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Abstract: The coupled cubic-quintic nonlinear Schrödinger (CQNLS) equation is a universal math-
ematical model describing many physical situations, such as nonlinear optics and Bose–Einstein
condensate. In this paper, in order to simplify the process of similar analysis with different forms of
the coupled CQNLS equation, this dynamic system is extended to a time-space scale based on the
Lax pair and zero curvature equation. Furthermore, Darboux transformation of the coupled CQNLS
dynamic system on a time-space scale is constructed, and the N-soliton solution is obtained. These
results effectively combine the theory of differential equations with difference equations and become
a bridge connecting continuous and discrete analysis.

Keywords: coupled cubic-quintic nonlinear Schrödinger equation; time-space scales; Darboux
transformation; N-soliton solution

1. Introduction

In recent years, many useful methods have been applied to obtain solutions of inte-
grable systems, such as Darboux transformation [1–5], inverse scattering transformation [6],
bilinear transformation [7], and Backlünd transformation [8]. Darboux transformation,
originating from the work of Darboux in 1882 on the Sturm–Liouville equation, is a power-
ful method for constructing solutions for integrable systems. The basic idea of Darboux
transformation is to construct the solution of integrable equations by solutions, which
is called the eigenfunctions, of the linear partial differential equation associated with its
Lax pair. Lots of literature can be found in this regard. In Ref. [9], the authors develop
Darboux’s idea to solve linear and nonlinear partial differential equations arising in soliton
theory. In Ref. [1–5], various approaches have been proposed to construct a Darboux
transformation for nonlinear partial differential equations, such as operator factorization,
gauge transformation, and loop group transformation.

The time scale was introduced in 1988 by Stefan Hilger, and its main purpose is to
unify continuous and discrete analysis [10], which is further researched and developed
by Bohner and Peterson [11,12]. This theory is a powerful tool to unify various types
of time-variable forms and simplifies the process of similar analysis on time scales with
different forms, and can better solve complex models that contain multiple situations, such
as continuous and discrete. Therefore, it is used widely in various fields due to unification
and extension. For example, in biology, functional connectivity patterns can be studied
on multiple time scales by simulating the neural dynamics of large scale inter-regional
connection networks in the macaque cortex [13–15]. In physics, the fixed point index theory
is used to establish a double fixed point theorem for a completely continuous operator in
Banach space, and then an application of the two-point conjugate boundary problem is
discussed [16–18]. In economics, the time scales model provides information for a problem
for not evenly spaced intervals, for which the standard continuous and discrete models do
not [19,20].
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The coupled cubic-quintic nonlinear Schrödinger (CQNLS) equation is introduced as
the following form{

qt = iρ2
1q3r2 − 2ρ1qqxr− 2ρ1q2rx − 2iq2r + iqxx,

rt = −iρ2
1q2r3 − 2ρ1qrrx − 2ρ1qxr2 + 2iqr2−irxx.

where ρ1 is a real parameter [21,22]. This equation has been one of the universal mathe-
matical models in the field of nonlinear science, which is applied widely into optics [23,24],
Bose–Einstein condensation [25,26], and other fields [27]. Many scholars obtain soliton
solutions of this equation through different methods, such as Darboux transformation,
backscattering, and Backlünd transformation [28,29]. In Ref. [28], Nth-order rogue wave
solutions of coupled CQNLS equation are obtained by generalized Darboux transformation.
The dynamics of its general first and second-order rogue waves are further discussed and
illustrated. In Ref. [29], the soliton solution of the coupled CQNLS equation is obtained
through bilinear Backlünd transformation; this result has important applications for the ul-
trashort optical pulse propagation in non-Kerr media. In this paper, we extend the coupled
CQNLS equation on a time-space scale based on the Lax pair and zero curvature [30–33].
This result simplifies the process of similar analysis with different forms and builds a bridge
between differential equations and difference equations. Furthermore, this equation can be
used in complex models with both discrete and continuous applications.

