damper model, Zener model, Maxwell model, etc.) and
the established FOGF models were identified by the GA-PSO algorithm, and the parameter
estimation results of the different models were given. The experimental results showed that
the FOGF models can capture the film characteristics more accurately than the traditional
models. The FOGF models of different air floating platforms had different effects. The
FOMGF model had the best performance on this experimental platform. This paper can
provide a convenient and effective idea for the control modeling of air-bearing-related
fields (such as ultra-precision motion platforms). The proposed method captures the
characteristics of the existing air floating platform and cannot guide the design of the air
floating platform. The FOGF model is beneficial to further expanding the application of
fractional-order theory in engineering. In future research, the FOGF model is expected to
improve the air floating platform’s real-time vibration control and suppression effect in the
motion control process.
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