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Abstract: In this paper, the quasi-projective synchronization of distributed-order recurrent neural
networks is investigated. Firstly, based on the definition of the distributed-order derivative and metric
space theory, two distributed-order differential inequalities are obtained. Then, by employing the
Lyapunov method, Laplace transform, Laplace final value theorem, and some inequality techniques,
the quasi-projective synchronization sufficient conditions for distributed-order recurrent neural
networks are established in cases of feedback control and hybrid control schemes, respectively.
Finally, two numerical examples are given to verify the effectiveness of the theoretical results.

Keywords: distributed-order derivative; neural network; quasi-projective synchronization; Laplace
final value theorem

1. Introduction

Fractional calculus has more merits than classical integer-order calculus in the descrip-
tion of memory and hereditary properties for a variety of materials and processes, and
has therefore been of great interest to scholars [1,2]. Many researchers have realized that
fractional calculus could be fit for theoretical research and practical application of science
and engineering, such as fractal geometry, signal processing, pattern recognition, dynamics
of complex dielectric, viscoelastic materials, and automatic control systems [3–8]. As a gen-
eral rule of fractional calculus, the distributed-order derivative was proposed by Caputo [9].
It is worth noting that a distributed-order derivative is more accurate in describing and
explaining some physical phenomena, such as networked structures, the complexity of
nonlinear systems, non-homogeneous, multi-scale, and multi-spectral phenomena [10–13].
Therefore, an increasing number of scholars have set out to study distributed-order deriva-
tives. In [14], the authors studied some properties of the viscoelastic rod with a fractional
distributed-order derivative and exhibited its potential applications. Moreover, differential
equations need to be solved in some cases. In [15,16], the authors presented a numerical
method for solving differential equations of distributed-order.

In the past decades, with the development of modern technology, neural networks
have been widely applied in various fields, such as signal processing, image recognition,
control theory, associative memory, and optimization [17–22]. Nowadays, fractional calcu-
lus has been introduced into neural network modelling because it improves the ability of
neurons to process information [23]. Fractional order recurrent neural networks, by using
sequential information, can enable it to reveal time correlations between nodes that are far
away from each other in the data. Thus, the characteristics of memory are endowed to the
neural networks. Therefore, it is of great significance to study the dynamic behavior of
fractional order recurrent neural networks. In [24], the authors investigated the multistabil-
ity of fractional-order recurrent neural networks with nonmonotonic activation functions.
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In [25], through the Lyapunov method, some conditions for the global Mittag–Leffler sta-
bility and synchronization were presented. In [26], several Hopf bifurcation conditions for
fractional order recurrent neural networks were presented. The authors pointed out that
a fractional-order equation can simulate the activity of neuron oscillation and proposed
stability theory of incommensurate fractional-order models. In [27], the authors proposed
a fractional-order recurrent neural network sliding mode control scheme for a class of
dynamic systems. The proposed RNNFSMC scheme is used for a dynamic model of an
active power filter to realize the current harmonic compensation control.

Moreover, synchronization, which has been given full attention by scholars, has a
number of potential applications in practice, including cryptography, secure communi-
cation, optimization of nonlinear systems performance, etc. [28–35]. Since the two state
variables of projection synchronization can synchronize to a scaling factor, this feature has a
great application prospect in improving transmission speed by extending binary to M base
system in secure communication. In [36], the authors proposed a necessary and sufficient
condition for projective synchronization of the chaotic systems in arbitrary dimensions and
provided an algorithm to obtain all the solutions of the projective synchronization problem.
In [37,38], the authors respectively studied the problem of projective synchronization for
fractional order chaotic systems and fractional order delayed neural networks. Authors ex-
tend the conclusion of quasi-projection synchronization over real number fields to complex
number fields, and give the error bound of quasi-projection synchronization for fractional
order recurrent neural networks in [39].

To the best of our knowledge, there are few results on the synchronization of distributed-
order recurrent neural networks. Therefore, motivated by the above discussions, in this
paper, we investigate the quasi-projective synchronization of distributed-order recurrent
neural networks. First, we extend some lemmas that are true at fractional order systems to
distributed-order systems. Then, by applying the feedback control, the quasi-projective
synchronization of distributed-order recurrent neural networks are obtained. Finally,
the quasi-projective synchronization of distributed-order recurrent neural networks are
investigated in the case of a hybrid control scheme.

The main contribution of this paper can be summarized in brief as follows. (1) The quasi-
projective synchronization of distributed-order recurrent neural networks is investigated for
the first time. (2) Based on the definition of distributed-order derivative and metric space
theory, two distributed-order differential inequalities are obtained. (3) Several sufficient
criteria for quasi-projective synchronization of distributed-order recurrent neural networks
are established. (4) The error bound of the model is obtained.

The rest of the paper is structured as follows. In Section 2, the distributed-order
recurrent neural networks model and relevant definitions are presented. And we deduced
some necessary lemmas and some results that conduce to establish sufficient conditions
for the quasi-projective synchronization of distributed-order recurrent neural networks.
Then, in Section 3, several sufficient conditions are proposed to ensure the quasi-projective
synchronization of such neural network models. Two numerical examples in Section 4 are
given to illustrate the effectiveness of the theoretical results. Finally, the paper concludes in
Section 5.

Notations: In this paper, Dω(α) denotes ω(α)-order distributed-order fractional deriva-
tive operator. R, Rn, and Z+ respectively indicate the set of real numbers, the n-dimensional
Euclidean space, and the set of positive integer.

