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Abstract: Fractional-order boundary value problems are used to model certain phenomena in
chemistry, physics, biology, and engineering. However, some of these models do not meet the
existence and uniqueness required in the mainstream of mathematical processes. Therefore, in
this paper, the existence, stability, and uniqueness for the solution of the coupled system of the
Caputo-type sequential fractional differential equation, involving integral boundary conditions,
was discussed, and investigated. Leray–Schauder’s alternative was applied to derive the existence
of the solution, while Banach’s contraction principle was used to examine the uniqueness of the
solution. Moreover, Ulam–Hyers stability of the presented system was investigated. It was found
that the theoretical-related aspects (existence, uniqueness, and stability) that were examined for the
governing system were satisfactory. Finally, an example was given to illustrate and examine certain
related aspects.

Keywords: sequential fractional differential equation; fixed-point theorem; Ulam–Hyers stability;
fractional differential equation

1. Introduction

In recent decades, the field of fractional-order boundary value problems has been dis-
cussed by several scientific researchers across the world. This is evident from the number
of significant studies of fractional-order boundary value problems that mainly focus on
extending and transforming such problems from the theoretical to the application aspect,
in order to make them applicable for certain real-life phenomena. The fractional calculus es-
sentially involves differentiation and integration to an arbitrary order, which is considered
as an important tools that have facilitated many real-life phenomena in considerable fields
such as physics, biology, and chemistry (see [1–4]). In addition, engineering is considered
to be one of the main fields that benefits from fractional calculus, due to providing a full
and comprehensive description of some complex engineering models.

Moreover, the significance of fractional calculus stretches further than scientific areas,
to several other areas that influence human civilization in general. As an outcome of
these efforts, many practical mathematical models that are expressed based on fractional
differential equations have been developed, providing infinite description support of
such mathematical models and developing a novel strategy for use in other practical
fields. This leads to a new path of research that aims to have more collaboration between
mathematicians and other researchers. In addition, actual practicality is considered to be
one of the essential advantages of fractional-order models, such as those mentioned in the
following articles [5–18]. Recently, Boutiara et al. [19] discussed the solution of a nonlinear
sequential q-difference equation based on the Caputo fractional quantum derivatives, with
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nonlocal boundary value conditions containing Riemann–Liouville fractional quantum
integrals at four points. The criteria and conditions of the existence and uniqueness of the
solutions to the given Caputo fractional q-difference boundary value problem have been
derived in this study. The stability of the proposed equation was investigated based on
Ulam–Hyers stability, and the results obtained were examined by providing two examples.

The coupled system of the Caputo-type sequential fractional differential is considered
as one of the most important tools available to model and simulate certain real-life phenom-
ena. Therefore, there is a need to investigate the related theoretical aspects. Motivated by
the above discussion and our review of the literature, this paper aims to discuss and analyze
the following coupled system of Caputo-type sequential fractional differential equations.
In particular, we aimed to investigate the existence, stability, and uniqueness of the solution
to the coupled system of Caputo-type sequential fractional differential equations:{

cDα−1(D + k)x(t) = f (t, x(t), y(t)), t ∈ [0, T], 1 < α ≤ 2, k > 0,
cDβ−1(D + k)y(t) = g(t, x(t), y(t)), t ∈ [0, T], 1 < β ≤ 2, k < 0,

(1)

supplemented with integral boundary conditions of the form:
∫ T

0
x(s)ds = ρ1y(ζ1),

∫ T

0
x′(s)ds = ρ2y′(ζ2),∫ T

0
y(s)ds = µ1x(η1),

∫ T

0
y′(s)ds = µ2x′(η2), η1, η2 , ζ1, ζ2 ∈ [0, T],

(2)

where cDk denote the Caputo fractional derivatives of order k, k = α, β, and
f , g : [0, T]×R2 → R, are given continuous functions, and ρ1, ρ2, µ1, µ2 are real constants.

2. Preliminaries

Firstly, we recall the definitions of fractional derivatives and integrals [1,2].

Definition 1. The Caputo derivative of fractional order γ for(k− 1)− times absolutely continuous
function g : [0, ∞)→ R is defined as:

cDγg(s) =
1

Γ(k− γ)

∫ s

0
(s− t)k−γ−1g(m)(t)dt, k− 1 < γ < k, k = [γ] + 1,

where[γ] is the integer part of the real number γ.

Definition 2. The Riemann–Liouville fractional integral of order γ for a continuous function g is
given by:

Iγg(t) =
1

Γ(γ)

∫ t

0

g(s)

(t− s)1−γ
dt, γ > 0,

provided that the right-hand side is point-wise defined on [0, ∞).

Definition 3. Due to Miller–Ross [3], the sequential fractional derivative for a sufficiently smooth
function g(t) is defined as:

Dmg(t) = Dm1 Dm2 . . . Dmn g(t),

where m = (m1, m2, . . . , mn) is a multi-index.

We prove the following auxiliary lemma to find the solution for the problems (1) and (2).
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Lemma 1. Let, φ ∈ C([0, T],R). Then the unique solution of the problem:

CDα−1(D + k)x(t) = ψ(t), 1 < α ≤ 2,

CDβ−1(D + k)y(t) = φ(t), 1 < β ≤ 2,∫ T

0
x(s)ds =ρ1y(ζ1),

∫ T

0
x′(s)ds = ρ2y′(ζ2)∫ T

0
y(s)ds = µ1x(η1),

∫ T

0
y′(s)ds = µ2x′(η2), k > 0, t ∈ [0, T],

(3)

is:

x(t) = ∆e−kt
[

µ2
(

Iα−1ψ
)
(η2)− kµ2

∫ η2

0
e−k(η2−s)(Iα−1ψ

)
(s)ds

−
∫ T

0

(
Iβ−1φ

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1φ

)
(s)dsdx

]
+λe−kt

[
ρ2
(

Iβ−1φ
)
(ζ2)− kρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1φ

)
(s)ds−

∫ T

0

(
Iα−1ψ

)
(s)ds

+k
∫ T

0

∫ x

0
e−k(x−s)(Iα−1ψ

)
(s)dsdx

]
+

1
T2 − µ1ρ1

[
Aµ2

k
(

Iα−1ψ
)
(η2)−Aµ2

∫ η2

0
e−k(η2−s)(Iα−1ψ

)
(s)ds

−A
k

∫ T

0

(
Iβ−1φ

)
(s)ds + (A− ρ1)