The structure of this article is as follows. Some preliminaries about the time-space
scale are devoted in Section 2. The coupled CQNLS equation on a time-space scale is
derived in Section 3. Darboux transformation of this equation on a time-space scale is
constructed, and its N-soliton solution is obtained in Section 4. Lastly, the conclusion is
given in Section 5.

2. Preliminaries

In this section, some definitions of the time-space scale are introduced first [34–37].

Definition 1. A time-space scale is any non-empty closed subset of the real number R, and it has
topological and sequential relations induced by R.

Definition 2. Assuming T and X are time and space scales, for (t, x) ∈ T×X, the forward jump
operators are respectively defined as

σ : T→ T, ρ : X→ X,

σ(t) = inf{s ∈ T : s > t}, ρ(x) = inf{y ∈ X : y > x}.

for x ∈ X, the backward jump operator β(x) : X→ X is defined as

β(x) = ρ−1(x) := sup{y ∈ X : y < x}.

Definition 3. The ∇−derivative related to time and space variables is defined as

∇t f (t, x) = lim
p→µ(t)

f (t, x)− f σ(t, x)
p

,

∇x f (t, x) = lim
q→v(x)

f (t, x)− f ρ(t, x)
q

,

where the grayscale functions are defined as

µ : T→ [0,+∞), ν : X→ [0, ∞),

µ(t) = t− σ(t), ν(x) = x− ρ(x).
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Note that,
f σ(t, x) := f (σ(t), x) = f (t, x)− µ(t)∇t f (t, x),

f ρ(t, x) := f (t, ρ(x)) = f (t, x)− v(x)∇x f (t, x).

Definition 4. Exponential function on a time scale is defined in the following form

eα(x, x0) := exp
(∫ x

x0

ζµ(s)(α(s))∆s
)

, eα(x) := eα(x, 0),

where α : X→ C is a given function and

ζh(z) :=
1
h

log(1 + zh), h > 0, ζ0(z) := z.

This definition applies to the ν-regressive functions α = α(x), i.e., those satisfying

1 + ν(x)α(x) 6= 0.

Such functions are usually called regressive.
In the constant discrete case (X = εZ, ε = const ), with α = const, we have

eα(x) = (1 + αε)
x
ε ,

and in the case X = R, we have

eα(x) = exp
∫ x

0
α(τ)dτ.

Property 1. The properties associated with ∇-derivatives are as follows{
∇t[ f (t, x)g(t, x)] = f σ(t, x)∇tg(t, x) +∇t f (t, x)g(t, x),

∇x[ f (t, x)g(t, x)] = f ρ(t, x)∇xg(t, x) +∇x f (t, x)g(t, x).

3. The Coupled CQNLS Equation on a Time-Space Scale

In order to obtain the coupled CQNLS equation on a time-space scale, the∇-dynamical
system is considered as follows{

∇x ϕ(t, x) =U(t, x)ϕ(t, x),

∇t ϕ(t, x) =V(t, x)ϕ(t, x),
(1)

with 
U(t, x) =

(
−iλ− i

2 ρ1qr q
r iλ + i

2 ρ1qr

)
,

V(t, x) =
(

A B
C −A

)
,

where A, B, C are functions which contain spectral parameters λ and potential functions q, r.
According to the compatibility condition ∇xt ϕ = ∇tx ϕ, the zero curvature equation

on a time-space scale is derived to

UσV +∇tU −VρU −∇xV = 0. (2)

By putting U(t, x), V(t, x) into Equation (2), these equations are obtained
iλ(Aρ − A)− i

2 ρ1(qr)σ A + qσC− i
2 ρ1∇t(qr) + i

2 ρ1qrAρ − rBρ −∇x A = 0,
−iλ(Bρ + B)− i

2 ρ1(qr)σB− qσ A +∇tq− qAρ − i
2 ρ1grBρ −∇xB = 0,

iλ(C + Cρ) + rσ A ++ i
2 ρ1(qr)σC +∇tr + i

2 ρ1qrCρ + rAρ −∇xC = 0,
−iλ(A− Aρ) + rσB− i

2 ρ1(qr)σ A + i
2 ρ1∇t(qr)− qCρ + i

2 ρ1grAρ +∇x A = 0.