2. Model Description and Preliminaries

In this paper, we consider the following distributed-order recurrent neural networks

Dω(α)xi(t) = −pixi(t) +
m

∑
j=1

n

∑
k=1

dijk f j(xj(t)) + qi, i = 1, 2, · · · , n, (1)
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where ω(α) > 0, α ∈ (0, 1); i, k ∈ Z+ = {1, 2, · · · , n}, j ∈ Z+ = {1, 2, · · · , m}; xi(t) denotes
the state vector; f j(xj(t)): Rn → Rn is the activation functions of the ith neuron; pi > 0
denotes the decay rate; dijk represents the interconnection weight of the ith neuron and jth
neuron; qi is the constant control input vector.

In order to investigate the synchronization, the response system is depicted as

Dω(α)yi(t) = −piyi(t) +
m

∑
j=1

n

∑
k=1

dijk f j(yj(t)) + qi + ui(t), i = 1, 2, · · · , n, (2)

where yi(t) denotes the state vector of response system; the rest notations are same as in
drive system (1). Through feedback control, the controller ui(t) can be described as

ui(t) = −gi(yi(t)− βixi(t)). (3)

Let ei(t) = yi(t)− βixi(t), then the error system between the drive system (1) and the
response system (2) can be written as

Dω(α)ei(t) = −(pi + gi)ei(t)+
m

∑
j=1

n

∑
k=1

dijk f j(yj(t))−
m

∑
j=1

n

∑
k=1

dijkβi f j(xj(t))+ (1− βi)qi. (4)

Hypothesis 1 (H1). The function f j(x) is Lipschitz continuous, i.e., for any x, y ∈ R, there exists
positive constant Fj such that∣∣ f j(x)− f j(y)

∣∣ ≤ Fj|x− y|, j = 1, 2, · · · , n. (5)

Hypothesis 2 (H2). For any j ∈ Z+, there exist positive numbers Hj such that

| f j| ≤ Hj. (6)

Definition 1 ([40]). The Caputo fractional derivative of order α ∈ R+ is defined as

Dαx(t) =
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1x(m)(τ)dτ, (7)

where m− 1 < α < m, m ∈ Z+.

Definition 2 ([41]). The distributed-order derivative in the Caputo sense with respect to ω(α) > 0
is defined as

Dω(α)x(t) =
∫ m

m−1
ω(α)Dαx(t)dα, (8)

where m − 1 < α < m, m ∈ Z+. In particular, when α ∈ (0, 1), it holds that Dω(α)x(t) =∫ 1
0 ω(α)Dαx(t)dα.

Definition 3 ([42]). The Laplace transform of distributed-order derivative of a function is

Lt→s{Dω(α)x(t)} = (Lt→s{x(t)} − x(0)/s)
∫ 1

0
ω(α)sαdα, (9)

where Lt→s{·} represents the Laplace transform operator.

Definition 4 ([39]). Systems (1) and (2) can be said to be quasi-projectively synchronized, if there
exists a small error bound ε > 0 such that

lim
t→∞
|yi(t)− βixi(t)| ≤ ε, (10)

where βi ∈ R is the projective coefficient and βi 6= 0.
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Lemma 1. Suppose function h(t) ∈ R is continuous and differentiable on t ∈ [t0, ∞), it has

Dω(α)h(t)2 ≤ 2h(t)Dω(α)h(t), (11)

where ω(α) > 0, α ∈ (0, 1).

Proof. From Definitions 1 and 2, we have

Dω(α)h(t)2 =
∫ t

t0

ω(α)
1

Γ(1− α)

∫ t

t0

2(h(τ)h
′
(τ)

(t− τ)α
dτdα

=
∫ t

t0

ω(α)
2

Γ(1− α)

∫ t

t0

(h(τ)− h(t) + h(t))h
′
(τ)

(t− τ)α
dτdα

=
∫ t

t0

ω(α)

[
2

Γ(1− α)

∫ t

t0

(h(τ)− h(t))h
′
(τ)

(t− τ)α
dτ + 2h(t)Dαh(t)

]
dα

=
∫ t

t0

ω(α)

[
2

Γ(1− α)

∫ t

t0

φ(τ)φ
′
(τ)

(t− τ)α
dτ + 2h(t)Dαh(t)

]
dα,

(12)

where

∫ t

t0

φ(τ)φ
′
(τ)

(t− τ)α
dτ =

φ2(τ)

(t− τ)α

∣∣∣∣t
t0

−
∫ t

t0

φ(τ)d
φ(τ)

(t− τ)α

= lim
τ→t

φ2(τ)

(t− τ)α
− φ2(t0)

(t− t0)α
−
∫ t

t0

φ(τ)φ
′
(τ)

(t− τ)α
dτ − α

∫ t

t0

φ2(τ)

(t− τ)α+1 dτ.

(13)

By transposing, it can obtain

2
∫ t

t0

φ(τ)φ
′
(τ)

(t− τ)α
dτ = lim

τ→t

φ2(τ)

(t− τ)α
− φ2(t0)

(t− t0)α
− α

∫ t

t0

φ2(τ)

(t− τ)α+1 dτ, (14)

then, we have

∫ t

t0

φ(τ)φ
′
(τ)

(t− τ)α
dτ =

1
2

[
lim
τ→t

φ2(τ)

(t− τ)α
− φ2(t0)

(t− t0)α
− α

∫ t

t0

φ2(τ)

(t− τ)α+1 dτ

]
=

1
2

[
lim
τ→t

2φ(τ)φ
′
(τ)(t− τ)1−α

α
− φ2(t0)

(t− t0)α
− α

∫ t

t0

φ2(τ)

(t− τ)α+1 dτ

]
≤0.