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1φ

)
(s)dsdx

+
Bρ2

k
(

Iβ−1φ
)
(ζ2)− Bρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1φ

)
(s)ds−B

k

∫ T

0

(
Iα−1ψ

)
(s)ds

+(B− T)
∫ T

0

∫ x

0
e−k(x−s)(Iα−1ψ

)
(s)dsdx+Tρ1

∫ ζ1

0
e−k(ζ1−s)(Iβ−1φ

)
(s)ds

+µ1ρ1

∫ η1

0
e−k(η1−s)(Iα−1ψ

)
(s)ds

]
+
∫ t

0
e−k(t−s)(Iα−1ψ

)
(s)ds,

(4)

and:

y(t) = θe−kt
[

µ2
(

Iα−1ψ
)
(η2)−kµ2

∫ η2

0
e−k(η2−s)(Iα−1ψ

)
(s)ds

−
∫ T

0

(
Iβ−1φ

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1φ

)
(s)dsdx

]
+τe−kt

[
ρ2
(

Iβ−1φ
)
(ζ2)− kρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1φ

)
(s)ds−

∫ T

0

(
Iα−1ψ

)
(s)ds

+k
∫ T

0

∫ x

0
e−k(x−s)(Iα−1ψ

)
(s)dsdx

]
+

1
ω

[
Cµ2

k
(

Iα−1ψ
)
(η2)− Cµ2

∫ η2

0
e−k(η2−s)(Iα−1ψ

)
(s)ds− C

k

∫ T

0

(
Iβ−1φ

)
(s)ds

+(C− T)
∫ T

0

∫ x

0
e−k(x−s)(Iβ−1φ

)
(s)dsdx +

Dρ2

k
(

Iβ−1φ
)
(ζ2)

−Dρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1φ

)
(s)ds− D

k

∫ T

0

(
Iα−1ψ

)
(s)ds

+(D− µ1)
∫ T

0

∫ x

0
e−k(x−s)(Iα−1ψ

)
(s)dsdx + µ1ρ1

∫ ζ1

0
e−k(ζ1−s)(Iβ−1φ

)
(s)ds

+Tµ1

∫ η1

0
e−k(η1−s)(Iα−1ψ

)
(s)ds

]
+
∫ t

0
e−k(t−s)(Iβ−1φ

)
(s)ds,

(5)
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where:

ω = T2 − µ1ρ1 6= 0, ∆ = −kρ2e−kζ2

M , λ = e−kT−1
M , σ = ∆kµ2e−kη2 − 1

M =
(

e−kT − 1
)2
− k2µ2ρ2e−k(ζ2+η2) 6= 0, θ = −σ

e−kT−1
, τ = λ

e−kT−1
,

A =
[
θkTρ1e−kζ1 + kµ1ρ1∆e−kη1 +

(
e−kT − 1

)
(∆T + θρ1)

]
,

B =
[
τkTρ1e−kζ1 + kµ1ρ1λe−kη1 +

(
e−kT − 1

)
(λT + τρ1)

]
,

C =
[
∆kTµ1e−kη1 + kµ1ρ1θe−kζ1 +

(
e−kT − 1

)
(θT + ∆µ1)

]
,

D =
[
λkTµ1e−kη1 + kµ1ρ1τe−kζ1 +

(
e−kT − 1

)
(τT + λµ1)

]
.

Proof. The general solutions of the sequential fractional differential equations [20–23] in (3)
are known as:

x(t) = a0e−kt + a1 +
∫ t

0
e−k(t−s)(Iα−1ψ

)
(s)ds, (6)

y(t) = b0e−kt + b1 +
∫ t

0
e−k(t−s)(Iβ−1φ

)
(s)ds, (7)

observe:

lx′(t) = −ka0e−kt +
(

Iα−1ψ
)
(t)− k

∫ t

0
e−k(t−s)(Iα−1ψ

)
(s)ds,

y′(t) = −kb0e−kt +
(

Iβ−1φ
)
(t)− k

∫ t

0
e−k(t−s)(Iβ−1φ

)
(s)ds,

where ai, bi ∈ R, i = 0, 1 are arbitrary constants.
Applying the conditions:∫ T

0
x′(s)ds = ρ2y′(ζ2),

∫ T

0
y′(s)ds = µ2x′(η2).

Then we obtain:

a0 =∆
[
µ2
(

Iα−1ψ
)
(η2)− kµ2

∫ η2

0
e−k(η2−s)(Iα−1ψ

)
(s)ds

−
∫ T

0

(
Iβ−1φ

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1φ

)
(s)dsdx

]
+λ

[
ρ2
(

Iβ−1φ
)
(ζ2)− kρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1φ

)
(s)ds−

∫ T

0

(
Iα−1ψ

)
(s)ds

+k
∫ T

0

∫ x

0
e−k(x−s)(Iα−1ψ

)
(s)dsdx

]
,

and:

b0 =θ
[
µ2
(

Iα−1ψ
)
(η2)− kµ2

∫ η2

0
e−k(η2−s)(Iα−1ψ

)
(s)ds

−
∫ T

0

(
Iβ−1φ

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1φ

)
(s)dsdx

]
+τ

[
ρ2
(

Iβ−1φ
)
(ζ2)− kρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1φ

)
(s)ds−

∫ T

0

(
Iα−1ψ

)
(s)ds

+k
∫ T

0

∫ x

0
e−k(x−s)(Iα−1ψ

)
(s)dsdx

]
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In view of the conditions
∫ T

