
fractal and fractional

Article

Comparison of Two Different Analytical Forms of Response for
Fractional Oscillation Equation

Jun-Sheng Duan 1,† , Di-Chen Hu 1,† and Ming Li 2,3,*,†

����������
�������

Citation: Duan, J.-S.; Hu, D.-C.; Li,

M. Comparison of Two Different

Analytical Forms of Response for

Fractional Oscillation Equation.

Fractal Fract. 2021, 5, 188. https://

doi.org/10.3390/fractalfract5040188

Academic Editor: John R. Graef

Received: 24 September 2021

Accepted: 21 October 2021

Published: 27 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Sciences, Shanghai Institute of Technology, Shanghai 201418, China; duanjs@sit.edu.cn (J.-S.D.);
196181105@mail.sit.edu.cn (D.-C.H.)

2 Ocean College, Zhejiang University, Hangzhou 310012, China
3 Village 1, East China Normal University, Shanghai 200062, China
* Correspondence: mli@ee.ecnu.edu.cn or ming_lihk@yahoo.com or mli15@zju.edu.cn
† These authors contributed equally to this work.

Abstract: The impulse response of the fractional oscillation equation was investigated, where the
damping term was characterized by means of the Riemann–Liouville fractional derivative with the
order α satisfying 0 ≤ α ≤ 2. Two different analytical forms of the response were obtained by using
the two different methods of inverse Laplace transform. The first analytical form is a series composed
of positive powers of t, which converges rapidly for a small t. The second form is a sum of a damped
harmonic oscillation with negative exponential amplitude and a decayed function in the form of
an infinite integral, where the infinite integral converges rapidly for a large t. Furthermore, the
Gauss–Laguerre quadrature formula was used for numerical calculation of the infinite integral to
generate an analytical approximation to the response. The asymptotic behaviours for a small t and
large t were obtained from the two forms of response. The second form provides more details for the
response and is applicable for a larger range of t. The results include that of the integer-order cases,
α = 0, 1 and 2.

Keywords: fractional calculus; fractional oscillator; fractional differential equation; impulse response;
Laplace transform

1. Introduction

From the middle of the last century, the theory of fractional calculus and its applica-
tions have attracted much attention and stimulated scholars’ interest. Currently, fractional
calculus has been applied to different science and engineering fields to describe memory
phenomena, intermediate processes, hereditary properties, and complex phenomena [1–9].
In particular, fractional calculus has been applied to the mathematical modelling of vis-
coelastic materials. For some viscoelastic materials, the stress–strain relation can be more
accurately described by introducing fractional derivatives [3–5,10–12].

Scott-Blair [10] introduced the fractional derivative to characterize a viscoelastic body
whose mechanical properties are intermediate between a pure elastic solid (Hooke model)
and a pure viscous fluid (Newton model). Such a fractional element was called a spring-
pot in [12] or the Scott-Blair model in [3]. If an oscillator connects with such viscoelastic
material, then the resistance term may be built up resorting to the fractional derivative,
called a fractional oscillator. In [13], relaxation, creep, dissipation, and hysteresis resulting
from a six-parameter fractional constitutive model were considered.

Fractional oscillation was considered by Bagley and Torvik [14], Beyer and Kempfle [15],
and others [16–20]. In [14], a fractional equation describing the in-plane oscillations of a
rigid plate immersed in a Newtonian fluid was established. In [15], the uniqueness and
causality for the solution of the fractional oscillation equation were explored with the help
of the Fourier transformation and frequency domain analysis. Achar et al. [16] studied
the fractional oscillation equation in the form of the fractional integral. We notice that
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the fractional oscillation equation considered in [16] is a two-term-equation without the
second order derivative. In [17], oscillator equations derived from the relaxation kernel
and the creep kernel were considered based on the fractional calculus Kelvin–Voight
model, Maxwell model, and standard linear solid model, respectively. In [17–19], the
Bromwich’s integral formula of inverse Laplace transform and the residue theorem were
used for the solutions of fractional oscillation equations. In [20], three classes of fractional
oscillators with the Weyl fractional derivative were investigated. In [21], the stability of
the linear fractional oscillator with the Caputo fractional derivative was explored based
on the stability switch. For detailed discussions of fractional oscillator systems and their
applications, readers may refer to the recent monograph [9]. In [22], the viscous inertia
described by the fractional derivative was reported. In [23,24], nonlinear oscillators were
considered for their dynamical behaviour, resonance phenomena, bifurcation, and chaos.
In [25], vibration theory with variable-order fractional forces was proposed.