(15)

Submitting (15) into (12), we have

Dω(α)h(t)2 ≤ 2h(t)Dω(α)h(t). (16)

For more details of the proof process, one can refer to the proof of Theorem 2 in [43].

Lemma 2. If x(t) ∈ C1([0,+∞], R) is a continuously differentiable function, for any ω(α) > 0
and α ∈ (0, 1), the following inequality holds almost everywhere

Dω(α)|x(t)| ≤ sgn(x(t))Dω(α)x(t). (17)

Proof. It is easy to obtain that |x(t)| is differentiable except several points,which belong to
the set Ω = {t |x(t) = 0, x′(t) 6= 0}. In addition, according to measure theory, we assert
that Ω is a countable set and its measure is 0.

Afterwards, we prove that inequation (17) holds except at the set Ω. Without loss of
generality, the trajectory of |x(t)| can be depicted as Figure 1. The solid line indicating
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|x(t)| is divided into two parts by S3 ∈ Ω. Suppose that there exists only one extreme point
as point S2 and every part is divided into two pieces like R1, R2 in part A. The dash line
is the trajectory of −|x(t)| which may be the one of x(t) in any part. (xs, ys)denotes the
coordinate of point S in Figure 1. When t /∈ Ω, we have

Dω(α)|x(t)| =
∫ 1

0
ω(α)

1
Γ(1− α)

∫ t

0

|x(t)|′
(t− τ)α

dτdα

=
∫ 1

0
ω(α)

1
Γ(1− α)

(∫ xS3

0
+
∫ t

xS3

|x(τ)|′
(t− τ)α

dτ

)
dα,

(18)

and

sgn(x(t))Dω(α)x(t) = sgn(x(t))
∫ 1

0
ω(α)

1
Γ(1− α)

(∫ xS3

0
+
∫ t

xS3

x(τ)′

(t− τ)α
dτ

)
dα. (19)

In Part A, if sgn(x(t))x(τ) = |x(τ)|, then
∫ xS3

0
|x(t)|′
(t−τ)α dτ =

∫ xS3
0

sgn(x(t))x(τ)′

(t−τ)α dτ; lif sgn(x(t))
x(τ) = −|x(τ)|, according to the properties of integrals and derivatives, we have∫ xS3

0

|x(t)|′
(t− τ)α

dτ =
∫ xS2

0

|x(t)|′
(t− τ)α

dτ +
∫ xS3

xS2

|x(t)|′
(t− τ)α

dτ

<
1

(t− xS2)
α

∫ xS2

0
|x(t)|′dτ +

1
(t− xS2)

α

∫ xS3

xS2

|x(t)|′dτ

=
−yS1

(t− xS2)
α
≤ 0.

(20)

Due to sgn(x(t))x(τ) = −|x(τ)|, then we have∫ xS3

0

|x(t)|′
(t− τ)α

dτ <
∫ xS3

0

sgn(x(t))x(τ)′

(t− τ)α
dτ. (21)

In Part B, whether x(t) > 0 or x(t) < 0, sgn(x(t))x(τ) = |x(τ)| holds, thus∫ t

xS5

|x(t)|′
(t− τ)α

dτ =
∫ t

xS5

sgn(x(t))x(τ)′

(t− τ)α
dτ. (22)

To sum up, inequation (17) holds almost everywhere. For the case where multiple extreme
points exist, in [44] the authors prove that the inequation (17) is still valid.

Remark 1. It is noted that a distributed-order derivative is a generalization of a fractional derivative.
In Lemmas 1 and 2, if the order of the distributed-order derivative changes from ω(α) to α, the
above two distributed-order inequalities become fractional inequalities, and their conclusions are
proved in references [43,44].

Lemma 3 ([45]). Let λ1 > 0, λ2 > 0, λ3 > 1, λ4 > 1 and 1
λ3

+ 1
λ4

= 1. Then, for any $ > 0, it
holds that

λ1λ2 ≤
1

λ3
(λ1$)λ3 +

1
λ4

(
λ2

1
$

)λ4

. (23)
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Figure 1. The |x(t)|’s trajectory.

3. Main Results

Theorem 1. Under assumptions (H1) and (H2), if the following inequalities hold

λ1 =
n

∑
i=1

m

∑
j=1

n

∑
k=1

[
2(pi + gi)− 2d2

ijk −
ξ j

ξi
F2

i − 1
]
> 0, (24)

λ2 =
n

∑
i=1

ξi

[
m

∑
j=1

n

∑
k=1

H2
j (1 + β2

i − 2βi) + (1− βi)
2q2

i

]
> 0, (25)

L−1

{
1∫ 1

0 ω(α)sαdα + λ1

}
≥ 0, (26)

and the roots of
∫ 1

0 ω(α)sαdα + λ1 are in the open left-half complex plane, then systems (1) and (2)
can achieve quasi-projectively synchronized under the controller (3).