0 x(s)ds = ρ1y(ζ1),
∫ T

0 y(s)ds = µ1x(η1), we get:

a1 =
1
ω

[
Aµ2

k
(

Iα−1ψ
)
(η2)− Aµ2

∫ η2

0
e−k(η2−s)(Iα−1ψ

)
(s)ds−A

k

∫ T

0

(
Iβ−1φ

)
(s)ds

+(A− ρ1)
∫ T

0

∫ x

0
e−k(x−s)(Iβ−1φ

)
(s)dsdx+

Bρ2

k
(

Iβ−1φ
)
(ζ2)

−Bρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1φ

)
(s)ds− B

k

∫ T

0

(
Iα−1ψ

)
(s)ds

+(B− T)
∫ T

0

∫ x

0
e−k(x−s)(Iα−1ψ

)
(s)dsdx + Tρ1

∫ ζ1

0
e−k(ζ1−s)(Iβ−1φ

)
(s)ds

+µ1ρ1

∫ η1

0
e−k(η1−s)(Iα−1ψ

)
(s)ds

]
,

and:

b1 =
1
ω

[
Cµ2

k
(

Iα−1ψ
)
(η2)− Cµ2

∫ η2

0
e−k(η2−s)(Iα−1ψ

)
(s)ds−C

k

∫ T

0

(
Iβ−1φ

)
(s)ds

+(C− T)
∫ T

0

∫ x

0
e−k(x−s)(Iβ−1φ

)
(s)dsdx+

Dρ2

k
(

Iβ−1φ
)
(ζ2)

−Dρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1φ

)
(s)ds−D

k

∫ T

0

(
Iα−1ψ

)
(s)ds

+(D− µ1)
∫ T

0

∫ x

0
e−k(x−s)(Iα−1ψ

)
(s)dsdx+µ1ρ1

∫ ζ1

0
e−k(ζ1−s)(Iβ−1φ

)
(s)ds

+Tµ1

∫ η1

0
e−k(η1−s)(Iα−1ψ

)
(s)ds

]
Substituting the values of a0, a1, b0, b1 in (6), (7) we obtain (4) and (5), which com-

pletes the proof. �

3. Existence Results

Let the space Q = {x(t)|x(t) ∈ C[0, T]}, endowed with the norm ‖x‖ = max{|x(t)| ,
t ∈ [0, T]}. It is clear that (Q, ‖.‖) is a Banach space. Moreover, let S = {y(t)|y(t) ∈ C[0, T]},
endowed with the norm ‖y‖ = max{|y(t)|, t ∈ [0, T]}. The product space (Q× S, ‖(x, y)‖)
is also a Banach space with the norm ‖(x, y)‖ = ‖x‖+ ‖y‖.

In view of Lemma 1 we define the operator Z : Q× S→ Q× S by:

Z(x, y)(t) = (Z1(x, y)(t), Z2(x, y)(t)),



Fractal Fract. 2021, 5, 235 6 of 16

where:

Z1(x, y)(t) =∆e−kt
[

µ2(Iα−1 f )(η2)− kµ2

∫ η2

0
e−k(η2−s)(Iα−1 f

)
(s)ds

−
∫ T

0

(
Iβ−1g

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1g

)
(s)dsdx

]
+λe−kt

[
ρ2
(

Iβ−1g
)
(ζ2)− kρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1g

)
(s)ds−

∫ T

0

(
Iα−1 f

)
(s)ds

+k
∫ T

0

∫ x

0
e−k(x−s)(Iα−1 f

)
(s)dsdx

]
+

1
ω

[
Aµ2

k
(

Iα−1 f
)
(η2)− Aµ2

∫ η2

0
e−k(η2−s)(Iα−1 f

)
(s)ds−A

k

∫ T

0

(
Iβ−1g

)
(s)ds

+(A− ρ1)
∫ T

0

∫ x

0
e−k(x−s)(Iβ−1g

)
(s)dsdx+

Bρ2

k
(

Iβ−1g
)
(ζ2)

−Bρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1g

)
(s)ds−B

k

∫ T

0

(
Iα−1 f

)
(s)ds

+(B− T)
∫ T

0

∫ x

0
e−k(x−s)(Iα−1 f

)
(s)dsdx+Tρ1

∫ ζ1

0
e−k(ζ1−s)(Iβ−1g

)
(s)ds

+µ1ρ1

∫ η1

0
e−k(η1−s)(Iα−1 f

)
(s)ds

]
+
∫ t

0
e−k(t−s)(Iα−1 f

)
(s)ds,

(8)

and:

Z2(x, y)(t) =θe−kt
[

µ2
(

Iα−1 f
)
(η2)− kµ2

∫ η2

0
e−k(η2−s)(Iα−1 f

)
(s)ds

−
∫ T

0

(
Iβ−1g

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1g

)
(s)dsdx

]
+τe−kt

[
ρ2
(

Iβ−1g
)
(ζ2)− kρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1g

)
(s)ds−

∫ T

0

(
Iα−1 f

)
(s)ds

+k
∫ T

0

∫ x

0
e−k(x−s)(Iα−1 f

)
(s)dsdx

]
+

1
ω

[
Cµ2

k
(

Iα−1 f
)
(η2)− Cµ2

∫ η2

0
e−k(η2−s)(Iα−1 f

)
(s)ds−C

k

∫ T

0

(
Iβ−1g

)
(s)ds

+(C− T)
∫ T

0

∫ x

0
e−k(x−s)(Iβ−1g

)
(s)dsdx+

Dρ2

k
(

Iβ−1g
)
(ζ2)

−Dρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1g

)
(s)ds−D

k

∫ T

0

(
Iα−1 f

)
(s)ds

+(D− µ1)
∫ T

0

∫ x

0
e−k(x−s)(Iα−1 f

)
(s)dsdx+µ1ρ1

∫ ζ1

0
e−k(ζ1−s)(Iβ−1g

)
(s)ds

+Tµ1

∫ η1

0
e−k(η1−s)(Iα−1 f

)
(s)ds

]
+
∫ t

0
e−k(t−s)(Iβ−1g

)
(s)ds.