Next, we recall the definitions of the involved fractional integral and derivative. For
additional details, we refer the readers to [1–6]. Let f (t) satisfy f (t) = 0 for t < 0 and
be piecewise continuous on (0,+∞) and integrable on any finite subinterval of (0,+∞).
Then, the Riemann–Liouville fractional integral of f (t) of order ν > 0 is defined as the
convolution

Jν
t f (t) =

tν−1

Γ(ν)
∗ f (t) =

∫ t

0

(t− u)ν−1

Γ(ν)
f (u)du, t > 0, (1)

where Γ(·) is Euler’s gamma function. The Riemann–Liouville fractional derivative of order
α (m− 1 < α < m) is defined as a composition of the mth derivative and (m− α)-order
integral,

Dα
t f (t) =

dm

dtm

(
Jm−α
t f (t)

)
, t > 0, m− 1 < α < m, m ∈ N+. (2)

Exchanging the order of the derivative and integral in Equation (2) leads to the
definition of the Caputo fractional derivative. The Riemann–Liouville fractional derivative
has weaker requirements for the function f (t) than the Caputo fractional derivative. In
this paper, the Riemann–Liouville fractional derivative is used to model the fractional
oscillation. We use the Laplace transform

F(s) = L[ f (t)] =
∫ +∞

0−
f (t)e−stdt. (3)

Then, the Laplace transform of the Riemann–Liouville fractional derivative is
L[Dα

t f (t)] = sαF(s).
In this paper, by using two different methods of inversion Laplace transform, we

consider the impulse response of the fractional oscillation equation

m x′′(t) + c Dα
t x(t) + k x(t) = δ(t), m, c, k > 0, (4)

where α satisfies 0 ≤ α ≤ 2, δ(t) is the Dirac-δ function, and x(t) ≡ 0 when t < 0. We note
that in [11,14], the cases of α = 1/2 and α = 3/2 were introduced, respectively.

Applying the Laplace transform to Equation (4) leads to

m s2X(s) + c sαX(s) + k X(s) = 1.

Solving the transform function, we have

X(s) =
1

ms2 + csα + k
. (5)

For the integer-order case α = 1, using the Laplace transform table, we can obtain the
response in three subcases, i.e., overdamping, criticaldamping, and underdamping:
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x(t; α = 1) =


2√

c2−4mk
e−

c
2m t sinh

(√
c2−4mk

2m t
)

, c2 − 4mk > 0,
t
m e−

c
2m t, c2 − 4mk = 0,

2√
4mk−c2 e−

c
2m t sin

(√
4mk−c2

2m t
)

, c2 − 4mk < 0.

(6)

We note that the three subcases correspond to the Laplace transform X(s) having two
real simple poles, one real second-order pole, and a pair of complex conjugate simple poles,
respectively, in the s-plane.

For the integer-order cases α = 0 and α = 2, making use of the Laplace transform
table, the responses are obtained as the periodic oscillations

x(t; α = 0) =
1√

m(k + c)
sin

(√
k + c

m
t

)
, (7)

x(t; α = 2) =
1√

(m + c)k
sin

(√
k

m + c
t

)
. (8)

Starting from Equation (5), we use two different methods of inverse Laplace transform
to give two different forms of the response. One is in a series form constituted with positive
powers of t and converges rapidly for small t, while another is the sum of a harmonic
damped oscillation and a decayed function in the form of an infinite integral, where the
infinite integral converges rapidly for a large t and is appropriately evaluated by using
the Gauss–Laguerre quadrature formula. The text is organized as follows. In the next
section, we present the response rapidly convergent for a small t. In Section 3, we derive
the response rapidly convergent for a large t. Section 4 presents our conclusions.

