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Abstract: In this paper, the existence and uniqueness of solutions for a coupled system of y-Hilfer
type sequential fractional differential equations supplemented with nonlocal integro-multi-point
boundary conditions is investigated. The presented results are obtained via the classical Banach and
Krasnosel’skii’s fixed point theorems and the Leray-Schauder alternative. Examples are included to
illustrate the effectiveness of the obtained results.

Keywords: ip-Hilfer fractional derivative; Riemann-Liouville fractional derivative; Caputo fractional
derivative; system of fractional differential equations

1. Introduction

Fractional calculus, as an extension of usual integer calculus, is a forceful tool to
express real-world problems rather than integer-order differentiations, so that this idea has
wide applications in various fields such as, mathematics, physics, engineering, biology,
finance, economy and other sciences (see [1-3] and related references therein). Accord-
ingly, many researchers have studied initial and boundary value problems for fractional
differential equations (see [4-11]). Additionally, fractional differential equations involving
coupled systems have nonlocal natures and applications in many real = world process. The
investigation of types of integral and differential operators and the relationship between
these operators plays a key role in studying fractional differential equations. Fractional
operators of a function concerning another function were introduced by Kilbas et al. [5].
Later, Almeida [12] introduced the notion of the -Caputo fractional operator. For some
applications of ¢ operator, we refer to the papers [13-15]. Hilfer [16] extended both
Riemann-Liouville and Caputo fractional derivatives by presenting a family of derivative
operators. Different models based on Hilfer fractional derivative have been considered
in [17-21], and references cited therein. Many applications of Hilfer fractional differential
equations can be found in many fields of mathematics, physics, etc (see [22-24]). The study
of boundary value problems for Hilfer-fractional differential equations of order in (1,2],
and nonlocal boundary conditions was initiated in [25] by studying the boundary value
problem of the form:
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HD"‘l'/Slu(z) =h(z,u(z)), z€led], 1<way <2, 0<B; <1,
u(e) =0, u(d) = Y eilPu(@), ¢ >0 € RE € [o,d] )

i=1

where D%P1 is the Hilfer fractional derivative of order a1, 1 < a7 < 2, and parameter 1,
0<pB1 <1, f:]cd xR — Risa continuous function, ¢ > 0 and 1% is the Riemann—
Liouville fractional integral of order ¢;,i = 1,2, ...,m. Several existence and uniqueness
results were proved by using a variety of fixed point theorems.

Wongcharoen et al. [26] studied a system of Hilfer-type fractional differential equations
of the form

Hpmbry(z) = f1(z,u(z),v(z)), z € [c,d],

HDRBro(2) = g (2, u(

gi), @

where HD®1A1¥ and HDYA1Y are the Hilfer fractional derivatives of orders a; and @,
1 < aq, @1 < 2 and parameter f1,0 < B1 <1, f1, 41 : [¢,d] Xx R x R — R are continuous

functions, ¢ > 0, 0;,; € R, and I?, T %} are the Riemann-Liouville fractional integrals of
order¢; >0,¢.>0,i=1,2,...,m,j=1,2,...,n

Sitho et a{. [27] proved the existence and uniqueness of solutions for the following
class of boundary value problems consisting of fractional-order y-Hilfer-type differential
equations supplemented with nonlocal integro-multipoint boundary conditions of the form:

Hpaibivy(z) = h(z,u(z)), z € [c,d],
) =0, u(d) = Lo [ /()5 + L aju(cy), ©
i= j=

where DA% is the p-Hilfer fractional derivative operator of order a1, 1 < a7 < 2 and
parameter B1,0 < 1 <1, f : [c,d] x R — R is a continuous function, ¢ > 0, ni,Aji €R,
1i,Gj € (c,d),i=1,2,...,n,j=1,2,...mand 1 is a positive increasing function on (c, d],
which has a continuous derivative ¢’ (t) on (c,d).