Proof. Consider the Lyapunov function candidate as follows

V(t) =
n

∑
i=1

ξie2
i (t), (27)

where ξi is positive constant.
According to Lemma 1 , it shows that

Dω(α)V(t) ≤
n

∑
i=1

2ξiei(t)Dω(α)ei(t)

= 2
n

∑
i=1

ξiei(t)

[
− (pi + gi)ei(t) +

m

∑
j=1

n

∑
k=1

dijk

(
f j(yj(t))− f j(β jxj(t))

)

+
m

∑
j=1

n

∑
k=1

dijk

(
f j(β jxj(t))− βi f j(xj(t))

)
+ (1− βi)qi

]

=
n

∑
i=1

ξi

[
− 2(pi + gi)e2

i (t)

]
+

n

∑
i=1

ξi

[
m

∑
j=1

n

∑
k=1

2ei(t)dijk

(
f j(yj(t))− f j(β jxj(t))

)
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+
m

∑
j=1

n

∑
k=1

2ei(t)dijk

(
f j(β jxj(t))− βi f j(xj(t))

)]
+

n

∑
i=1

ξi

[
2ei(t)(1− βi)qi

]

≤
n

∑
i=1

ξie2
i (t)

[
− 2(pi + gi)

]
+

n

∑
i=1

ξi

[
d2

ijke2
i (t) +

(
f j(yj(t))− f j(β jxj(t))

)2
]

+
n

∑
i=1

ξi

[
d2

ijke2
i (t) +

(
f j(β jxj(t))− βi f j(xj(t))

)2
]
+

n

∑
i=1

[
ξie2

i (t) + ξi(1− βi)
2q2

i

]

≤
n

∑
i=1

ξie2
i (t)

[
− 2(pi + gi)

]
+

n

∑
i=1

ξie2
i (t)

[
m

∑
j=1

n

∑
k=1

(
d2

ijk +
ξ j

ξi
F2

i

)]

+
n

∑
i=1

ξi

[
m

∑
j=1

n

∑
k=1

d2
ijke2

i (t) + H2
j (1 + β2

i − 2βi)

]
+

n

∑
i=1

[
ξie2

i (t) + ξi(1− βi)
2q2

i

]

= −
n

∑
i=1

m

∑
j=1

n

∑
k=1

ξie2
i (t)

[
2(pi + gi)− 2d2

ijk −
ξ j

ξi
F2

i − 1

]

+
n

∑
i=1

ξi

[
m

∑
j=1

n

∑
k=1

H2
j (1 + β2

i − 2βi) + (1− βi)
2q2

i

]
≤ −λ1V(t) + λ2,

(28)

where

λ1 =
n

∑
i=1

m

∑
j=1

n

∑
k=1

[
2(pi + gi)− 2d2

ijk −
ξ j

ξi
F2

i − 1

]
and

λ2 =
n

∑
i=1

ξi

[
m

∑
j=1

n

∑
k=1

H2
j (1 + β2

i − 2βi) + (1− βi)
2q2

i

]
.

Since λ1 > 0, λ2 > 0, hence, we can find n(t) ≥ such that

Dω(α)V(t) = −λ1V(t) + λ2 − n(t). (29)

Taking the Laplace transform from both sides of (29), one has(
V(s)− V(0)

s

) ∫ 1

0
ω(α)sαdα + N(s) = −λ1V(s) +

λ2

s
. (30)

It follows from (30) that

V(s) =
λ2+V(0)

∫ 1
0 ω(α)sαdα
s − N(s)∫ 1

0 ω(α)sαdα + λ1
, (31)

then

V(t) =L−1

λ2 + V(0)
∫ 1

0 ω(α)sαdα

s
(∫ 1

0 ω(α)sαdα + λ1

)
−L−1

{
N(s)∫ 1

0 ω(α)sαdα + λ1

}

=L−1

λ2 + V(0)
∫ 1

0 ω(α)sαdα

s
(∫ 1

0 ω(α)sαdα + λ1

)
− N(t) ∗ g(t)

=L−1

λ2 + V(0)
∫ 1

0 ω(α)sαdα

s
(∫ 1

0 ω(α)sαdα + λ1

)
−

∫ t

0
N(η)g(t− η)dη,

(32)
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where g(t) = L−1

{
λ2+V(0)

∫ 1
0 ω(α)sαdα

s
(∫ 1

0 ω(α)sαdα+λ1

)
}

. Since g(t) ≥ 0, N(t) ≥ 0, then

V(t) ≤ L−1

λ2 + V(0)
∫ 1

0 ω(α)sαdα

s
(∫ 1

0 ω(α)sαdα + λ1

)
. (33)

In light of Laplace final value theorem, we have

lim
t→+∞

V(t) ≤ lim
t→+∞

L−1

λ2 + V(0)
∫ 1

0 ω(α)sαdα

s
(∫ 1

0 ω(α)sαdα + λ1

)


= lim
s→0

λ2 + V(0)
∫ 1

0 ω(α)sαdα∫ 1
0 ω(α)sαdα + λ1

=
λ2

λ1
.

(34)

Furthermore, one has

min
1≤i≤n

ξi lim
t→+∞

n

∑
i=1

e2
i (t) ≤ lim

t→+∞

n

∑
i=1

ξie2
i (t), (35)

which means that

lim
t→+∞

‖e(t)‖2 ≤
√

λ2

λ1 min1≤i≤n ξi
. (36)

Thus, in accordance with Definition 4, system (1) and system (2) can be said to be quasi-
projectively synchronized.

Theorem 2. Under assumptions (H1) and (H2), if the following inequalities hold

λ3 =
n

∑
i=1

m

∑
j=1

n

∑
k=1

[
2(pi + gi)− dijk − djikF2

i − dijkµ− 1

]
> 0, (37)

λ4 =
n

∑
i=1

m

∑
j=1

n

∑
k=1

[
ξidijk

2
µ

H2
j (1 + β2

i ) + ξi(1− βi)
2q2

i

]
> 0, (38)

L−1

{
1∫ 1

0 ω(α)sαdα + λ3

}
≥ 0, (39)

and the roots of
∫ 1

0 ω(α)sαdα + λ3 are in the open left-half complex plane, then systems (1) and (2)
can achieve quasi-projectively synchronization under the controller (3).