2. Solution Rapidly Convergent for Small t

We decompose the right hand side of Equation (5) to a series of negative powers of s
and then use the inversion method term by term. We will apply the expansion formula
of power series twice, and such expansions work for such large Re(s) as specified below.
The present method is based on that of the Green’s function for fractional differential
equations [4].

First, we can rewrite X(s) in the form

X(s) =
1

sα(ms2−α + c)
(

1 + ks−α

ms2−α+c

) , (9)

and expand the right hand side as

X(s) =
1

sα(ms2−α + c)

+∞

∑
j=0

(−1)j kjs−αj

(ms2−α + c)j . (10)

Sufficient conditions for the above expansion to hold are

Re(s) > max

{
1,
(

k + c
m

) 1
2−α

}
if 0 ≤ α < 2 and Re(s) >

√
k

m + c
if α = 2. (11)

Furthermore, we rewrite Equation (10) as

X(s) =
+∞

∑
j=0

(−1)j kj

mj+1s2(j+1)

(
1 +

c
ms2−α

)−(j+1)
. (12)
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By using the formula

(1 + z)−n =
+∞

∑
l=0

(−1)l (n + l − 1)!
l!(n− 1)!

zl , |z| < 1, n ≥ 1, (13)

expanding the right hand side of Equation (12) yields the series of negative powers of s,

X(s) =
+∞

∑
j=0

(−k)j

j!

+∞

∑
l=0

(−c)l

l!
(j + l)!
mj+l+1

1
s2(j+1)+(2−α)l

, (14)

where the expansion holds for s satisfying the conditions

Re(s) >
( c

m

) 1
2−α if 0 ≤ α < 2, and c < m if α = 2. (15)

Now, taking the inverse Laplace transform to Equation (14) term by term, we obtain
the response in the series form constituted with positive powers of t,

x(t) =
+∞

∑
j=0

(−k)j

j!

+∞

∑
l=0

(−c)l

l!
(j + l)!
mj+l+1

t2j+1+(2−α)l

Γ(2j + 2 + (2− α)l)
. (16)

By setting n = j + l, Equation (16) has the form

x(t) =
+∞

∑
n=0

n

∑
j=0

n! (−k)j (−c)n−j

j! (n− j)! mn+1
t2j+1+(2−α)(n−j)

Γ(2j + 2 + (2− α)(n− j))
. (17)

Here, the series converges rapidly for a small t, and the response has the asymptotic
behaviour

x(t) ∼ t
m

, t→ 0. (18)

By taking m = k = 1 and the sum of n = 0 through n = 80 in Equation (17), the curves
of x(t) are plotted in Figures 1 and 2 for c = 0.5 and different values of α, and in Figure 3
for c = 3 and α = 0, 0.25, 0.5, 0.75, and 1. In Figures 1 and 2, the ranges of t are limited
in 0 ≤ t ≤ 15, and in Figure 3, the range is 0 ≤ t ≤ 9. For extended ranges of t, divergent
curves may be observed. In addition, we did not plot curves of c = 3 and 1 < α < 2 since in
this case, convergence of the series slows down, especially for the case of α approaching 2.

2 4 6 8 10 12 14
t

-1.0

-0.5

0.5

1.0
x(t)

Figure 1. Curves of x(t) for m = k = 1, c = 0.5 and for α =0 (solid line), 0.25 (dotted line), 0.5
(dashed line), 0.75 (dotted-dashed line), and 1 (dotted-dotted-dashed line).
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2 4 6 8 10 12 14
t

-1.0

-0.5

0.5

1.0
x(t)

Figure 2. Curves of x(t) for m = k = 1, c = 0.5 and for α =1 (solid line), 1.25 (dotted line), 1.5
(dashed line), 1.75 (dotted-dashed line), and 2 (dotted-dotted-dashed line).

