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1. Introduction

The idea of a fuzzy set was given by Lotfi Zadeh for the first time in 1965 [1]. This
concept has been extended in fuzzy functional analysis, fuzzy topology, fuzzy control
theory and decision making. One of the significant developments of fuzzy sets in fuzzy
functional analysis is fuzzy mapping presented by Weiss [2] and Butnariu [3]. One of the
branches of functional analysis is fixed point theory. Fixed point theory plays a key role in
finding solutions to mathematical and engineering problems. The fixed point results for
multivalued mappings generalizes the results for single valued mappings. Heilpern [4]
established a result to obtain fixed point for fuzzy mappings and generalized Nadler’s
fixed point result [5] for multivalued mappings. Since then a lot of work has been done by
various authors in this field, see [6,7].

Stability is an idea to obtain an approximate solution of such equations which cannot
have an exact solution. It has applications in nonlinear continuous and discrete dynamical
systems [8,9]. The stability of fixed points is a study about the relationship between the
fixed points of certain mappings and the limit of the sequence of those mappings. It has
been extensively studied in various aspects [10-17]. Since the set valued mappings usually
give more than one fixed points than the self mappings [5,18,19], so the set of fixed points
for set valued mappings becomes more interesting for the study of stability. The sequence
of sets { F(A;) }jeN containing fixed points of a sequence of multivalued mappings { A; }jeN
are called stable if F(A;) — F(A) in the Hausdorff metric, where the mapping A is the
limit of the sequence {A]-}]EN and F(A) is the set of fixed points of A.

Recently, Alansari et al. [20] initiate the study of stability and well-posedness of
functional inclusions involving fuzzy set-valued maps. In this sequel, we establish fixed
point results for fuzzy mappings in complete dislocated metric space satisfying a rational
type of almost contractions only for the elements in a closed ball. An example is also given
which supports the proved results. We also discuss the stability of fuzzy fixed point sets of
above mentioned multivalued contractions. We present some definitions and results which
will be helpful in the article.
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2. Preliminaries

In this section, we will recall some specific notations, definitions and results which are
needed in the article. All of these preliminaries are taken from Nawab et al. [21], Azam [6],
and Shoaib et al. [22]. Throughout this paper, N and R represent the sets of natural and real
numbers, respectively. Let S be a universe of discourse of all parameters and J; is called
dislocated metric over the set S.

Definition 1 ([21]). Let S be a nonempty set and 6; : S x S — [0, c0), be a real valued function.
Then, the function &) called dislocated metric (or simply é;-metric), if for any 11,15, 13 € S, the
following hold:
(Z) Ifél(lerZ) = O, then Zl = Zz,'
(ii) 6;(lh, I2) = 61(I2, h);
(iii) 61(lh, 1) < 61(h, I3) + 61 (I3, I2)

The pair (S, ;) is called a 6; metric space. It can be seen that if §;(11,12) = 0, then by (i)
Iy = Ip. But if Iy = I, then §,(13, 1) is not necessarily 0.

Example 1 ([21]). If S = QT U {0}, and &; : S xS — [0,00) then 6;(I1,1) = 1+ L isa
é;-metric on S.

Definition 2 ([23]). Let CB(S) denotes the collection of all nonempty closed and bounded subsets
of a set S. The function Hs, : CB(S) x CB(S) — R, defined by

Hy (C,E) = max{sule (¢c,E),supD;(C,e) }

ceC ecE

is called 6; Hausdorff metric on CB(S), where
Di(c,E) = inf{J;(c,e) : e € E}.

Definition 3 ([22]). A fuzzy set T is a function from S to [0,1], F;(S) is the set of all fuzzy sets in
S. The function values T(1) is called the grade of membership of I in T if T is a fuzzy set and | € S.
The «y-level set of fuzzy set T, is denoted by [T]., and defined as:

[T]y = {I1:T() >} where € (0,1],
Tlo = {I:T() > 0}.

Suppose that S is a nonempty set and Z be a ) metric, then A : S — F/(Z) is a fuzzy mapping.
A fuzzy mapping A is a fuzzy subset on S x Z with membership function A(1)(z). The function
A(1)(z) is the grade of membership of z in A(l). For convenience, we denote the y-level set of A(I)
by [Al], instead of [A(1)],.