(3)
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A, B, C are taken as quadratic polynomials of λ

A =
2

∑
i=0

aiλ
i, B =

2

∑
i=0

biλ
i, C =

2

∑
i=0

ciλ
i. (4)

Take a2 = −2i. By putting (4) into (3) and comparing coefficients of λ, the relations
are obtained as follows

b2 = 0, c2 = 0,
b1 = −bρ

1 + iqσa2 + iqaρ
2,

c1 = −cρ
1 + irσa2 + iraρ

2,
a1 = 1

2∇−1
x (−rσb1 + qcρ

1 + qσc1 − rbρ
1),

b0 = −bρ
0 + iqσa1 + iqaρ

1 −
1
2 ρ1qrbρ

1 −
1
2 ρ1(qr)σb1 + i∇xb1,

c0 = −cρ
0 + irσa1 + iraρ

1 −
1
2 ρ1qrcρ

1 −
1
2 ρ1(qr)σc1 + i∇xc1,

(5)

and

∇tq = qσa0 + qaρ
0 +

i
2 ρ1qrbρ

0 +
i
2 ρ1(qr)σb0 +∇xb0,

∇tr = −rσa0 − raρ
0 −

i
2 ρ1qrcρ

0 −
i
2 ρ1(qr)σc0 +∇xc0.

(6)

According to the derivative rule on a time-space scale, ai, bi, ci(i = 0, 1) are obtained
as follows

a1 = 0,

b1 = 2(2− ν(x)∇x)
−1(q + qσ),

c1 = 2(2− ν(x)∇x)
−1(r + rσ),

b0 = 2M1(q + qσ),

c0 = 2M1(r + rσ),

a0 = 2M2M1[M4 + M3],

(7)

with

M1 =
[
(2− ν(x)∇x)

−1
]2
(

i∇x −
1
2

ρ1qr(1− ν(x)∇x)−
1
2

ρ1(qr)σ

)
,

M2 = [2∇x + iρ1qσ(r− rσ) + iρ1r(1− ν(x)∇x)(q− qσ)]−1,

M3 =
1
2

ρ2
1(qr)σqr− 1

2
ρ2

1(qr)σqσrσ − iρ1∇x(2qσr + qr + qσrσ) + qσr− qrσ,

M4 = (1− ν(x)∇x)

(
1
2

ρ2
1q2r2 − 1

2
ρ2

1qσrσqr + qrσ − qσr
)

.

Then, Equation (6) is the coupled CQNLS dynamical system on a time-space scale,
where a0, b0, c0 are defined by Equation (7). Next, several special cases of the coupled
CQNLS dynamical system will be obtained.

Case I

Consider the case T × X = R × R. We get µ(t) = ν(x) = 0. Then, (7) can be
converted to

a1 = 0,

b1 = 2q,

c1 = 2r,

b0 = −ρ1q2r + iqx,

c0 = −ρ1qr2 − irx,

a0 = iρ2
1q2r2 +

1
2

ρ1qxr− 1
2

ρ1qrx − iqr,
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System (6) is transformed into the coupled CQNLS equation, i.e.,{
qt = iρ2

1q3r2 − 2ρ1qqxr− 2ρ1q2rx − 2iq2r + iqxx,
rt = −iρ2

1q2r3 − 2ρ1qrrx − 2ρ1qxr2 + 2iqr2−irxx.