(9)

Theorem 1. Assume f , g : C([0, T]×R2 → R are jointly continuous functions, and there exists
constants h1, h2 ∈ R, such that ∀ x1, x2, y1, y2 ∈ R, ∀t ∈ [0, T] we have:

| f (t, x1, x2)− f (t, y1, y2)| ≤ h1(|x2 − x1|+ |y2 − y1|),
|g(t, x1, x2)− f (t, y1, y2)| ≤ h2(|x2 − x1|+ |y2 − y1|).
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If:
h1(M1 + M3) + h2(M2 + M4) < 1,

then the boundary value problems (1) and (2) have a unique solution on [0, T], where:

M1 =

[
(α+1)|∆µ2|e−kTη2

α(αη2
−1+k)+|λ|e−kT Tα(α+1+kT)

Γ(α+2)

]
+ Tα

Γ(α+1)+[
|Aµ2|η2

α(α+1)(αη2
−1+k)+Tα(|B|(α+1)+kT|B−T|)+k(α+1)|µ1ρ1|η1

α

kΓ(α+2)|T2−µ1ρ1|

]
,

M2 =

[
(β+1)Tβ(|∆|e−kT+kT)+|λρ2|e−kTζ2

β(β+1)(βζ2
−1+k)

Γ(β+2)

]
+[

Tβ−1(|A|(β2+β)+k|A−ρ1|T2)+(β+1)|Bρ2|ζ2
β(βζ2

−1+k)+k|Tρ1|ζ1
β

kΓ(β+2)|T2−µ1ρ1|

]
,

M3 =

[
(α+1)|θµ2|e−kTη2

α(αη2
−1+k)+|τ|e−kT Tα(α+1+kT)

Γ(α+2)

]
+[

|Cµ2|η2
α(α+1)(αη2

−1+k)+Tα(|D|(α+1)+kT|D−µ1|)+k(α+1)|µ1T|η1
α

kΓ(α+2)|T2−µ1ρ1|

]
,

M4 =

[
(β+1)Tβ(|θ|e−kT+kT)+|τρ2|e−kTζ2

β(β+1)(βζ2
−1+k)

Γ(β+2)

]
+ Tβ

Γ(β+1)+[
Tβ−1(|C|(β2+β)+k|C−T|T2)+(β+1)|Dρ2|ζ2

β(βζ2
−1+k)+k|µ1ρ1|ζ1

β

kΓ(β+2)|T2−µ1ρ1|

]
.

Proof. Define
sup

0 ≤ t ≤ T
f (t, 0, 0) = f0 < ∞,

sup
0 ≤ t ≤ T

g(t, 0, 0) = g0 < ∞ and

Ωε = {(x, y) ∈ Q× S : (x, y) ≤ ε} and ε > 0 such that:

ε ≥ (M1 + M3) f0 + (M2 + M4)g0

1− [h1(M1 + M3) + h2(M2 + M4)]
.

Firstly, show that ZΩε ⊆ Ωε.
By our assumption, for (x, y) ∈ Ωε, t ∈ [0, T] , we have:

| f (t, x(t), y(t))| ≤ | f (t, x(t), y(t))− f (t, 0, 0)|+ | f (t, 0, 0)|,

≤ h1(|x(t)|+ |y(t)|) + f0 ≤ h1(x + y) + f0,

≤ h1ε + f0, (10)

and:
|g(t, x(t), y(t))| ≤ h2(|x(t)|+ |y(t)|) + g0 ≤ h2(x + y) + g0,

≤ h2ε + g0, (11)
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which leads to:

|Z1(x, y)(t)|≤
∣∣∆∣∣e−kT

[∣∣µ2
∣∣( Iα−1∣∣ f ∣∣)(η2) + k

∣∣µ2
∣∣∫ η2

0
e−k(η2−s)(Iα−1∣∣ f ∣∣)(s)ds

+
∫ T

0

(
Iβ−1∣∣g∣∣)(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1∣∣g∣∣)(s)dsdx

]
+
∣∣λ∣∣e−kT

[∣∣ρ2
∣∣(Iβ−1∣∣g∣∣)(ζ2) + k

∣∣ρ2
∣∣∫ ζ2

0
e−k(ζ2−s)(Iβ−1∣∣g∣∣)(s)ds+

∫ T

0

(
Iα−1∣∣ f ∣∣)(s)ds

+k
∫ T

0

∫ x

0
e−k(x−s)(Iα−1∣∣ f ∣∣)(s)dsdx

]
+

1
|ω|

[
|Aµ2|

k
(

Iα−1∣∣ f ∣∣)(η2) +
∣∣Aµ2

∣∣∫ η2

0
e−k(η2−s)(Iα−1∣∣ f ∣∣)(s)ds+

|A|
k

∫ T

0

(
Iβ−1∣∣g∣∣)(s)ds

+
∣∣A− ρ1

∣∣∫ T

0

∫ x

0
e−k(x−s)(Iβ−1∣∣g∣∣)(s)dsdx +

|Bρ2|
k

(
Iβ−1∣∣g∣∣)(ζ2)

+
∣∣Bρ2

∣∣∫ ζ2

0
e−k(ζ2−s)(Iβ−1∣∣g∣∣)(s)ds +

|B|
k

∫ T

0

(
Iα−1∣∣ f ∣∣)(s)ds

+
∣∣B− T

∣∣∫ T

0

∫ x

0
e−k(x−s)(Iα−1∣∣ f ∣∣)(s)dsdx

+T
∣∣ρ1
∣∣∫ ζ1

0
e−k(ζ1−s)(Iβ−1∣∣g∣∣)(s)ds +

∣∣µ1ρ1
∣∣∫ η2

0
e−k(η2−s)(Iα−1∣∣ f ∣∣)(s)ds

]
+

sup
0 ≤ t ≤ T

∫ t

0
e−k(t−s)(Iα−1∣∣ f ∣∣)(s)ds.