Recently, in [28], the boundary value problem (3) was extended to sequential -Hilfer-
type fractional differential equations involving integral multi-point boundary conditions
of the form

(Hoﬂlﬁvv’ +k HD“l_lfﬂl;‘P)u(z) = f(zu(z)), kER, z€[cd],

4)
u(c) = Eyl/ ds—i—ZGu i),

where the notations are the same as those of problem (3).

In the present research, inspired by the published articles in this direction, we study
the existence and uniqueness of solutions for the following coupled system of sequential -
Hilfer-type fractional differential equations with integro-multi-point boundary conditions
of the form
(DMAY 4 k FDM 1P )u(z) = f(z,u (Z/v(Z)) € le.d],
(HD"‘l’ﬁl’“”+’<HD"‘1 Hh¥)o(z2 ) 8(zu (z),v(z)) € le.d],

u(c) =0, u(d Zyz/ o(s)ds + ) 0;0(¢; (5)

j=1

|4 q
v(c) = ; / s)ds + Y tu(os),

s=1
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where HD*/A1¥ and HD*1/A1¥ are the y-Hilfer fractional derivatives of orders a1 and &,
1 < a3,%; < 2 and parameter 1,0 < B <1, f,g: [c,d] x R x R — R are continuous
functions, ¢ > 0, p;,0;, vy, 75 € R*, n;, Sisgros € (c,d),i=12,...,nj=12,..,m
r=12,...,p,s =1,2,...,q and ¢ is an increasing and positive monotone function on
(¢,d] having a continuous derivative ¢’ on (¢, d).

The classical fixed point theorems are applied in order to obtain our main existence and
uniqueness results. Thus, the Banach fixed point theorem is applied to obtain the unique-
ness result, while Leray-Schuader alternative and Krasnosel’skii’s fixed point theorems are
the basic tools used to present the existence results.

The rest of the paper is organized as follows: we recall some primitive concepts in
Section 2. In Section 3, an auxiliary lemma is proved, which is a basic tool in proving the
main results of the paper, which are presented in Section 4. The main results are supported
by numerical examples.

2. Preliminaries

In this section, some basic concepts in connection to fractional calculus and fixed
point theory are assigned. Throughout the paper, by X = C([c,d],R), we denote the
Banach space of all continuous mappings from [c, d] to R endowed with the norm || x| =
sup {|x(t)];t € [c,d]}. It is clear that the space X x X, endowed with the norm || (x, y)|| =
|lx|| + [|y|, is a Banach space.

Definition 1 ([2]). Let (c,d), (—o0o < ¢ < d < o0) a > 0 and ((z) be a positive increasing
function on (c,d], with continuous derivative Y'(z) on (c,d). The P-Riemann—Liouville fractional
integral of a function h with respect to a another function ¢ on [c,d] is defined by

1"V h(z / ¥ (s)((z) — p(s))* h(s)ds, z > ¢ > 0,
where I'(.) is the Euler Gamma function.

Definition 2 ([29]). Let ¢ € C"([c,d],R) with ¢/'(z) # 0and 5 > 0, n € N. The Riemann—
Liouville derivatives of a function h with connection to another function y of order 1 is represented as

‘ 1 d\" uon;
o) = (pgas)

N F(nl—iy) (lpl(z),@ / Y (s)((z) — 9(s))" " h(s)ds,

where n = [n] + 1, [n] represent the integer part of real number 1.

Definition 3 ([29]). Assume thatn —1 < n < nwith n € N and [c,d] is the interval so that

—00 < ¢ <d<ooandh,p € C"([c,d],R) are two functions, such that  is increasing and

! ( ) # 0 for all z € [c,d|. The -Hilfer fractional derivative of a function h of order n and type
<7 < 1isdefined by

; (n—n); 1 d 1-7) (n— s
HDijh(Z) :IZE 77)4](1/)/(2) dz) Ic(+ 7)(n—1); ‘l’h< z) = IC7+ UwDth(z),

where n = [n] + 1, [n] represents the integer part of the real number y with vy = n +7(n —n).