Case II

Consider the case T×X = R×Z. We get µ(t) = 0, ν(x) = 1. Then,

f σ(x, t) = f (x, t),

f ρ(x, t) = E f (x, t) = f (x, t)− (1− E) f (x, t),

where E is the shift operator. By calculation, Equation (7) can be converted to

a1(x) = 0,
b1(x) = 4(1 + E)−1q(x),
c1(x) = 4(1 + E)−1r(x),
b0(x) = (1 + E)−2(− 1

2 ρ1Eq(x)r(x)− 1
2 ρ1q(x)r(x) + i− iE)4q(x),

c0(x) = (1 + E)−2(− 1
2 ρ1Eq(x)r(x)− 1

2 ρ1q(x)r(x) + i− iE)4r(x),
a0(x) = (1 + E)−22iρ1[ρ1q(x)r(x)(1 + E)− 2i(1− E)]q(x)r(x).

Equation (6) can be transformed into{
qt(x) = (1 + E)−2[i(1 + E)ρ1q(x)r(x) + 2(1− E)][(1 + E)ρ1q(x)r(x) + 2i(1− E)]q(x),
rt(x) = −(1 + E)−2[i(1 + E)ρ1q(x)r(x) + 2(1 + E)][(1 + E)ρ1q(x)r(x)− 2i(1− E)]r(x),

which is a semi-discrete coupled CQNLS equation.

4. Darboux Transformation of CQNLS Equation on a Time-Space Scale

In this section, the generalized Darboux transformation on a time-space scale will be
constructed, and the N-soliton solution of the CQNLS equation will be obtained.

Firstly, U, V of the CQNLS equation are rewritten as follows

U = −iλσ3 + Q− 1
2

iρ1Q2σ3,

V = −2iλ2σ3 + B1λ + a0σ3 + B0,
(8)

with Q =

(
0 q
−q∗ 0

)
, B1 =

(
0 b1
c1 0

)
, B0 =

(
0 b0
c0 0

)
, σ3 is the Pauli matrix.

Proposition 1. The Lax pair of the CQNLS equation is invariant under the following Darboux
transformation {

ϕ[1] = T[1]ϕ = (λI − S)ϕ,
q[1] = q− is12 − isρ

12,
(9)

where
S = HΛH−1, Λ = diag(λ1, λ∗1),

H satisfies {
∇x H = −iσ3HΛ + QH − 1

2 iρ1Q2σ3H,
∇tH = −2iσ3HΛ2 + B1HΛ + a0σ3 + B0H.

Then, ϕ[1] satisfies the linear spectrum problem as follows{
∇x ϕ[1] = U[1]ϕ[1],
∇t ϕ[1] = V[1]ϕ[1],

(10)
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where
U[1] = −iλσ3 + Q[1]− 1

2
iρ1Q[1]2σ3,

V[1] = −2iλ2σ3 + B1[1]λ + a0[1]σ3 + B0[1],
(11)

Q[1] = Q + iSσ3 + iSρσ3, B1[1] =
(

0 b1[1]
c1[1] 0

)
, B0 =

(
0 b0[1]

c0[1] 0

)
.

Proof. Assume a gauge transformation

ϕ[1] = T[1]ϕ, T[1] = T0 + T1λ, (12)

where T0 =

(
a b
c d

)
, T1 =

(
a11 b11
c11 d11

)
.

By substituting Equation (12) into Equation (1), the constraint relation on the x part
is obtained

∇xT[1] + T[1]ρU −U[1]T[1] = 0. (13)

Substituting Equations (8), (11), and (12) into Equation (13) and comparing the coeffi-
cients of λ, we get