Using (10) and (11) to get:

|Z1(x, y)(t)|≤
[∣∣∆∣∣e−kTµ2

(
(Iα−11)(η2) + k

∫ η2

0
e−k(η2−s)(Iα−11

)
(s)ds

)

+
∣∣λ∣∣e−kT

(∫ T

0

(
Iα−11

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iα−11

)
(s)dsdx

)

+
1
|ω| (

|Aµ2|
k

(
Iα−11

)
(η2) +

∣∣Aµ2
∣∣∫ η2

0
e−k(η2−s)(Iα−11

)
(s)ds +

|B|
k

∫ T

0

(
Iα−11

)
(s)ds

+
∣∣B− T

∣∣∫ T

0

∫ x

0
e−k(x−s)(Iα−11

)
(s)dsdx +

∣∣µ1ρ1
∣∣∫ η1

0
e−k(η1−s)(Iα−11

)
(s)ds

)

+
∫ T

0
e−k(T−s)(Iα−11

)
(s)ds

]
|| f ||

+

[∣∣∆∣∣e−kT

(∫ T

0

(
Iβ−11

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−11

)
(s)dsdx

)

+
∣∣λ∣∣e−kT

(∣∣ρ2
∣∣(Iβ−11

)
(ζ2) + k

∣∣ρ2
∣∣∫ ζ2

0
e−k(ζ2−s)(Iβ−11

)
(s)ds

)

+
1
|ω|

(
|A|
k

∫ T

0

(
Iβ−11

)
(s)ds +

∣∣A− ρ1
∣∣∫ T

0

∫ x

0
e−k(x−s)(Iβ−11

)
(s)dsdx +

|Bρ2|
k
(

Iβ−11
)
(ζ2)

+
∣∣Bρ2

∣∣∫ ζ2

0
e−k(ζ2−s)(Iβ−11

)
(s)ds)

]∣∣∣∣g∣∣∣∣
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≤
[
(α + 1)

∣∣∆µ2
∣∣e−kTη2

α
(
αη2
−1 + k

)
+
∣∣λ∣∣e−kTTα(α + 1 + kT)

Γ(α + 2)
+

Tα

Γ(α + 1)

+

∣∣Aµ2
∣∣η2

α(α + 1)
(
αη2
−1 + k

)
+ Tα(

∣∣B∣∣(α + 1) + kT
∣∣B− T

∣∣) + k(α + 1)
∣∣µ1ρ1

∣∣η1
α

kΓ(α + 2)|ω|

]
|| f ||

+

[
(β + 1)Tβ(

∣∣∆∣∣e−kT + kT) +
∣∣λρ2

∣∣e−kTζ2
β(β + 1)(βζ2

−1 + k)
Γ(β + 2)

+
Tβ−1(

∣∣A∣∣(β2 + β) + k
∣∣A− ρ1

∣∣T2) + (β + 1)
∣∣Bρ2

∣∣ζ2
β(βζ2

−1 + k) + k
∣∣Tρ1

∣∣ζ1
β

kΓ(α + 2)|ω|

]
||g||

Hence, by (8) we have:

‖Z1(x, y)‖ ≤ (h1M1 + h2M2)ε + (M1 f0 + M2g0) ≤
ε

2
. (12)

In similar way, we get:

‖Z2(x, y)‖ ≤ (h1M3 + h2M4)r + (M3 f0 + M4g0) ≤
ε

2
. (13)

From (12) and (13), we obtain:

‖Z(x, y)‖ ≤ ε.

Now, show that Z is a contraction.
Let (x1, y1), (x2, y2) ∈ Q× S, ∀t ∈ [0, T], then we get:

‖Z1(x1, y1)− Z1(x2, y2)‖ ≤ h1M1(‖x1 − x2‖+ ‖y1 − y2‖) + h2M2(‖x1 − x2‖+ ‖y1 − y2‖), (14)

‖Z2(x1, y1)− Z2(x2, y2)‖ ≤ h1M3(‖x1 − x2‖+ ‖y1 − y2‖) + h2M4(‖x1 − x2‖+ ‖y1 − y2‖). (15)

From (14) and (15), we deduced that:

‖Z(x1, y1)− Z(x2, y2)‖ ≤ (h1(M1 + M3) + h2(M2 + M4))(‖x1 − x2‖+ ‖y1 − y2‖).

Since h1(M1 + M3) + h2(M2 + M4) < 1, therefore, Z is a contraction operator. Thus,
by Banach’s fixed point theorem, the operator Z has a unique fixed point on [0, T], which is
the unique solution of the problem (1) and (2), and completes the proof. �

The second result is based on the Leray–Schauder alternative.

Lemma 2 (Leray–Schauder alternative [18], p. 4). Let F : E→ E be a completely con-
tinuous operator (i.e., a map restricted to any bounded set in E is compact). Let E(F) =
{x ∈ E : x = λF(x) f or some 0 < λ < 1}. Then, either the set E(F) is unbounded, or F has
at least one fixed point.

Theorem 2. Assume f , g : C([0, T]×R2 → R are continuous functions and there exists positive
real constants θi, ϑi(i = 0, 1, 2) such that ∀xi ∈ R, (i = 1, 2) we have:

| f (t, x1, x2)| ≤ θ0 + θ1|x1|+ θ2|x2|,
|g(t, x1, x2)| ≤ ϑ0 + ϑ1|x1|+ ϑ2|x2|.