Definition 4 ([6]). A point | € S is called a fuzzy fixed point of a fuzzy mapping A : S — F;(S)
if there exists y € (0,1] such that | € [Al],.

Lemma 1 ([22]). Let U and V be nonempty closed and bounded subsets of a 6; metric space (S, ;).
Ifu e U, then
51(1/!, V) < H5l (U, V)
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Lemma 2 ([22]). Let (S, d;) be a &; metric space. Let (CB(S), Hy,) be a 6; Hausdorff metric space.
Then, for all U,V € CB(S) and for each u € U, there exists v, € V satisfies

o(u, V) = 6(u,vu),

then,
H(gl (U, V) > (51(1/1, Uu).

3. Main Results
Theorem 1. Let (S,6;) be a complete §; metric space and A : S — F;(S) be a fuzzy mapping.

Suppose P : RT U {0} — [0, 00) is a continuous and nondecreasing function with Z P(s) < o
=1

and (s) < s for each s > 0. Assume that ly be any pointin S,y : S — (0,1] be a mapping and
there exists a real number M > 0 satisfying the following:

61(l, 1), Di(h, [Al],,)), Dil2, [Al] 0y,
Dy(l, [Al], 1)) + Di(h, [Alzh(zz))

H()"; ([All]’y(ll)/ [AZZ}’y(lz)) < P | max (12/ [AZZ} )[ + Dl(llr [All] )]

1 +01(I, 1)
Dy (lp, [Al]4y)) (1 + Di(h, [Ala] 1))

1 +01(11, 1)
Dy(h, [All, ), Di(la, [Al]0,)), } 1)
Dy(l, [AL]yy)), Di(la, [Al], 1))

7

—i—Mmin{
foralll, 1> € Bs,(ly,0), o > 0and

lei(Dl(lo, [Alo]v(lo))) <o forneN. 2)

i=0
Then, there exists z in B, (lo, o) such that z € [Az], ).

Proof. Letlp € Sand I; € [Aly],(;,). Consider a sequence {I;} of points in Z such that
Iy € [Al,_1],(, ,)- First we will show that I, € By, (lo, o). By (2), we have

n

silo,h) = Dy(lo, [Alo]y ) 2 {(Da(lo, [Alo], 1)) < 0,

o(lo,ly) < o,

implies I; € B, (lp, o). Consider I, 13,- -+ ,I, € B (lp,0) for n € N. By Lemma 2 and (1),
we have
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51(171/ ln+1)

51 (lnr ln+1)

IN

Hy, ([Aly-1]yq, 1) [Alnly )

51([,1,1,1 ) Dl(n 1, [Aln l] 1)
Dl(ln/ [Aln 1] y(L,— )) (l

), Di(ln, [Aln] 1))
1 [Aly] (n))

Dy(In, [Aln]1,)) [1 + Dl(lnflx [Aly 1]

IN

P | max

)]

7

1+ Eln_l, I,
Dy(In, [Aly-1l4q, )

1+ Dy &nflr [Aln]'y(ln))]

7

1+ (Sl(ln—ll Zn)
Di(lu-1, [Aln-1lya, 1))
D (ln 1,[Aln},y( )) D (lnr [Alnfl]y(ln,l))
n)s

(Sl(lnflzln)/él(ln 1/ 5l(ln/ln+1>/
5l(ln/ln +5l(ln lrln+l)

Byl s )1 (L 1, 1y)]
1+ 5l(lnfllln) ’

(Sl(ln' ln) [1 + ‘Sl(lnflz ln+1)]
1 + 5[(11’1 1/l )

+Mmin{6;(ly—1,1n),01(In, lny1), 5l(ln 1 lnt1), 61 (I
S1(ln-1,
o ({001,106 ), L) })

Since

51(11’171/[714’1) < 51(17’!71/11’1) + 5l(ln/ln+1)
2 - 2

+Mmin{

IN

P | max

IN

By (3)

), Di(In, [Alu)1,)), }

< max{d;(l,-1,1

51 (ln/ ln+1) < lp(max{(sl (lnfl/ li’l)r ‘51 (lﬂr ln+1)})‘

Suppose that
51(111—1/111) < (sl(ln/ ln+1)

Then, 6;(1n, 1,41) # 0, and it follows from (4) and a property of ¢ that

O1(Ins lnv1) < 9 (1(In, lng1)) < 01(ln, Ins1),

which is not possible. So,
51(171/ ln+1) < lp((sl(lnfl/ lVl))