ia11
ρ = ia11, ib11

ρ = −ib11, ic11
ρ = −ic11,

∇xa = −1
2

iρ1qq∗aρ + q∗bρ +
1
2

iρ1q[1]q∗[1]a + q[1]c,

∇xb =
1
2

iρ1qq∗bρ − qaρ +
1
2

iρ1q[1]q∗[1]b + q[1]d,

∇xc = −1
2

iρ1qq∗cρ + q∗dρ − 1
2

iρ1q[1]q∗[1]c− q[1]∗a,

∇xd = +
1
2

iρ1qq∗dρ − qcρ − 1
2

iρ1q[1]q∗[1]d− q[1]∗b,

∇xa11 = iaρ − 1
2

iρ1qq∗a11
ρ + q∗b11

ρ − ia +
1
2

iρ1q[1]q∗[1]a11 + q[1]c11,

∇xb11 = −ibρ +
1
2

iρ1qq∗b11
ρ − qa11

ρ − ib +
1
2

iρ1q[1]q∗[1]b11 + q[1]d11,

∇xc11 = icρ − 1
2

iρ1qq∗c11
ρ + q∗d11

ρ + ic− 1
2

iρ1q[1]q∗[1]c11 − q∗[1]a11,

∇xd11 = −idρ +
1
2

iρ1qq∗d11
ρ − qc11

ρ + id− 1
2

iρ1q[1]q∗[1]d11 − q[1]∗b11.

(14)

Taking a11 = d11 = 1, we obtain

q[1] = q + ibρ + ib,

q[1]∗ = q∗ + icρ + ic.
(15)

Then, matrix S is constructed as

S =

(
s11 s12
s21 s22

)
= −T0.

Then,
T[1] = λI − S,

q[1] = q− is12 − isρ
12.

From the constant term of Equation (13), we obtain

∇xS = −SρQ +
1
2

iρ1SρQ2σ3 + QS− iS2σ3 − iSρSσ3 +
1
2

iρ1Q2Sσ3 . (16)
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If H is a solution of Equation (1), then H satisfies

∇x H = −iσ3HΛ + QH − 1
2

iρ1Q2σ3H, (17)

where Λ = diag(λ, λ).
Take

S = HΛH−1 , (18)

then,

∇xS = ∇x

(
HΛH−1

)
= −iσ3S2 + QS +

1
2

iρ1Q2Sσ3 − iSρSσ3 − SρQ +
1
2

iρ1SρQ2σ3.

In addition, the gauge transformation (9) satisfies another constraint relation concern-
ing t part

∇tT[1] + T[1]σV −V[1]T[1] = 0. (19)

By substituting Equation (12) into Equation (19), the following formula is derived

−∇tS + (λI − Sσ)V = V[1](λI − S), (20)

where V and V[1] are obtained from Equations (8) and (11).
By comparing coefficients of λ, Equations (21)–(24) are obtained as follows

B1 + 2iSσσ3 = 2iσ3S + B1[1], (21)

a0σ3 + B0 − SσB1 = −B1[1]S + a0[1]σ3 + B0[1], (22)

∇tS + Sσ(a0σ3 + B0) = (a0[1]σ3 + B0[1])S. (23)

when T[1] = λI − S, q[1] = q− is12 − isρ
12, Equations (21)–(24) are constant. The proof

is completed. Having the explicit form of the Darboux transformation, we are ready to
construct the exact solutions of the CQNLS equation.

Matrix H and Λ are constructed as

H =

(
ψ1 φ∗1
φ1 −ψ∗1

)
, Λ =

(
λ1 0
0 λ∗1

)
,

where the column vector (ψ1, φ1)
T is a set of solutions to the Lax pair (1) when λ = λ1,

column vector
(
φ∗1 ,−ψ∗1

)T is a set of solution when λ = λ∗1 . Then one soliton solution will
be obtained as follows.

First, rewrite Equation (1) as
∇x ϕ[0] =

(
−iλ + i

2 ρ1q[0]q[0]∗ q[0]
−q[0]∗ iλ− i

2 ρ1q[0]q[0]∗

)
ϕ[0],

∇t ϕ[0] =
(
−2iλ2 + a0[0] b1[0]λ + b0[0]
c1[0]λ + c0[0] 2iλ2 − a0[0]

)
ϕ[0].