Proof. Consider the Lyapunov function candidate as follows

V(t) =
n

∑
i=1

ξie2
i (t), (40)

where ξi is positive constant.
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According to Lemmas 1 and 3, for any positive constant µ, it shows that

Dω(α)V(t) ≤ ξiei(t)Dω(α)ei(t)

= 2
n

∑
i=1

ξiei(t)

[
− (pi + gi)ei(t) +

m

∑
j=1

n

∑
k=1

dijk

(
f j(yj(t))− f j(β jxj(t))

)

+
m

∑
j=1

n

∑
k=1

dijk

(
f j(β jxj(t))− βi f j(xj(t))

)
+ (1− βi)qi

]

=
n

∑
i=1

ξi

[
− 2(pi + gi)e2

i (t)

]
+

n

∑
i=1

ξi

[
m

∑
j=1

n

∑
k=1

2ei(t)dijk

(
f j(yj(t))− f j(β jxj(t))

)

+
m

∑
j=1

n

∑
k=1

2ei(t)dijk

(
f j(β jxj(t))− βi f j(xj(t))

)]
+

n

∑
i=1

ξi

[
2ei(t)(1− βi)qi

]

≤
n

∑
i=1

ξie2
i (t)

[
− 2(pi + gi)

]
+

n

∑
i=1

ξi

[
m

∑
j=1

n

∑
k=1

2dijkei(t)ej(t)Fj

]

+
n

∑
i=1

m

∑
j=1

n

∑
k=1

ξidijk

[
µe2

i (t) +
1
µ

(
f j(β jxj(t))− βi f j(xj(t))

)2
]

+
n

∑
i=1

[
ξie2

i (t) + ξi(1− βi)
2q2

i

]

≤
n

∑
i=1

ξie2
i (t)

[
− 2(pi + gi)

]
+

n

∑
i=1

m

∑
j=1

n

∑
k=1

ξie2
i (t)

[
dijk + djikF2

i

]

+
n

∑
i=1

m

∑
j=1

n

∑
k=1

ξidijk

[
µe2

i +
2
µ

(
f j(β jxj(t))2 + β2

i f j(xj(t))2
)]

+
n

∑
i=1

[
ξie2

i (t)

+ ξi(1− βi)
2q2

i

]

≤
n

∑
i=1

ξie2
i (t)

[
− 2(pi + gi)

]
+

n

∑
i=1

m

∑
j=1

n

∑
k=1

ξie2
i (t)

[
dijk + djikF2

i + dijkµ

]

+
n

∑
i=1

m

∑
j=1

n

∑
k=1

ξidijk

[
2
µ

H2
j (1 + β2

i )

]
+

n

∑
i=1

[
ξie2

i (t) + ξi(1− βi)
2q2

i

]
= −λ3V(t) + λ4,

(41)

where λ3 = ∑n
i=1 ∑m

j=1 ∑n
k=1

[
2(pi + gi) − dijk − djikF2

i − dijkµ − 1

]
and λ4 = ∑n

i=1 ∑m
j=1

∑n
k=1

[
ξidijk

2
µ H2

j (1 + β2
i ) + ξi(1− βi)

2q2
i

]
.

Same as the proof of Theorem 1, by applying the Laplace transform and final value
theorem, one has

lim
t→+∞

‖e(t)‖2 ≤
√

λ4

λ3 min1≤i≤n ξi
. (42)

Thus, in accordance with Definition 4, systems (1) and (2) can be said to be quasi-
projectively synchronized.

Depending on different proof methods, we obtain Theorems 1 and 2, which have
different conditions. However, they both guarantee that systems (1) and (2) can achieve
quasi-projectively synchronization.



Fractal Fract. 2021, 5, 260 10 of 15

Next, we consider the following hybrid control scheme, the controller ûi(t) can be
described as

ûi(t) = −gi(yi(t)− βixi(t))−
m

∑
j=1

n

∑
k=1

dijk f j(β jxj(t)) +
m

∑
j=1

n

∑
k=1

dijkβi f j(xj(t))− (1− βi)qi. (43)

Theorem 3. Under assumptions (H1) and (H2), if the following inequality holds

λ5 =
n

∑
i=1

m

∑
j=1

n

∑
k=1

[
2(pi + gi)− µdijkFj −

1
µ

djikFi

]
> 0, (44)

L−1

{
1∫ 1

0 ω(α)sαdα + λ5

}
≥ 0, (45)

and the roots of
∫ 1

0 ω(α)sαdα + λ5 are in the open left-half complex plane, then systems (1) and (2)
can achieve quasi-projectively synchronization under the controller (43).

Proof. Consider the Lyapunov function candidate as follows

V(t) =
n

∑
i=1

1
2
|ei(t)|2, (46)

where ξi is positive constant.

According to Lemmas 1 and 2, for any positive constant µ, it shows that

Dω(α)V(t) =
n

∑
i=1

1
2

Dω(α)|ei(t)|2

≤
n

∑
i=1
|ei(t)|Dω(α)|ei(t)|

≤
n

∑
i=1
|ei(t)|sgn(ei(t))Dω(α)ei(t)

=
n

∑
i=1
|ei(t)|sgn(ei(t))

[
− (pi + gi)ei(t) +

m

∑
j=1

n

∑
k=1

dijk

(
f j(yj(t))− f j(β jxj(t))

)]

≤
n

∑
i=1
|ei(t)|

[
− (pi + gi)|ei(t)|+

m

∑
j=1

n

∑
k=1

dijkFj|ej(t)|
]

=
n

∑
i=1

[
− (pi + gi)|ei(t)|2 +

m

∑
j=1

n

∑
k=1

dijkFj|ej(t)||ei(t)|
]

.