2 4 6 8
t

-0.6

-0.4

-0.2

0.2

0.4

0.6
x(t)

Figure 3. Curves of x(t) for m = k = 1, c = 3 and for α =0 (solid line), 0.25 (dotted line), 0.5 (dashed
line), 0.75 (dotted-dashed line), and 1 (dotted-dotted-dashed line).

We notice that the formula for the Mittag–Leffler function

dj

dzj

(
zjEα,β(z)

)
=

+∞

∑
l=0

(j + l)!
l!

zl

Γ(αl + β)
, (19)

where the two-parameter Mittag–Leffler function is defined as

Eα,β(z) =
+∞

∑
l=0

zl

Γ(αl + β)
, α > 0, β > 0. (20)

Thus, the response (16) may be expressed as

x(t) =
+∞

∑
j=0

(−k)j t2j+1

j! mj+1 gj

(
− c t2−α

m

)
, where gj(z) =

dj

dzj

(
zjE2−α,2j+2(z)

)
. (21)

The Integer-Order Cases

When α = 1, the response in Equation (17) can be expressed by using the Kummer
hypergeometric function
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x(t; α = 1) =
+∞

∑
n=0

t
(n + 1)!m

(
− c t

m

)n

1F1

(
−n; 2 + n;

−k t
c

)
. (22)

Here, we obtain the united series expressions for the three subcases, overdamping,
criticaldamping, and underdamping, by exploiting the Kummer hypergeometric function.
In Figure 4, the sum of the first 81 terms in Equation (22) is used to generate the curves
of x(t; α = 1), where c = 3, 2, and 1 correspond to overdamping, criticaldamping, and
underdamping, respectively.

2 4 6 8
t

-0.2

0.2

0.4

0.6
x(t; 1)

Figure 4. Curves of x(t; α = 1) for m = k = 1 and c = 3 (solid line), c = 2 (dotted line), and c = 1
(dashed line).

For the case α = 0, upon using the binomial theorem, Equation (17) becomes

x(t) =
+∞

∑
n=0

n

∑
j=0

n!
j! (n− j)!

(
k
c

)j (−c)n t2n+1

mn+1 (2n + 1)!

=
+∞

∑
n=0

(−1)n(k + c)n t2n+1

mn+1 (2n + 1)!

=
1√

m(k + c)
sin

(√
k + c

m
t

)
, (23)

which is consistent with Equation (7).
For the case α = 2, Equation (16) is convergent under the condition c < m, and upon

using the series expansion (13), it is reduced to the periodic oscillation as in Equation (8):

x(t) =
+∞

∑
j=0

(−k)j

j!

∞

∑
l=0

(l + j)!
l!

(
− c

m

)l t2j+1

mj+1 (2j + 1)!

=
+∞

∑
j=0

(−1)j kj t2j+1

(m + c)j+1 (2j + 1)!

=
1√

(m + c)k
sin

(√
k

m + c
t

)
. (24)

3. Solution Rapidly Convergent for Large t

We pursue the inverse Laplace transform of Equation (5) by using the complex inver-
sion integral formula, alias Bromwich’s integral formula,
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x(t) =
1

2πi

∫
Br

X(s)estds =
1

2πi

∫
Br

1
ms2 + csα + k

estds. (25)

In the above formula, Br denotes the Bromwich path, namely the straight line from
s = σ− i∞ to s = σ + i∞, where σ is chosen so that all the singularities of the integrand lie
to the left of the line.

For the non-integer case, the original point s = 0 is a branch point of the integrand. We
make a branch cut along the negative real axis and consider the problem on the principal
Riemann surface. In addition, for the non-integer case, the Laplace transform X(s) always
has a pair of conjugated simple poles with a negative real part, i.e., the characteristic
equation ms2 + csα + k = 0 has a pair of conjugated complex roots only if m, c, k > 0 [18,19].
We denote the conjugated complex roots by s1,2 = a± bi, where a < 0 and b > 0.