(24)
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Then,

ϕ[1] = T[1]ϕ[0]

= (λI − S[0])ϕ[0]

=

(
λ− s11[0] −s12[0]
−s21 λ− s22[0]

)
ϕ[0],

q[1] = q[0]− is12[0]− is12[0]ρ

= q[0] + i(λ1 − λ∗1)
ψ1[0]φ1[0]∗

ψ1[0]2 + φ1[0]2
+ i(λ1 − λ∗1)

ψ
ρ
1 [0]φ

ρ
1 [0]

∗

ψ
ρ
1 [0]

2 + φ
ρ
1 [0]

2
.

(25)

where

S[0] =
1

ψ1[0]2 + φ1[0]2

(
−λ1|ψ1[0]|2 − λ∗1 |φ1[0]|2 −

(
λ1 − λ∗1

)
ψ1[0]φ1[0]∗

−
(
λ1 − λ∗1

)
ψ1[0]∗φ1[0] −λ1|φ1[0]|2 − λ∗1 |ψ1[0]|2

)
,

ϕ1[0] =
(

ψ1[0]
φ1[0]

)
is a solution to (24) when λ = λ1. At the same time, ϕ[1] satisfies


∇x ϕ[1] =

(
−iλ + i

2 ρ1q[1]q[1]∗ q[1]
−q[1]∗ iλ− i

2 ρ1q[1]q[1]∗

)
ϕ[1],

∇t ϕ[1] =
(

a2[1]λ2 + a0[1] b1[1]λ + b0[1]
c1[1]λ + c0[1] −a2[1]λ2 − a0[1]

)
ϕ[1].

(26)

Taking “seed solution” q = 0, we derive

ψ1 = e−iλ(x, 0)e−2iλ2(t, 0),

φ1 = eiλ(x, 0)e2iλ2(t, 0),

ψ
ρ
1 = [1− iλv(x)]e−iλ(x, 0)e−2iλ2(t, 0),

φ
ρ
1 = [1 + iλv(x)]eiλ(x, 0)e2iλ2(t, 0).

Then, one soliton solution is obtained

q[1] = q[0] + i(λ1 − λ∗1)
M1

M1 + M2
+ i(λ1 − λ∗1)

[1− iλv(x)]2M1

[1− iλv(x)]2M1 + [1 + iλv(x)]2M2
,

with
M1 = e−2iλ(x, 0)e−4iλ2(t, 0),

M2 = e2iλ(x, 0)e4iλ2(t, 0).

Next, the second Darboux transformation is constructed and two soliton solutions are
obtained in a similar way

ϕ[2] = T[2]ϕ[1]

= (λI − S[1])ϕ[1]

=

(
λ− s11[1] −s12[1]
−s21[1] λ− s22[1]

)
ϕ[1]

= T[2]T[1]ϕ[0],

q[2] = q[1]− is12[1]− is12[1]ρ

= q[1] + i(λ2 − λ∗2)
ψ2[1]φ2[1]∗

ψ2[1]2 + φ2[1]2
+ i(λ2 − λ∗2)

ψ
ρ
2 [1]φ

ρ
2 [1]

∗

ψ
ρ
2 [1]

2 + φ
ρ
2 [1]

2
,

where

ϕ2[1] =
(

ψ2[1]
φ2[1]

)
=

(
λ2 − s11[1] −s12[1]
−s21[1] λ2 − s22[1]

)(
ψ2
φ2

)
.
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ϕ2[1]is a solution to Equation (26) when λ = λ2 and (ψ2, φ2)
T is a solution to (24) when

λ = λ2, ϕ[2] satisfies
∇x ϕ[2] =

(
−iλ + i

2 ρ1q[2]q[2]∗ q[2]
−q[2]∗ iλ− i

2 ρ1q[2]q[2]∗

)
ϕ[2],

∇t ϕ[2] =
(

a2[2]λ2 + a0[2] b1[2]λ + b0[2]
c1[2]λ + c0[2] −a2[2]λ2 − a0[2]

)
ϕ[2].