Lemma1 ([29]). Ifh € C"(J,R), n—1<y <n, 0<7<landy=n+7(n—n), then

n y—k
T (H i z) = ()" S =k (1) (=)
"7 (" D"¥h) (z) k; Ty —k+ 1) Vo e h(c),
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forall z € ], where V[;z}h(z) = (qﬂ%z)af’iz) h(z).

Finally, we summarize the fixed point theorems used to prove the main results in this
paper. X is a Banach space in each theorem.

Lemma 2. (Banach fixed point theorem [30]). Let D be a closed set in X and T : D — D satisfies
|Tu — Tv| < Au —v|, forsome A € (0,1), and forall u,v € D.
Then T admits one fixed point in D.

Lemma 3. (Leray-Schauder alternative [31]). Let the set Q) be closed bounded convex in X and O
an open set contained in Q with 0 € O. Then, for the continuous and compact T : U — (), either:

(a) T admits a fixed point in U, or
(aa) There exists u € oU and y € (0,1) withu = uT(u).

Lemma 4. (Krasnosel'skif fixed point theorem [32]). Let M be a closed, bounded, convex and
nonempty subset of a Banach space X. Let A, B be operators such that (i) Ax + By € M where
x,y € M, (ii) A is compact and continuous and (iii) B is a contraction mapping. Then there exists
z € M such that z = Az + Bz.

3. An Auxiliary Result

We prove the following auxiliary lemma, concerning a linear variant of the coupled
system (5), which is useful to present the coupled system (5) as a fixed point problem.

Lemmab5. Letc > 0,1 <ay,a1 <2,0< 81 <1, v =0a1+2B1 —a1B1, 71 = a1 +2B1 — 2151
and A # 0.
Then, for hy, hy € C([c,d], R), the unique solution of the coupled system

(HD Py 4 g Hpa—1Buv )y (z) = hl(z), z € [¢,d],
(HD®Bu¥ 4 k HDT 1A )y (2 ) hy(z), z € [c,d],

() = 0, u(d Z‘ul/ ds+290§] ©)
v(c) =0, :Z / dS+ZTSu0'S

is given as
u(z) = —k/ ¢ (s)u(s)ds + 11y (2)
_ 1

+(1”(Z)/\rl(ﬂ§)))7 A (Zul/ ()T (s) ds+2911¢h2(€]>
—k) 6; ! ds —k i t)ded

];]/C ¥ (s)o(s)ds ;u/ ) [ (o(ndeds
+k/dlp'(s)u(s s—I“llp +B Zvr/ (s)I*"¥hy(s)ds

q . Os
+ Y wIhi(0s) — k Z ’L's/ ¢/ (s)u(s)ds

s=1 s=1 ¢

P cr
—k) o / / @' (H)u(t)dtds
r=1 a
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s [ 4 Gpolpds — (@), o
and
o(z) = —k/ ¢/ (s)o(s)ds + Vi ()
+(¢(Z)A_Fl(Py(1;)h Zvr/ ($)I% 1y (5) ds+i1rspx1;¢hl(gs)
—qu:Ts /US ¢’(s)u(s)ds—k2w/ / o' (H)u(t)dtds
+k/ P (s ds—l"‘l‘/’hz )+r(2y1/ (s)I*¥hy(s)ds
Y6y () kfejf ¢/ (s)o(s)ds
j=1 j=1
—kfui / ¥ [ 0l
+k / Y ($)u(s)ds — 1 m ()], ®)
where
(p(d) = p(c) !
4 NGO
_ v 1y (s)((s) — p(a)M? ($(Gj) — ple))m
B = Zy’/ T(71) ds+]Z%6] ] I'(71)
oy o [P )W) P(a)7! s L (p(os) —9(e) !
r= Lo R Vi — )
() —g(e))m !
A= () )
and
A = AA—BT.