In this way, we get
O1(In, ln1) < 9" (61(Io, 1))
Now, by (5) and by triangular inequality, we get

O1(lo, Int1) < 6(lol1) +61(l, 1) +

n

Y 9" (6 (o)) <o

m=0

o(lo,Iny1) < o

IN

w4 6y (n, 1)

) (51 (ln/ ln+1)}

®)

4)

©)

So, we get I,,11 € By, (lo, o). Hence, I, € B (lp,0) for all n € N. Now, we prove that
{I,} is a Cauchy sequence. Fix 7 > 0 and let (1) € N such that ) ¢7(6;(lp,11)) < 5. Let for
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any integer g, € N (r > g > m(n)). Now by triangular inequality and the property of ¢,

we get
o(Ig, Ir) < 5l(lquq+1) + 5l(lq+1rlq+2) + -+ 0l )
< 2q5l moIm1) < ZlP (61(lo, 1))
< ) (6l h) <1
92q(y)

Hence, {I,} is a Cauchy sequence in Bs, (lp, o). As By, (ly, o) is complete, so I, — z €
Bs,(lo, o) such that as r — 0. Since ;11 € [Al],(,), for all r > 1, using Lemma 2 and
inequality (1), we get

IN

Dy(lr+1,[Az],(2) Hy, ([Al] ), [AZ]42)
), Di(

51(1,,2 P lr, [Al] ( )),DZ(Z, [AZ]

2(2):
Dl(z [Alr ) + Dl(lrr [AZ]'y(z))

2 a
< 9| max Di(z,[Az],(z))[1 + Dy(lr, [AlL ] )]
]- +5Z(ZT‘/ ) ’
Dy(z, [Al] 1)) [1 + Dy (I, [Az],(2))]
1+0(5,2)
Diy(Ir, [Alv]y 1)), Din(2, [Az] ), }
Dy (lr, [Az] ()) Dip(z, [Alr] )

5l(lrf ) ‘Sl(lrr r+l) ( [AZ]W (z) )
51(2 lr—l—l) + Dl(lrr [AZ]'y(z )

+M min{

< 1| max Dy(z, [Az %1+5l lr,lr+1)}

1 + 51(1,,2) !
51(21 lr+1) [1 + Dl(lr/ [Az]v(z))]

1+ 0,1y, 2)

51(171 lr+1)/ Dl(Z, [AZ]W(Z))’ }
Dl(lr, [AZ]’y(Z))’ 51(2/ lr+1) .

+M min{

When r — oo in the above inequality, we have

( [AZ] ) < l/J(Dl( [ Z]y(z)))'
Suppose that Dj(z, [Az]y(;)) # 0. As ¢(t) < tfort >0, s0

Di(z [Az]yz) < 9(Di(z, [Az]4(z)) < Di(z, [Az]y(z)),

which is a contradiction. Hence Dj(z, [Az],(;)) = 0. So, we get z € [Az],(,); thatis, zisa
fixed pointof A. O

Remark 1. In the above Theorem 1, 6 Hausdorff metric [23] is used for nonempty set [Ax].,(y). In
fact fuzzy mappings comes as a generalization of single valued mapping T : X — X. Here Tx must
be a point (element) of XIf for some x € X, Tx is undefined then we say that T is not a mapping on
XTo pursue this definition we assume that [Ax].(x) is non empty for using 6; Hausdorff metric Hy,
on nonempty sets [Ax|,,). Indeed, the validity of the assumption of inequality 1 of Theorem 1 and
the validity of Hs, for family of nonempty subsets of X make the set [Ax|.,,(,) nonempty, see [4,6,23].
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Example 2. Let S = QT U {0} and 6,(I1, 1) = I + I, whenever 11,1 € S, then (S,8)) is a
complete dislocated metric space. Define a fuzzy mapping A : S — F;(S) by

1 0<s<l1/6

) 1/3 1/6<s<1/4
ADG) =93 176 1/a<s<is2
0 /2 <s<1

Foralll € S, there exists y(l) = %, such that

A1), = [0, ﬂ
Consider ly = 2 and o = 5, then W =10,3]. Also, ¢ : RT U {0} — [0, 00) defined by
P(k) =pk with 0<p<1l
Let M > 0 be any real number. Then,