(27)

Then, the N-soliton solution is obtained

ϕ[N] = T[N]ϕ[N − 1]

= (λI − S[N − 1])ϕ[N − 1]

=

(
λ− s11[N − 1]− s12[N − 1]

−S21[N − 1] λ− s22[N − 1]

)
ϕ[N − 1]

= T[N] · · · T[3]T[2]T[1]ϕ[0],

q[N] = q[N − 1] + i(λN − λ∗N)
ψN [N − 1]φN [N − 1]∗

ψN [N − 1]2 + φN [N − 1]2
+ i(λN − λ∗N)

ψ
ρ
N [N − 1]φρ

N [N − 1]∗

ψ
ρ
N [N − 1]2 + φ

ρ
N [N − 1]2

= q[0] + i
N

∑
j=1

(
λj − λ∗j

) ψj[j− 1]φj[j− 1]∗

ψj[j− 1]2 + φj[j− 1]2
+ i

N

∑
j=1

(
λj − λ∗j

) ψ
ρ
j [j− 1]φρ

j [j− 1]∗

ψ
ρ
j [j− 1]2 + φ

ρ
j [j− 1]2

.

Finally, three different cases of Darboux transformation are discussed, their N-soliton
solutions are given separately.

Case I

Considering the case T×X = R×R, we have

f ρ = f (t, x),

f σ = f (t, x).

Equation (15) can be simplified into

q[1] = q + 2ib,
q[1]∗ = q∗ + 2ic.

(28)

when q[0] = 0 and λ = ξ + iη, ξ and η are real constants, we derive

ψ1 = e(η−iξ)x+[4ξη−2i(ξ2−η2)]t,
φ1 = e−(η−iξ)x−[4ξη−2i(ξ2−η2)]t.

Then one-soliton solution of the CQNLS equation is obtained

q[1] = − 2i

|ψ1|2 + |φ1|2
(λ1 − λ∗1)ψ1φ∗1 = 2ηe−2iξx−4i(ξ2−η2)t sech(2ηx + 8ξηt) (29)

The dynamic of the one-soliton solution is presented in Figure 1.
Then, the N-soliton solution can be obtained

q[N] = q[N − 1] + 2i
(
λN−λ∗N

) ψN [N−1]φN [N−1]∗

|ψN [N−1]|2+|φN [N−1]|2
= 2i

N
∑

j=1

(
λj−λ∗j

)
ψj [j−1]φj [j−1]∗

|ψj [j−1]|2+|φj [j−1]|2 .
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Case II

Considering the case T×X = R×C, we have

µ(t) = 0, ν(x) =

{
1

3n+1 , x = ∑n
k=1

ek
3k +

1
3n+1 ∈ L,

0, x ∈ C\L,

where C is a Cantor set and L is a set that contains the left discrete elements of C,

L =

{
n

∑
k=1

ek

3k +
1

3n+1 : n ∈ N, ek ∈ {0, 2}, 1 ≤ k ≤ n

}
.

when λ = ξ + iη, one-soliton solution is obtained by the first iteration.

q[1] =

 −2η N1
N1+N2

− 2η
[1−3−n−1(iξ−η)]

2
N1

[1−3−n−1(iξ−η)]
2

N1+[1+3−n−1(iξ−η)]
2

N2
, x ∈ L, t ∈ R,

2ηe−2iξx−4i(ξ2−η2)t sech(2ηx + 8ξηt), x ∈ C\L, t ∈ R,
(30)

with
N1 = e−2(iξ−η)(x, 0)e−4i(ξ2+2iξη−η2)(t, 0),

N2 = e2(iξ−η)(x, 0)e4i(ξ2+2iξη−η2)(t, 0).