Due to the residue theorem and Jordan’s lemma, we can rewrite the right hand side of
Equation (25) as the sum of residues plus a Hankel contour integral, i.e.,

x(t) = x1(t) + x2(t), (26)

where

x1(t) =
2

∑
j=1

Res
[

est

ms2 + csα + k
, sj

]
, x2(t) =

1
2πi

∫
Ha

est

ms2 + csα + k
ds, (27)

where Ha denotes the Hankel path, a loop which starts from −∞ along the lower side of
the negative real axis, encircles the origin counterclockwise, and ends at −∞ along the
upper side of the negative real axis.

Calculating the residues in Equation (27), we obtain

x1(t) =
es1t

2ms1 + αcsα−1
1

+
es2t

2ms2 + αcsα−1
2

.

Considering the relation s1 = s̄2, we have

x1(t) = 2 Re

(
es1t

2ms1 + αcsα−1
1

)
, (28)

where Re(·) denotes the real part. Utilizing the relation ms2
1 + csα

1 + k = 0, we rewrite
Equation (28) as

x1(t) = 2 Re

(
s1es1t

2ms2
1 + αcsα

1

)
= 2 Re

(
s1es1t

2ms2
1 − αk− αms2

1

)
. (29)

Substituting s1 = a + bi, using the equality eibt = cos(bt) + i sin(bt), and then extract-
ing the real part, we obtain

x1(t) = eat(A sin(bt) + B cos(bt)), (30)

where

A =
2bm(2− α)(a2 + b2) + 2αbk

(m(2− α)(a2 − b2)− αk)2 + 4a2b2m2(2− α)2 , (31)

B =
2am(2− α)(a2 + b2)− 2αak

(m(2− α)(a2 − b2)− αk)2 + 4a2b2m2(2− α)2 . (32)
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Obviously, in the fractional case, x1(t) represents a harmonic damped oscillation. We
note that for the case of α = 1 and c2 − 4mk ≥ 0, x1(t) must be replaced by the expressions
in (6).

For x2(t), the Hankel path integral may be divided into three parts:

x2(t) =
1

2πi

(∫
s=reiπ(0:∞)

est

ms2 + csα + k
ds +

∫
s=re−iπ(∞:0)

est

ms2 + csα + k

+ lim
ε→0+

∫
C(ε)

est

ms2 + csα + k
ds
)

, (33)

where the integral paths are explained as follows: in the first integral, the path is from
s = 0 to ∞ along the upper side of the negative real axis; in the second integral, the path is
from s = ∞ to 0 along the lower side of the negative real axis; and in the third integral, the
path is the small circle counterclockwise:

C(ε) : s = εeiθ , ε > 0, −π < θ < π. (34)

It is easy to prove that

lim
ε→0+

∫
C(ε)

est

ms2 + csα + k
ds = lim

ε→0+

∫ π

−π

eεteiθ

mε2ei2θ + cεαeiαθ + k
εeiθidθ = 0. (35)

Consequently, we obtain

x2(t) =
−1
2πi

∫ +∞

0

(
e−rt

mr2 + crαeiπα + k
− e−rt

mr2 + crαe−iπα + k

)
dr.

Considering the two terms in brackets are conjugated we have

x2(t) =
−1
π

∫ +∞

0
Im
(

e−rt

mr2 + crαeiπα + k

)
dr, (36)

where Im(·) denotes the imaginary part. Calculating the imaginary part leads to

x2(t) = x2(t; α) =
c sin(πα)

π

∫ +∞

0
q(r, α)e−rtdr, (37)

where

q(r, α) =
rα

(mr2 + k + crα cos(πα))2 + (crα sin(πα))2 . (38)

The infinite integral in Equation (37) converges rapidly for a large t due to the negative
exponential function e−rt in the integrand. It is easy to conclude from Equations (37)
and (38) that when 0 < α < 1, x2(t) is positive and decreases monotonically and approaches
to zero as t → +∞, and when α > 1, x2(t) is negative and increases monotonically and
approaches to zero as t → +∞. When 0 < α < 1, x2(t) is completely monotone, i.e.,
(−1)nx(n)2 (t) ≥ 0 for all n = 0, 1, 2, . . . . When 1 < α < 2, −x2(t) is completely monotone.