61(l1,12), Dy(lh, [Al],qy)), Di(l2, [AL]

i)
Dy (I, [Ah),q)) + Di(h, [Al]yay))

2 7
H5l ([All]'y(l)/ [AZZ]'y(lz)) < ¢ | max Dl(l2/ [AZZ}'y(lz)) [1 + Di(h, [All]v(l))}

1+ 51(l1,122 !
Dy(lp, [Al]y ) [1 + Di(ly, [Al] 1))

1+6(l, 1)

DMLMhthDMZMMme}'
Dy(lh, [Al]y1,)), Di(l2, [Al] )
h

16 < 1p<max{(ll+lz),ll,l2, ll—glz, L(+h) })

1+h+1h
+Mmin{ly,l,}.

—i—Mmin{

This satisfies the conditions of Theorem 1. So, we get 0 € By, (o, o) is a fuzzy fixed point of A.
If we have (k) = pk, where 0 < p < 1, in Theorem 1, we have the following result.

Corollary 1. Let (S, d;) be a complete 6; metric space with A : S — F(S) be a fuzzy mapping.
Assume that ly be any point in' S, v : S — (0,1] be a mapping and there exists a real number
M > 0 satisfying the following:

51(11/12)/[)1(11/[All]'y(ll))/Dl<12/ [AIZ] ( ))/
Dy (I, [Al] (zl))+Dl(11/[Alz] (12))

Hy, ([Ali]y), [AL)y1,y) < p|max{  Dilla [Ablyg,)[1 +Dl(llr[All]7(ll )]

1 + 51(11, lz)
Dy (lp, [Al] ) [+ Di(h, [Ala] 1))

1 +6;(lh, 1)

Dy(l, [Al]y ), Di(la, [Ala] 1)), }
Dy (I, [Al],)), Di(l2, [Al ], 1y))

7

—i—Mmin{

forallly, I € Bs,(ly,0), 0 > 0and

Yy (Dl(lo, [Alo]y(lo))) <o forneN.
i=0

Then, there exists z in By, (lo, o) such that z € [Az], ).
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If we have M = 0 and (k) = pk, where 0 < p < 1, in Theorem 1, we have the
following result.

Corollary 2. Let (S,d;) be a complete 6; metric space with A : S — F;(S) be a fuzzy mapping.
Assume that ly be any point in' S, v : S — (0,1] be a mapping and there exists a real number
M > 0 satisfying the following:

61(l, 1), Di(h, [Al], 1)), Dilz, [Al2]0,)),
Di(la, [Ali], ) + Di(l, [Al] (zz))

H;, ([Ah], ), [ALly 1)) < p| maxq  Dilla, [Al]y,)[1 % Di(h, [Ah]y ) )]

146;(1, 1)
Dy(lp, [Al]y ) [+ Di(l, [Al] 1))

14+ 6;(lh,12)

7

forallly, I € Bs,(lo,0), 0 > 0and
n .
Zl/Jl (DZ(ZO/ [AIO]V(IO))) <o forneN.
i=0
Then, there exists z in By, (lo, o) such that z € [Az]. ).

4. Stability of Fuzzy Fixed Point a-Level Sets

Theorem 2. Suppose (S, ;) is a complete &; metric space, A1, Ay : S — F/(S) are two fuzzy
mappings and  : RT U {0} — [0, 00) be a continuous and nondecreasing mapping with ¥ (s) =

Z P"(s) < oo. Also ¥(s) — 0ass — 0and 1(s) < s for each s > 0. Suppose ly be any point in
S and also there exists a real number M > 0, with y(I) € (0,1] such that, A; for j = 1,2 satisfies
(1) and (2) foralll € S. Then,

Hs, (F(A1), F(A2)) < ¥(p),
where
p= SIUEH(SZ ([A1] @y, [A2l]a))-
S

Proof. As by the above Theorem 1, the set of fuzzy fixed point is non-empty. Suppose
lp € F(A1),itmeans Iy € [A1lp], (), then by Lemma 2 there exists I; € [A3lp], ;) such that

o1(lo, 1) < Hy ([A1lo]y1y), [A2lo10))- (6)