(47)

By applying Lemma 3, we can obtain that

Dω(α)V(t) ≤
n

∑
i=1

[
− (pi + gi)|ei(t)|2 +

m

∑
j=1

n

∑
k=1

dijkFj

(
µ

2
|ei(t)|2 +

1
2µ
|ej(t)|2

)]

=
n

∑
i=1

[
− (pi + gi)|ei(t)|2 +

µ

2

m

∑
j=1

n

∑
k=1

dijkFj|ei(t)|2 +
1

2µ

m

∑
j=1

n

∑
k=1

djikFi|ei(t)|2
]

= −λ5V(t),

(48)

where λ5 = ∑n
i=1 ∑m

j=1 ∑n
k=1

[
2(pi + gi)− µdijkFj − 1

µ djikFi

]
.
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Same as the proof of Theorem (1), by applying the Laplace transform and final value
theorem, one has

lim
t→+∞

‖e(t)‖2 ≤
√

1
λ5 min1≤i≤n ξi

. (49)

Thus, in accordance with Definition 4, system (1) and system (2) can be said to be quasi-
projectively synchronized.

4. Numerical Simulation Examples

By applying the predictor−corrector scheme [46], two numerical examples are given
to demonstrate the theoretical results in this section.

Example 1. Consider the following distributed-order system
Dω(α)x1(t) = −p1x1(t) +

2

∑
j=1

2

∑
k=1

d1jk f j(xj(t)) + q1,

Dω(α)x2(t) = −p2x2(t) +
2

∑
j=1

2

∑
k=1

d2jk f j(xj(t)) + q2,

(50)

where ω(α) = τ1δ(α − α1) + τ2δ(α − α2), α1 = 2
3 , α2 = 1

3 , δ(·) denotes Dirac function;
f j(xj(x)) = tanh(x), j = 1, 2; qi = 1, i = 1, 2 and

P = diag(p1, p2) =

(
1.03125 0

0 1

)
,

D1 = (dij1)2×2 =

(
1 0
0 1

)
,

D2 = (dij2)2×2 =

(
1 0
1 0

)
,

The response system is depicted as
Dω(α)y1(t) = −p1y1(t) +

2

∑
j=1

2

∑
k=1

d1jk f j(yj(t)) + q1 + u1(t),

Dω(α)y2(t) = −p2y2(t) +
2

∑
j=1

2

∑
k=1

d2jk f j(yj(t)) + q2 + u2(t),

(51)

where f j(yj(x)) = tanh(y), j = 1, 2 and ω(α), P, Di, qi, i = 1, 2 are the same as the drive
system (50).

Take β1 = 1.5, β2 = 1, g1 = g2 = 2, τ1 = 4, τ2 = 1, by calculation, we have ∑n
i=1 ∑m

j=1 ∑n
k=1[

2(pi + gi) −2d2
ijk −

ξ j
ξi

F2
i − 1

]
= 0.0625 > 0 and the error bounded

√
λ2

λ1 min1≤i≤n ξi
≈ 2.83.

Moreover, one has ∫ 1

0
ω(α)sαdα + λ1 = 4s

2
3 + s

1
3 +

1
16

= 0, (52)

therefore s = −1
512 , which are located in the open left-half complex plane. In addition,
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L−1

{
1∫ 1

0 ω(α)sαdα + λ1

}
=L−1

{
1

(2s
1
3 + 1

4 )
2

}

=
1
4
L−1

{
1

(s
1
3 + 1

8 )
2

}

=
1
4

∫ t

0
η
−2
3 E 1

3 , 1
3

(
−1
8

η
1
3

)
(t− η)

−2
3 E 1

3 , 1
3

(
−1
8

(t− η)
1
3

)
dη

≥0,

(53)

which means that all conditions in Theorem 1 hold. Hence, it follows from Theorem 1 that systems
(50) and (51) can achieve quasi-projectively synchronization. Figure 2 is shows the numerical
simulation result.
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e
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(t)

e
2
(t)

simulated error

Figure 2. The state of error system when gi = 2, β1 = 1.5, β2 = 1.

Example 2. Consider the following distributed-order system
Dω(α)x1(t) = −p1x1(t) +

2

∑
j=1

2

∑
k=1

d1jk f j(xj(t)) + q1,

Dω(α)x2(t) = −p2x2(t) +
2

∑
j=1

2

∑
k=1

d2jk f j(xj(t)) + q2,

(54)

where ω(α) = τ1δ(α − α1) + τ2δ(α − α2), α1 = 2
3 , α2 = 1

3 , δ(·) denotes Dirac function;
f j(xj(x)) = tanh(x), j = 1, 2; qi = 1, i = 1, 2.