If:
(M1 + M3)θ1 + (M2 + M4)ϑ1 < 1,

and:
(M1 + M3)θ2 + (M2 + M4)ϑ2 < 1.
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Then the problems (1) and (2) have at least one solution.

Proof. The proof will be divided into several steps [24–26].
Step 1. Show that Z is completely continuous. The continuity of the operator holds

true because of the continuity of the function f , g.
Let R be a bounded set in Ωε = {(x, y) ∈ Q× S : ‖(x, y)‖ ≤ ε}. Then, there exists

positive constants n1, n2 such that:

| f (t, x(t), y(t))| ≤ n1, |g(t, x(t), y(t))| ≤ n2, ∀t ∈ [0, T],

then, for any (x, y) ∈ R we have |Z1(x, y)(t)| ≤ M1n1 + M2n2, which implies that:

‖Z1(x, y)‖ ≤ M1n1 + M2n2.

Similarly, we get ‖Z2(x, y)‖ ≤ M3n1 + M4n2.
Thus, it follows from the above inequalities that the operator Z is uniformly bounded, since:

‖Z(x, y)‖ ≤ (M1 + M3)n1 + (M2 + M4)n2.

Next, we show that the operator is equicontinuous.
Let t1, t2 ∈ [0, T] with t1 < t2. Then we have:

|Z1(x, y)(t2)− Z1(x, y)(t1)|

≤ |∆|e−k(t2−t1)

[
|µ2|

(
Iα−1| f |

)
(η2) + k|µ2|

∫ η2

0
e−k(η2−s)(Iα−1| f |

)
(s)ds

+
∫ T

0

(
Iβ−1|g|

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1|g|

)
(s)dsdx

]
+|λ|e−k(t2−t1)

[
|ρ2|
(

Iβ−1|g|
)
(ζ2) + k|ρ2|

∫ ζ2

0
e−k(ζ2−s)(Iβ−1|g|

)
(s)ds +

∫ T

0

(
Iα−1| f |

)
(s)ds

+k
∫ T

0

∫ x

0
e−k(x−s)(Iα−1| f |

)
(s)dsdx

]
+
∫ t2

0
e−k(t2−s)(Iα−1| f |

)
(s)ds

+
∫ t1

0
e−k(t1−s)(Iα−1| f |

)
(s)ds.

≤ |∆|e−k(t2−t1)

[
|µ2n1|

(
Iα−11

)
(η2) + k|µ2n1|

∫ η2

0
e−k(η2−s)(Iα−11

)
(s)ds

+n2

∫ T

0

(
Iβ−11

)
(s)ds + kn2

∫ T

0

∫ x

0
e−k(x−s)(Iβ−11

)
(s)dsdx

]
+|λ|e−k(t2−t1)

[
|ρ2n2|

(
Iβ−11

)
(ζ2) + k|ρ2n2|

∫ ζ2

0
e−k(ζ2−s)(Iβ−11

)
(s)ds

+n1

∫ T

0

(
Iα−11

)
(s)ds + kn1

∫ T

0

∫ x

0
e−k(x−s)(Iα−11

)
(s)dsdx

]
+n1

[(∫ t1

0
e−k(t2−s) − e−k(t1−s)

)(
Iα−11

)
(s)ds +

∫ t2

t1

e−k(t2−s)(Iα−11
)
(s)ds

]
Hence, we have ‖Z1(x, y)(t2)− Z1(x, y)(t1)‖ → 0 independent of x and y as t2 → t1.

Similarly, ‖Z2(x, y)(t2)− Z2(x, y)(t1)‖ → 0 independent of x and y as t2 → t1 .
Therefore, the operator Z(x, y) is equicontinuous, and thus the operator Z(x, y) is

completely continuous.
Step 2. Boundedness of operator.
Finally, show that r = {(x, y) ∈ Q× S : (x, y) = MZ(x, y), N ∈ [0, 1]} is bounded.
Let:

x(t) = MZ1(x, y)(t), y(t) = MZ2(x, y)(t).
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Then:
|x(t)| ≤ M1(θ0 + θ1|x|+ θ2|y|) + N2(ϑ0 + ϑ1|x|+ ϑ2|y|),

and:
|y(t)| ≤ M3(θ0 + θ1|x|+ θ2|y|) + N4(ϑ0 + ϑ1|x|+ ϑ2|y|).

So, we get:

‖x‖ ≤ M1(θ0 + θ1|x|+ θ2|y|) + M2(ϑ0 + ϑ1|x|+ ϑ2|y|), (16)

and:
‖y‖ ≤ M3(θ0 + θ1|x|+ θ2|y|) + M4(ϑ0 + ϑ1|x|+ ϑ2|y|). (17)

From (16) and (17), we obtain:

‖x‖+ ‖y‖ ≤ (M1 + M3)θ0 + (M2 + M4)ϑ0 + ((M1 + M3)θ1 + (M2 + M4)ϑ1)‖x‖
+((M1 + M3)θ2 + (M2 + M4)ϑ2)‖y‖.

Therefore:

‖(x, y)‖ ≤ (M1 + M3)θ0 + (M2 + M4)ϑ0

M0
,

where M0 = min{1− (M1 + M3)θ1 − (M2 + M4)ϑ1, 1− (M1 + M3)θ2 − (M2 + M4)ϑ2}
that is r bounded. By the Leray–Schauder theorem, the existence of a solution to the
boundary value problem holds true on [0, T]. �

4. Ulam–Hyers Stability

The Ulam–Hyers stability for our suggested system (1) will be investigated by consid-
ering the below inequality:{

cDα−1(D + k)x(t)− f (t, x(t), y(t)) ≤ ε1, t ∈ [0, T],
cDβ−1(D + k)y(t)− g(t, x(t), y(t)) ≤ ε2, t ∈ [0, T],

(18)

where ε1, ε2 are given two positive real numbers.
Define the following nonlinear operators N1, N2 ∈ C([0, T],R) × C([0, T],R) →

C([0, T],R):

cDα−1(D + k)x(t)− f (t, x(t), y(t)) = N1(t), t ∈ [0, T],
cDβ−1(D + k)y(t)− g(t, x(t), y(t)) = N2(t), t ∈ [0, T].