Asly € [Azlpl, (1), S0 by Lemma 2 there exists I € [Aal1],(;,) such that

v(h
61(l1, 1) < Hy, ([A2lo]y gy, [A2l]y 1))
Following Theorem 1, we have for alln € NU {0}
i1 € [Aalu]yq,)
Olns1,lns2) < (01l lns1))

and
81 (b1 Ins2) < 96y (In, Lug)) < oo < 9" (51 (Io, 1)) @)
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Following similar steps as done in the proof of Theorem 1, we can obtain that the
sequence {/,} is Cauchy in S and I, — z € S. Also, z € [Azz],(). Now, by (6) and the
definition of p, we have

d1(lo, 1) < Hy ([A1lo]yy), [A2lo] 1) S P = SluSpHél([All]'y(l)r [Aal],1))-
S

Now, again by triangular inequality and (7) we have
n
§lo,z) < Y 8ililiy1) +61(1;,2)
i=0

< i¢i(5z(10,11))+5l(lirz)-

i=0

Applying n — oo, in above inequality and the property of 1, we get

5110, 2) < glPi(sz(lorh)) < 24»1'(;7) —¥(p).

So, for an arbitrary Iy € F(A1), we have find z € F(A5), such that

81 (lo,z) < ¥(p).

Similarly, for an arbitrary wy € F(A;) we can find u € F(A;), such that

S1(wo, u) <Y (p).

So, we get
Hp, (F(A1), F(A2)) < ¥(p).

O

Theorem 3. Suppose (S,6;) is a complete 5 metric space and {A; : S — F(S) for j € N} bea
sequence of fuzzy mappings, which is uniformly convergent to a fuzzy mapping A : S — F/(S).
Suppose lg be any point in S and (1) € (0,1]. If A; satisfies (1) and (2) for each j € N, then A
also satisfies (1) and (2).

Proof. As A; satisfies (1) and (2) for every j € N, we have

61(l, 2), Di(l, [Ajhlyay)), Di(l2, [Ajla) 1))
Di(la, [Ajli]yay)) + Dil, [A; 12]7(12)

H(S[([Ajll]'y(ll)/ [AjZZ}’y(lz)) < P | max Dl(ZZ/ [Aj12]7(12 )[1 + Dl(lll [A ll] ))]
1 +5l(ll/ 12)
Dy(I2, [Ajl]y 1)) 1 + Di(h, [Ajl2] 1))

1 +5l(11/lz)

. Dy(l, [Ajh]yay)), Di(la, [Ajla] )
+M min JF U (ly) j*21v(l2) )
{ Dy (I, [Ajla]y 1)), Di(l2, [Ajla] )

7

and .
lei(Dl(lo, [AJZO]'y(lo))> <o forc e N.
i=0

As {A|} is uniformly convergent to A with i continuous. By applying limit j — co in
the above inequalities, we have
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2
H‘SI ([All]’y(ll)/ [AZZ}')/(IZ)) < | max Dl(lz, [AZZ}W(IZ)) [1 + Dl(llf [All]’y(ll))]

(Sl (llr ZZ)/ Dl (lll [All]’)/(ll))’ Dl (lz’ [AZZ]'Y(IZ))’
Dy(Ip, [All]'y(ll)) + Dy(ly, [AZZ}'y(lz)

7

1+401(h, I2) '
Dy(l, [Al]1,))[1 + Di(h, [Al]1,))]
1+61(h, )
.| Di(l, [Al]y ), Di(la, [Al] 1)), }
+M i Y2 .
mm{ Dy(h, [AL)y1,)), Di(l2, [Al]ay))

and

n .
l/Jl (Dl(l()/ [AZO]'V(IO))> <o foroc e N.
-0

1

which implies that A satisfies (1) and (2). O

Theorem 4. Let (S,6;) be a complete 5, metric space and {A;: S — F(S) for j € N} be a se-
quence of fuzzy mappings, which is uniformly convergent to a fuzzy mapping A : S — F/(S).
Suppose lo be any point in S and with (1) € (0,1]. If Aj satisfies (1) and (2) for each j € N. Then,

lim Hy (F(A}), F(A)) =0,

j—oo
that is, the sequence of sets { F(A;) }jeN containing fuzzy fixed points of {Af}jeN are stable.