P = diag(p1, p2) =

(
1.5 0
0 1

)
,

D1 = (dij1)2×2 =

(
1 2
2 1

)
,

D2 = (dij2)2×2 =

(
2 1
1 2

)
,
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The response system is depicted as
Dω(α)y1(t) = −p1y1(t) +

2

∑
j=1

2

∑
k=1

d1jk f j(yj(t)) + q1 + u1(t),

Dω(α)y2(t) = −p2y2(t) +
2

∑
j=1

2

∑
k=1

d2jk f j(yj(t)) + q2 + u2(t),

(55)

where ω(α), P, Di, qi, i = 1, 2 are the same as the drive system (54).
Take β1 = 1.5, β2 = 1, g1 = 2, g2 = 1.5, τ1 = 1, τ2 = 2, by calculation, we have∑n

i=1 ∑m
j=1

∑n
k=1

[
2(pi + gi)− µdijkFj − 1

µ djikFi

]
= 1 > 0 and the error bounded

√
1

λ5 min1≤i≤n ξi
= 1, by

similar with the processes in Example 1, we can obtain that all conditions in Theorem 3 hold. Hence,
it follows from Theorem 3 that systems (54) and (55) can achieve quasi-projectively synchronized.
Figure 3 is figure of numerical simulation result.
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t

−2

−1

0

1

2

3

4

e
rr

o
r

c

estimated error

e
1
(t)

e
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Figure 3. The state of error system when β1 = 1.5, β2 = 1, g1 = 2, g2 = 1.5.

5. Conclusions

In this paper, the problems of quasi-projective synchronization of distributed-order re-
current neural networks have been investigated. Based on the definition of the distributive-
order derivative and the metric space theory, some lemmas that are widely used in frac-
tional order systems have been generalized to distributed-order systems. Afterwards,
according to the Lyapunov method, Laplace transform, Laplace final value theorem, and
some inequality techniques, the quasi-projective synchronization of the aforementioned
neural networks have been investigated. Finally, two numerical examples have been given
to manifest the validity of the theoretical results.

We would like to point out that it is possible to use our method to discuss some
dynamic behavior, such as synchronization, passivity and state estimation of distributed-
order complex-valued neural networks and quaternion-valued neural networks. The
corresponding results will be carried out in the near future.
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10. Atanacković, T.M.; Oparnica, L.; Pilipović, S. On a nonlinear distributed order fractional differential equation. J. Math. Anal. Appl.

2007, 328, 590–608. [CrossRef]
11. Chen, W.; Sun, H.; Zhang, X.; Korošak, D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math.

Appl. 2010, 59, 1754–1758. [CrossRef]
12. Sun, H.; Chen, W.; Sheng, H.; Chen, Y. On mean square displacement behaviors of anomalous diffusions with variable and

random orders. Phys. Lett. A 2010, 374, 906–910. [CrossRef]
13. Xu, M.; Tan, W. Intermediate processes and critical phenomena: Theory, method and progress of fractional operators and their

applications to modern mechanics. Sci. China Ser. G 2006, 49, 257–272. [CrossRef]
14. Atanackovic, T.; Budincevic, M.; Pilipovic, S. On a fractional distributed-order oscillator. J. Phys. A Math. Gen. 2005, 38, 6703.

[CrossRef]
15. Diethelm, K.; Ford, N.J. Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 2001, 4,

531–542. [CrossRef]
16. Diethelm, K.; Ford, N.J. Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 2009, 225, 96–104.
17. Lu, J.; Ho, D.W. Stabilization of complex dynamical networks with noise disturbance under performance constraint. Nonlinear

Anal. Real World Appl. 2011, 12, 1974–1984. [CrossRef]
18. Song, Q.; Long, L.; Zhao, Z.; Liu, Y.; Alsaadi, F.E. Stability criteria of quaternion-valued neutral-type delayed neural networks.

Neurocomputing 2020, 412, 287–294. [CrossRef]
19. Sun, C.; He, W.; Ge, W.; Chang, C. Adaptive neural network control of biped robots. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47,

315–326. [CrossRef]
20. Yang, R.; Wu, B.; Liu, Y. A halanay-type inequality approach to the stability analysis of discrete-time neural networks with delays.

Appl. Math. Comput. 2015, 265, 696–707. [CrossRef]
21. Zeng, Z.; Wang, J. Design and analysis of high-capacity associative memories based on a class of discrete-time recurrent neural

networks. IEEE Trans. Syst. Man Cybern. Part B 2008, 38, 1525–1536. [CrossRef]
22. Zhang, W.; Tang, Y.; Miao, Q.; Du, W. Exponential synchronization of coupled switched neural networks with mode-dependent

impulsive effects. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1316–1326. [CrossRef]
23. Lundstrom, B.N.; Higgs, M.H.; Spain, W.J.; Fairhall, A.L. Fractional differentiation by neocortical pyramidal neurons. Nat.

Neurosci. 2008, 11, 1335. [CrossRef]
24. Liu, P.; Zeng, Z.; Wang, J. Multiple mittag–leffler stability of fractional-order recurrent neural networks. IEEE Trans. Syst. Man

Cybern. Syst. 2017, 47, 2279–2288. [CrossRef]
25. Chen, J.J.; Zeng, Z.G.; Jiang, P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural

networks. Neural Netw. 2014, 51, 1–8. [CrossRef]
26. Wang, W.; Qiao, Y.; Miao, J.; Duan, L. Dynamic analysis of fractional-order recurrent neural network with caputo derivative. Int.