Then, the N-soliton solution is obtained{
q[N] = N3 + N4, x ∈ L, t ∈ R,
q[N] = 2N3, x ∈ C\L, t ∈ R,

where

N3 = i
N

∑
j=1

(
λj − λ∗j

) ψj[j− 1]φj[j− 1]∗∣∣ψj[j− 1]
∣∣2 + ∣∣φj[j− 1]

∣∣2 ,

N4 = i
N

∑
j=1

(
λj − λ∗j

) (
ψj[j− 1]− 3−n−1∇xψj[j− 1]

)(
φ∗j [j− 1]− 3−n−1∇xφ∗j [j− 1]

)
∣∣ψj[j− 1]− 3−n−1∇xψj[j− 1]

∣∣2 + ∣∣φj[j− 1]− 3−n−1∇xφj[j− 1]
∣∣2 .

Case III

Considering the case T×X = R×Kp, we have

µ(t) = 0,

v(x) =
{

0, x = 0,(
1− p−1)x, x = pk ∈ pZ.

where p > 1, pZ = {pk : k ∈ Z} and Kp = pZ
⋃ {0}.

By the iteration of the Darboux transformation, when λ = ξ + iη, one-soliton solution
can be presented as

q[1] =

 −2η e2(p−1)N5

e2(p−1)N5+e2(p−1)N6
− 2η e2(1−p−1)N5

e2(1−p−1)N5+e2(1−p−1)N6
, x ∈ pZ, t ∈ R,

2ηe−2iξx−4i(ξ2−η2)t sech(2ηx + 8ξηt), x = 0, t ∈ R,
(31)

where
N5 = ∑

x∈(0,pk ]

(η − iξ)x− 2i
(

ξ2 + 2iξη − η2
)

,

N6 = ∑
x∈(0,pk ]

(iξ − η)x + 2i
(

ξ2 + 2iξη − η2
)

.
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Then, the N-soliton solution is obtained

q[N] =


i ∑N

j=1

(
λj − λ∗j

)
ψj [j−1]φj [j−1]∗

|ψj [j−1]2+|φj [j−1]2
+ i ∑N

j=1

(
λj − λ∗j

)
M13, x ∈ pZ, t ∈ R,

2i ∑N
i=1

(
λj − λ∗j

)
ψj [j−1]φj [j−1]∗

|ψj [j−1]2+|φj [j−1]2
, x = 0, t ∈ R,

where

M13 =

[
ψj[j− 1]−

(
1− p−1)x∇xψj[j− 1]

][
φ∗j [j− 1]−

(
1− p−1)x∇xφ∗j [j− 1]

]
∣∣ψj[j− 1]− (1− p−1)x∇xψj[j− 1]

∣∣2 + ∣∣φj[j− 1]− (1− p−1)x∇xφj[j− 1]
∣∣2 .

Figure 1. One-soliton solution with ξ = 0.825, η = 0.512.

5. Conclusions

In this paper, starting from the ∇-dynamical system, the specific form of the coupled
CQNLS equation on a time-space scale is derived by the zero curvature equation and dif-
ferent forms of this equation in continuous time scales and discrete time scale are discussed
separately. In addition, the Darboux transformation of the coupled CQNLS equation on a
time-space scale is elaborately constructed; its one, two, and N-soliton solutions are further
investigated. These results effectively combine the theory of differential equations with the
theory of difference equations, which can simplify the process of similar analysis on differ-
ent time and space scales, and can better solve complex models that include continuous
and discrete situations.

The extension to arbitrary time or space scales provides access to a wider range of
nonlinear integrable dynamic equations. By taking the seed solution q = 0, λ = ξ + iη,
one-solution of the CQNLS equation is obtained on three different time-space scales
(X = R,X = C, and X = Kp). In one case, the exact solution (29) and its dynamic fig-
ure are obtained when x ∈ R . In the other cases, when x ∈ C\L and x = 0, exact solutions
(30) and (31) are obtained and are similar to Equation (29). Nevertheless, when x ∈ L and
x ∈ pZ, the structures of solutions are more complicated at discontinuity points. Due to
the limitations of the computer, it was difficult to obtain their dynamic figures at this stage.
We will find the most effective way to reduce structures of solutions on C and Kp, then
extend the nonlocal symmetry reduction [38] to a time-space scale, which is the focus of
our future work.
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