Proof. By Theorem 3, A satisfies (1) and (2). Suppose p; = supHy, ([Ajl], 1), [All 1)) As
les

{Aj} = AonS,so
hmp] = limH(;I([A]'l}y(l), [A”y(l))) =0.

j—roo j—oo
By applying Theorem 2, we have

Hj (F(A}),F(A)) < Y¥(pj) foreachj € N.
As ¥(s) — 0ass — 0and ¢ is continuous, we get

lim Hs, (F(A;), F(A)) < im¥(p;) =0,
J—00 ]—00
thatis,
lim H, (F(A;),F(A)) = 0.
]—o0
Hence, the sequence of sets {F (A]«)}

jeN containing fuzzy fixed points of {Af}jeN
are stable. [

5. Application

Now, we indicate that by using Theorem 1, we can derive a fixed point for a multival-
ued mapping in a complete J; metric space.
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Theorem 5. Let (Z, ;) be a complete 6; metric space and S : Z — CB(Z) be a set- valued mapping.
Suppose ¢ : RT U {0} — [0, 0) is a continuous and nondecreasing function with Z P (s) < o0

and (r) < r for each r > 0. Suppose for a real number M > 0, satisfying the followmg

01(I1,12), Dy(11, Sly), Dy (12, Sla),
Di(l2,Sh) + Dy(h, Slb)

2 7
HgZ(Sll,Slz) < P | max DZ(ZZ/ SZZ)[l + Dl(l1l Sll)] (8)
1 +51(11,128 ’
Dl(lz, Sll)[l + D(I4, Slz)]

1+6(l, )
+M min{Dl (ll, Sll), Dy (lz, 512), Dl(lll Slz), Dl(lz, Sll)}

forallly, 1, € Bs,(ly,0), 0 > 0and

ilPi(Dl(IOISIO)) <o forneN. ©)

Then, there exists w in By, (lo, o) such that w € Sw.

Proof. Let6 : Z — (0,1] be any mapping. If we consider a fuzzy mapping A : Z — F/(Z) as

A()(p) ={ %(,l)’ Pp;;l

So, we get
[Allgqy = {p : A(1)(p) = 6 = SI}.

In this way the (8) and (9) becomes the (1) and (2) of Theorem 1. So, we get w € Z
such that w € [Aw]g(,) = Sw. O

Now, we present our result for single-valued mappings.
Theorem 6. Let (Z, ;) be a complete 6; metric space and S : Z — Z be a single-valued mapping.
Suppose P : RT U {0} — [0, 00) is a continuous and nondecreasing function with Y. " (s) < co
n=1
and (r) < r for each r > 0. Suppose for a real number M > 0, satisfying the following:

01(li, 12),61(hh,Sh), 61(12, Sa),
d1(l2, Shy) + 51(11,512)

51(Sl,Sl) < | max (I, Sh)[1 + o(h, 511)]
1+6(l, )

O1(la, Shy)[1 + 6, (I1, Sh)]
1+0(l, 1)

+Mmin{6, (L, SIy), 6, (I, k), 8, (11, Sk), 8 (1, Sk ) ).

4

foralll,1; € Bs (lp,0), o > 0 and

i’#i(fsl(lo/Slo)) <o forneN.
i=0

Then, there exists w in By, (lo, o) such that w = Sw.

Now, we present the results for sequence of set-valued mappings.
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Theorem 7. Suppose (Z,6) is a complete 6 metric space and {T;: Z — CB(Z) for j € N}
be a sequence of set-valued mappings, which is uniformly convergent to a set-valued mapping
T:Z — CB(Z). Suppose T; satisfies (8) and (9) for each j € N, then T also satisfies (8) and (9).

Theorem 8. Suppose (Z,0;) is a complete & metric space and {Tj: Z — CB(Z) for j € N}
be a sequence of set-valued mappings, which is uniformly convergent to a set-valued mapping
T:Z — CB(Z). Suppose T; satisfies (8) and (9) for each j € N. Then,

lim Hy, (F(T}), F(T)) = 0,

j—o0 /
that is, the sequence of sets { F(T}) }j o Containing fixed points of {T; }j o are stable.

6. Conclusions

In this article we established some fuzzy fixed point results in a closed ball for fuzzy
mappings satisfying rational type almost contractions in a complete dislocated metric
spaces. We also study about stability of fuzzy fixed point y-level sets. We also obtained
fixed point results for set-valued mappings. Hausdorff distance is used and an example is
presented to support these results. The proposed operators can be extended to Fermatean
fuzzy sets see [24,25].
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