We notice that the infinite integral in Equation (37) is in the Laplace pattern, and q(r)
has the asymptotic expression

q(r, α) ∼ 1
k2 rα, r → 0. (39)

Thus, the asymptotic behaviour of x2(t) is obtained upon using the Watson lemma

x2(t) ∼
c sin(πα)

πk2
Γ(α + 1)

tα+1 , t→ +∞. (40)
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Hence, the response x(t) = x1(t) + x2(t) is a superposition of a damped oscillation
dying out in a negative exponent rate and a monotonic restoration decaying in a negative
power rate,

x(t) = x1(t) +
c sin(πα)

π

∫ +∞

0
q(r, α)e−rtdr. (41)

The derivatives of x(t) have almost the same formations. Therefore, considering
that the negative exponent function is an infinitesimal of higher order than the negative
power function as t → +∞, it is deduced that the response x(t) = x1(t) + x2(t) has the
same asymptotic behaviour as x2(t), and x(t) evolves from initially probably oscillating to
decreasing monotonically and approaching zero for the case 0 < α < 1, while increasing
monotonically and approaching zero for the case 1 < α < 2.

Although the infinite integral in Equation (37) can be directly computed by using
MATLAB or MATHEMATICA, we prefer to introduce a sort of quadrature formula. In
Equation (37), the infinite integral in the Laplace pattern is appropriate for numerical
calculation by using the Gauss–Laguerre quadrature formula. In fact, introducing the new
integration variable u = rt, Equation (37) can be rewritten in the form

x2(t) =
c sin(πα)

πt

∫ +∞

0
q
(u

t
, α
)

e−udu. (42)

Thus, applying the Gauss–Laguerre quadrature formula, we have

x2(t)
.
=

c sin(πα)

πt

n

∑
j=1

wj q
(uj

t
, α

)
, (43)

where uj is the j-th zero of the Laguerre polynomial Ln(u), and the weight wj is given by

wj =
(n!)2

uj[L
′
n(uj)]2

, j = 1, 2, . . . , n. (44)

Finally, the solution x(t) can be calculated as the approximate analytical expression

x(t) .
= x1(t) +

c sin(πα)

πt

n

∑
j=1

wj q
(uj

t
, α

)
. (45)

The Integer-Order Cases

For the integer-order case α = 1, 2, or 3; x2(t) = 0; and there is only the contribution
from residues, x1(t), for the solution x(t). Now, we specialize x1(t) in Equation (30). If
α = 1, we have a = − c

2m , b =
√

4mk−c2

2m . Substituting them into Equations (31) and (32), we
find that A = 2√

4mk−c2 and B = 0. Thus, from Equation (30), we obtain the underdamping

result of the case α = 1 as in Equation (6). If α = 0, then a = 0 and b =
√

k+c
m . It follows

from Equations (31) and (32) that A = 1
mb and B = 0. From Equation (30), the response in

Equation (7) is revealed. If α = 2, then a = 0 and b =
√

k
m+c . It follows from Equations (31)

and (32) that A = b/k and B = 0. From Equation (30), the response degenerates to that in
Equation (8).