For some ε1, ε2 > 0, we consider the following inequality:

|N1(t)| ≤ ε, |N2(t)| ≤ ε2, t ∈ [0, T]. (19)

Definition 4 [27,28]. The boundary value problem (1) is Ulam–Hyers stable if there exists
Mi, i = 1, 2, 3, 4 such that for the given ε1, ε2 > 0 and for each solution (x, y) ∈ C

(
[0, T]×R2,R

)
of inequality (18), there exists a solution (x∗, y∗) ∈ C

(
[0, T]×R2,R

)
of problem (1) with:{

|x(t)− x∗(t)| ≤ M1 ε1 + M2 ε2, t ∈ [0, T],

|y(t)− y∗(t)| ≤ M3 ε1 + M4 ε2, t ∈ [0, T].

Theorem 3. If the assumptions of Theorem 1 hold, then the BVB (1), (2) is Ulam–Hyers stable.
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Proof. Let (x, y) ∈ C([0, T],R) × C([0, T],R) be the solution of the problem (1) and (2),
satisfying (8) and (9), and let (x∗, y∗) be any solution satisfying:{

cDα−1(D + k)x∗(t) = f (t, x∗(t), y∗(t)) + N1(t), t ∈ [0, T],
cDβ−1(D + k)y∗(t) = g(t, x∗(t), y∗(t)) + N2(t), t ∈ [0, T].

It follows that:∣∣∣x(t)− ∆e−kt
[

µ2
(

Iα−1 f
)
(η2)− kµ2

∫ η2

0
e−k(η2−s)(Iα−1 f

)
(s)ds

−
∫ T

0

(
Iβ−1g

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1g

)
(s)dsdx

]
−λe−kt

[
ρ2
(

Iβ−1g
)
(ζ2)− kρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1g

)
(s)ds−

∫ T

0

(
Iα−1 f

)
(s)ds

+k
∫ T

0

∫ x

0
e−k(x−s)(Iα−1 f

)
(s)dsdx

]
− 1

T2 − µ1ρ1

[
Aµ2

k
(

Iα−1 f
)
(η2)− Aµ2

∫ η2

0
e−k(η2−s)(Iα−1 f

)
(s)ds− A

k

∫ T

0

(
Iβ−1g

)
(s)ds

+(A− ρ1)
∫ T

0

∫ x

0
e−k(x−s)(Iβ−1g

)
(s)dsdx +

Bρ2

k
(

Iβ−1g
)
(ζ2)

−Bρ2

∫ ζ2

0
e−k(ζ2−s)(Iβ−1g

)
(s)ds− B

k

∫ T

0

(
Iα−1 f

)
(s)ds

+(B− T)
∫ T

0

∫ x

0
e−k(x−s)(Iα−1 f

)
(s)dsdx + Tρ1

∫ ζ1

0
e−k(ζ1−s)(Iβ−1g

)
(s)ds

+µ1ρ1

∫ η1

0
e−k(η1−s)(Iα−1 f

)
(s)ds

]
−
∫ t

0
e−k(t−s)(Iα−1 f

)
(s)ds

∣∣∣∣
≤ |∆|e−kT

[
|µ2|

(
Iα−1|N1(t)|

)
(η2) + k|µ2|

∫ η2

0
e−k(η2−s)(Iα−1|N1(t)|

)
(s)ds

+
∫ T

0

(
Iβ−1|N2(t)|

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1|N2(t)|

)
(s)dsdx

]

+|λ|e−kT
[
|ρ2|
(

Iβ−1|N2(t)|
)
(ζ2) + k|ρ2|

∫ ζ2

0
e−k(ζ2−s)(Iβ−1|N2(t)|

)
(s)ds

+
∫ T

0

(
Iα−1|N1(t)|

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iα−1|N1(t)|

)
(s)dsdx

]

+
1
|ω|

[
|Aµ2|

k
(

Iα−1|N1(t)|
)
(η2) + |Aµ2|

∫ η2

0
e−k(η2−s)(Iα−1|N1(t)|

)
(s)ds

+
|A|
k

∫ T

0

(
Iβ−1|N2(t)|

)
(s)ds+|A− ρ1|

∫ T

0

∫ x

0
e−k(x−s)(Iβ−1|N2(t)|

)
(s)dsdx

+
|Bρ2|

k
(

Iβ−1|N2(t)|
)
(ζ2) + |Bρ2|

∫ ζ2

0
e−k(ζ2−s)(Iβ−1|N2(t)|

)
(s)ds

+
|B|
k

∫ T

0

(
Iα−1|N1(t)|

)
(s)ds + |B− T|

∫ T

0

∫ x

0
e−k(x−s)(Iα−1|N1(t)|

)
(s)dsdx

+T|ρ1|
∫ ζ1

0
e−k(ζ1−s)(Iβ−1|N2(t)|

)
(s)ds + |µ1ρ1|

∫ η1

0
e−k(η1−s)(Iα−1|N1(t)|

)
(s)ds

]

+
∫ T

0
e−k(T−s)(Iα−1|N1(t)|

)
(s)ds,
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≤ ε1

[
|∆|e−kTµ2

((
Iα−11

)
(η2) + k

∫ η2

0
e−k(η2−s)(Iα−11

)
(s)ds

)
+|λ|e−kT

(∫ T

0

(
Iα−11

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iα−11

)
(s)dsdx

)
+

1
|ω|

(
|Aµ2|

k
(

Iα−11
)
(η2) + |Aµ2|

∫ η2

0
e−k(η2−s)(Iα−11

)
(s)ds +

|B|
k

∫ T

0

(
Iα−11

)
(s)ds

+|B− T|
∫ T

0

∫ x

0
e−k(x−s)(Iα−11

)
(s)dsdx + |µ1ρ1|

∫ η1

0
e−k(η1−s)(Iα−11

)
(s)ds

)
+
∫ T

0
e−k(T−s)(Iα−11

)
(s)ds

]