J. Bifurc. Chaos 2017, 27, 1750181. [CrossRef]
27. Fei, J.; Wang, H. Recurrent neural network fractional-order sliding mode control of dynamic systems. J. Frankl. Inst. 2020, 357,

4574–4591. [CrossRef]

http://doi.org/10.1016/j.cnsns.2010.05.027
http://dx.doi.org/10.1109/74.632994
http://dx.doi.org/10.1007/BF00437306
http://dx.doi.org/10.1023/A:1016595107471
http://dx.doi.org/10.1016/j.sigpro.2006.02.010
http://dx.doi.org/10.1016/0960-0779(95)00125-5
http://dx.doi.org/10.1016/j.jmaa.2006.05.038
http://dx.doi.org/10.1016/j.camwa.2009.08.020
http://dx.doi.org/10.1016/j.physleta.2009.12.021
http://dx.doi.org/10.1007/s11433-006-0257-2
http://dx.doi.org/10.1088/0305-4470/38/30/006
http://dx.doi.org/10.1088/0305-4470/38/30/006
http://dx.doi.org/10.1016/j.cam.2008.07.018
http://dx.doi.org/10.1016/j.nonrwa.2010.12.013
http://dx.doi.org/10.1016/j.neucom.2020.06.086
http://dx.doi.org/10.1109/TSMC.2016.2557223
http://dx.doi.org/10.1016/j.amc.2015.05.088
http://dx.doi.org/10.1109/TSMCB.2008.927717
http://dx.doi.org/10.1109/TNNLS.2013.2257842
http://dx.doi.org/10.1038/nn.2212
http://dx.doi.org/10.1109/TSMC.2017.2651059
http://dx.doi.org/10.1016/j.neunet.2013.11.016
http://dx.doi.org/10.1142/S0218127417501814


Fractal Fract. 2021, 5, 260 15 of 15

28. Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C. The synchronization of chaotic systems. Phys. Rep. 2002, 366, 1–101.
[CrossRef]

29. Chen, G.; Dong, X. From Chaos to Order: Methodologies, Perspectives and Applications; World Scientific: Singapore, 1998; Volume 24.
[CrossRef]

30. Sprott, J.; Jeffrey, D. Chaos and Time-Series Analysis; Oxford University Press: Oxford, UK, 2003; Volume 47, 373–373. [CrossRef]
31. Yang, T.; Chua, L.O. Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure

communication. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1997, 44, 976–988.
32. Yang, X.; Li, C.; Huang, T.; Song, Q.; Chen, X. Quasi-uniform synchronization of fractional-order memristor-based neural

networks with delay. Neurocomputing 2017, 234, 205–215.
33. Li, H.; Cao, J.; Hu, C.; Jiang, H. Quasi-projective and complete synchronization of fractional-order complex-valued neural

networks with time delays. Neural Netw. 2019, 118, 102–109. [CrossRef]
34. Guo, R.; Lv, W.; Zhang, Z. Quasi-projective synchronization of stochastic complex-valued neural networks with time-varying

delay and mismatched parameters. Neurocomputing 2020, 415, 184–192. [CrossRef]
35. Anbuvithya, R.; Sri, S.; Vadivel, R.; Gunasekaran, N.; Hammachukiattikul, P. Extended dissipativity and non-fragile synchroniza-

tion for recurrent neural networks with multiple time-varying delays via sampled-data control. IEEE Access 2021, 9, 31454–31466.
[CrossRef]

36. Guo, R. Projective synchronization of a class of chaotic systems by dynamic feedback control method. Nonlinear Dyn. 2017,
90, 53–64. [CrossRef]

37. Ding, Z.; Shen, Y. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller.
Neural Netw. 2016, 76, 97–105. [CrossRef]

38. Zhang, W.; Cao, J.; Wu, R.; Alsaedi, A.; Alsaadi, F.E. Projective synchronization of fractional-order delayed neural networks
based on the comparison principle. Adv. Differ. Equ. 2018, 2018, 73. [CrossRef]

39. Yang, S.; Yu, J.; Hu, C.; Jiang, H. Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks.
Neural Netw. 2018, 104, 104–113. [CrossRef]

40. Gorenflo, R.; Mainardi, F.; Podlubny I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999; Volume 8,
pp. 683–699. [CrossRef]

41. Caputo, M. Rigorous time domain responses of polarizable media. Ann. Geophys. Ann. Geofis. 1997, 40, 97–106. [CrossRef]
42. Jiao, Z.; Chen, Y.-Q.; Podlubny, I. Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives; Springer:

London, UK, 2012. [CrossRef]
43. Aguila-Camacho, N.; Duarte-Mermoud, M.A.; Gallegos, J.A. Lyapunov functions for fractional order systems. Commun. Nonlinear

Sci. Numer. Simul. 2014, 19, 2951–2957. [CrossRef]
44. Zhang, S.; Yu, Y.; Wang, H. Mittag-leffler stability of fractional-order hopfield neural networks. Nonlinear Anal. Hybrid Syst. 2015,

16, 104–121.
45. Cao, J. New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Phys. Lett. A

2003, 307, 136–147. [CrossRef]
46. Diethelm, K.; Ford, N.J.; Freed, A.D. A predictor-corrector approach for the numerical solution of fractional differential equations.

Nonlinear Dyn. 2002, 29, 3–22.

http://dx.doi.org/10.1016/j.jfranklin.2020.01.050
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1016/S0370-1573(02)00137-0
http://dx.doi.org/10.1109/81.633887
http://dx.doi.org/10.1016/j.neucom.2017.01.014
http://dx.doi.org/10.1016/j.neunet.2019.06.008
http://dx.doi.org/10.1016/j.neucom.2020.07.033
http://dx.doi.org/10.1109/ACCESS.2021.3060044
http://dx.doi.org/10.1007/s11071-017-3645-4
http://dx.doi.org/10.1016/j.neunet.2016.01.006
http://dx.doi.org/10.1186/s13662-018-1530-1
http://dx.doi.org/10.1186/s13662-018-1530-1
http://dx.doi.org/10.1186/s13662-018-1530-1
http://dx.doi.org/10.1016/j.neunet.2018.04.007
http://dx.doi.org/10.4401/ag-3924

	Introduction
	Model Description and Preliminaries
	Main Results
	Numerical Simulation Examples
	Conclusions
	References