By taking m = k = 1 and n = 50 in Equation (45), the curves of x(t) are plotted in
Figures 5 and 6 for c = 0.5 and in Figures 7 and 8 for c = 3. Here, larger ranges of t are
shown than in Figures 1–3. In Figures 5 and 6, the responses are the underdamping case for
α = 1, while in Figures 7 and 8, the responses are the overdamping case for α = 1. Finally,
in order to compare intuitionally the two analytical forms in Equations (17) and (45), we
plot their corresponding response curves together. We take m = k = 1, α = 0.5 and 1.5, and
the curves of x(t) are plotted in Figure 9 for c = 0.5, while in Figure 10 for c = 3. The series
in Equation (17) is approximated by the sum of the first 81 terms, while in Equation (45),
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we take n = 50. The analytical form in Equation (45) gives effective results on the whole
displayed interval 0 < t < 30 in Figures 9 and 10 by red dotted-dashed lines and purple
dotted lines, while the analytical form in Equation (17) outputs effective curves for t < 25
in Figure 9, and for even smaller intervals in Figure 10.

5 10 15 20 25 30
t

-1.0

-0.5

0.5

1.0
x(t)

Figure 5. Curves of x(t) for m = k = 1, c = 0.5, and for α =0 (solid line), 0.25 (dotted line), 0.5
(dashed line), 0.75 (dotted-dashed line), and 1 (dotted-dotted-dashed line).

5 10 15 20 25 30
t

-1.0

-0.5

0.5

1.0
x(t)

Figure 6. Curves of x(t) for m = k = 1, c = 0.5, and for α =1 (solid line), 1.25 (dotted line), 1.5
(dashed line), 1.75 (dotted-dashed line), and 2 (dotted-dotted-dashed line).

5 10 15 20 25 30
t

-0.6

-0.4

-0.2

0.2

0.4

0.6
x(t)

Figure 7. Curves of x(t) for m = k = 1, c = 3, and for α =0 (solid line), 0.25 (dotted line), 0.5 (dashed
line), 0.75 (dotted-dashed line), and 1 (dotted-dotted-dashed line).
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5 10 15 20 25 30
t

-0.6

-0.4

-0.2

0.2

0.4

0.6
x(t)

Figure 8. Curves of x(t) for m = k = 1, c = 3, and for α =1 (solid line), α =1.25 (dotted line), 1.5
(dashed line), 1.75 (dotted-dashed line), and 2 (dotted-dotted-dashed line).

5 10 15 20 25 30
t

-0.5

0.5

1.0
x(t)

Figure 9. Curves of x(t) for m = k = 1, c = 0.5 and for α = 0.5 (solid and dotted-dashed lines) and
1.5 (dashed and dotted lines), where solid and dashed lines are from Equation (17), dotted-dashed
and dotted lines from Equation (45).

5 10 15 20 25 30
t

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5
x(t)

Figure 10. Curves of x(t) for m = k = 1, c = 3, and for α = 0.5 (solid and dotted-dashed lines) and 1.5
(dashed and dotted lines), where solid and dashed lines are from Equation (17), and dotted-dashed
and dotted lines from Equation (45).
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4. Conclusions

We have investigated the impulse response of the fractional oscillation equation, where
the damping term is characterized by means of the Riemann–Liouville fractional derivative
with the order α satisfying 0 ≤ α ≤ 2. Two different forms of the response are obtained
by using the two different methods of inverse Laplace transform, i.e., (i) expanding into a
series of a negative power of s in the Laplace domain and then inverting the series term
by term and (ii) using the complex inversion integral formula, residue theorem, Jordan’s
lemma, and Gauss–Laguerre quadrature formula. Method (i) leads to a series solution
composed of positive powers of t, which converges rapidly for a small t, while method
(ii) derives a sum of a damped harmonic oscillation with negative exponential amplitude
and a decayed function in the form of an infinite integral, where the infinite integral
converges rapidly for a large t. Furthermore, due to the infinite integral in the Laplace
pattern, the Gauss–Laguerre quadrature formula is appropriate for a numerical calculation
to generate an analytical approximation to the response. The asymptotic behaviours for a
small t and large t are also obtained from the two forms of response. The results include
that of the integer-order cases, α = 0, 1, and 2.
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