+ε2

[
|∆|e−kT

(∫ T

0

(
Iβ−11

)
(s)ds + k

∫ T

0

∫ x

0
e−k(x−s)(Iβ−11

)
(s)dsdx

)
+|λ|e−kT

(
|ρ2|
(

Iβ−11
)
(ζ2) + k|ρ2|

∫ ζ2

0
e−k(ζ2−s)(Iβ−11

)
(s)ds

)
+

1
|ω|

(
|A|
k

∫ T

0

(
Iβ−11

)
(s)ds + |A− ρ1|

∫ T

0

∫ x

0
e−k(x−s)(Iβ−11

)
(s)dsdx +

|Bρ2|
k
(

Iβ−11
)
(ζ2)

+|Bρ2|
∫ ζ2

0
e−k(ζ2−s)(Iβ−11

)
(s)ds

)]
= ε1M1 + ε2M2.

(20)

By the same method, we can obtain that:

|y(t)− y∗(t)| ≤ M3 ε1 + M4 ε2, (21)

where Mi, i = 1, 2, 3, 4 are mentioned before. By (20) and (21), the nonlinear sequential
coupled system of Caputo fractional differential equations is Ulam–Hyers stable and
consequently, the system (1) is Ulam–Hyers stable. �

Example 1. Consider the following system of a fractional differential equation:

cD1/2(D + 1)x(t) =
1

8π
√

49 + t2

(
|x(t)|

1 + |x(t)| + sin y(t)
)
+

1
4

, t ∈ [0, 1]

cD1/3(D + 1)y(t) =
1

2π(4 + t)2

(
sin(x(t)) +

y(t)
1 + |x(t)|

)
+ 1, t ∈ [0, 1]

∫ 1

0
x(s)ds = y(1/2),

∫ 1

0
x′(s)ds = −2y′(1/2),∫ 1

0
y(s)ds = −3x(1/3),

∫ 1

0
y′(s)ds = x′(1).

(22)

Here:

k = 1, α =
3
2

, β =
4
3

, T = 1, ρ1 = 1, ζ1 =
1
2

, ρ2 = −2, ζ2 =
1
2

, µ1 = −3, η1 =
1
3

, µ2 = 1, η2 = 1.

We found:

M1 = 4.5398, M2 = 4.9766, M3 = 2.7046, M4 = 5.872, h1 =
1

56π
, h2 =

1
32π

.

It’s clear that f, g are jointly continuous functions, where:

f (t, x, y) = 1
8π
√

49+t2

(
|x(t)|

1+|x(t)| + sin y(t)
)
+ 1

4 ,

g(t, x, y) = 1
2π(4+t)2

(
sin(x(t)) + y(t)

1+|x(t)|

)
+ 1.



Fractal Fract. 2021, 5, 235 14 of 16

Now, check that h1(M1 + M3) + h2(M2 + M4) < 1.
Hence:

1
56π

(7.2444) +
1

32π
(10.8486) = 0.149 < 1.

Thus, all the conditions of Theorem 1 are satisfied, and problem (22) has a unique
solution on [0, 1].

Example 2. Consider the following system of fractional differential equation:

cD
1
2 (D + 1)x(t) =

1
60 + t2 +

e−t cos(x(t))
2
√

6400 + t4
+

|y(t)|
140(1 + x2(t))

t ∈ [0, 1]

cD
1
3 (D + 1)y(t) =

1√
25 + t2

cos2(t) +
e−t sin(x(t))

130
+

y(t)
120

, t ∈ [0, 1]∫ 1

0
x(s)ds = y(1/2),

∫ 1

0
x′(s)ds = −2y′(1/2),∫ 1

0
y(s)ds = −3x(1/3),

∫ 1

0
y′(s)ds = x′(1).

(23)

Here:

k = 1, α =
3
2

, β =
4
3

, T = 1, ρ1 = 1, ζ1 =
1
2

, ρ2 = −2, ζ2 =
1
2

, µ1 = −3, η1 =
1
3

, µ2 = 1, η2 = 1.

We found:

M1 = 4.5398, M2 = 4.9766, M3 = 2.7046, M4 = 5.872.

It’s clear that f, g are jointly continuous functions and:

| f (t, x, y)| ≤ 1
60 + 1

160 |x|+
1

140 |y|,
|g(t, x, y)| ≤ 1

5 + 1
130 |x|+

1
120 |y|.

Thus: θ0 = 1
60 , θ1 = 1

160 , θ2 = 1
140 , ϑ0 = 1

5 , ϑ1 = 1
130 , ϑ2 = 1

120 .
Note that:

(M1 + M3)θ1 + (M2 + M4)ϑ1 = 0.1288 < 1,

and:
(M1 + M3)θ2 + (M2 + M4)ϑ2 = 0.1422 < 1.

Thus, all the conditions of Theorem 2 are satisfied, and problem (23) has at least one
solution on [0, 1].

5. Conclusions

The existence, stability, and uniqueness for the solution of the coupled system of
Caputo-type sequential fractional differential equations that involve integral boundary
conditions were investigated. Leray–Schauder’s alternative was implemented to show
the existence of the proposed system and the Banach’s contraction principle was used to
examine the uniqueness of the solution. The Ulam–Hyers stability of the proposed system
was investigated, and it was found that the presented system was stable and unique; an
example has been given to illustrate certain related aspects. The presented approach may
be extended to obtain numerical solutions for a coupled system of Caputo-type sequential
fractional differential equations, which will be discussed in detail at a later stage.
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