Proof. Taking the operator I* on both sides of equations in (6) and using Lemma 1, we
conclude that

u(z)

(p(z) — p(c)) '~ e (1-p1)
r2—2—-a)(1-p1)

- ¢ (p(z) — p(c))~ @) (1-p1) e
0 r(17(2 “1)(1*181)) 1
—k [C s)u(e)ds + 10 2)

= 0o (lp(zlz(;lﬁ(i)))%z +
—k [C s)u(e)ds + 10 2),

4 BE@ =92 () ()"
° I(y1—1) !

—k [ ¢/ (s)o(s)ds + IV ha (2).

c
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Hence, due to u(c),v(c) = 0, we obtain ¢, dy = 0. Consequently,
u(z) = (¥(z) ;(igc))71 —k ) o' (s)u(s)ds + Ifi;lphl (2), (10)
v(z) =dq (¥(z) ()"~ —k ) Y'(s)u(s)ds + I@whz(z). (11)
T(71) c ¢
Fromu(d) = £y s [ ¢/ (s)o(s)ds + £, 6,0()) and o(d) = K7, v, [ ¢ (s)u(s)ds
+ !, wu(os), we have

d .
. —k/c ¢/ (s)u(s)ds + IV hy (d)
= Y [ OO IO 3 [ e

o ((E) ~ p(e) S
+d1]219, o —kZQ/ ¢ (s)o ds+];9]1 (&)
n 1i s
—k i ! "(t)o(t)dtds,
Lo [ WO [ v ouas
and
4, @) W (s)o(s)ds + [ (d)
_ g'llJ P(s) —y(a))"” -
= Clr;vr/{z o) ds+20r/ ) [*V¥hy(s)ds
q _ -1 q
+C1§Ts (lp(o’s)r(,l)//})(c))’y _kzlfs/ﬂ 1[)(S)M(S)dS+s§TsIal;lph1(as)
P Gr
kY o ( t)dtd
Yoo [0 [ uttaas
or
AC1—Bd1 = P,
—FC1+Ad1

— Q,
where A, B, T, A are defined by (9) and

f / () ¥y (s)ds + ) ;5 h (&) kZG/ o(s)ds
i=1 j=1

/ /q; dtds—i—k/ (s

u(s)ds — 1“1y (d),
and

p

Zvr/g @' (s) 1%y (s) ds+ZTI“1‘/’h1 05) kZTS/

—kévr/cgrtp’ / P (¢

Yu(s)ds

dtds+k/ P (5)0(s)ds — IV ha (d).



Fractal Fract. 2021, 5, 162

7 of 20

By solving the above system, we find

AP + BQ

AQ+TP
1 = A ’ .

d = ===

Substituting the values of ¢; and d; into Equations (10) and (11), respectively, we
obtain the solutions (7) and (8). The converse is obtained by direct computation. The proof
is finished. O

4. Existence and Uniqueness Results

Keeping in mind Lemma 5, we define an operator P : X x X — X x & by

where

Pi(u,0)(z) =

and

Pa(u,0)(z) =

where

P(u,0)(z) := (P1(u,0)(z), P2(u,0)(z)),

—k/ @' (s)u(s)ds + IV fuu (2)

B 1 moo
+(1P(Z)AFI(P’§)))7 Z / ) MW g (s )ds+;9j1“1;¢guv(é‘j)
—kZG/ ds—kal/ /¢ ) dtds
e [ uis)ds — 2 fun()) + B Zvr [ O i (s)is

q 9 s
+ E T 1Y £ (05) — k Z ’L's/ ¢/ (s)u(s)ds
s=1 = ¢
P cr
kY o, £)dtd
};U ‘/C / l/) tds

s [ g o)ols)ds — 1 gin(a >)},

_k/ l/J ds“'lﬁlpguv( )

+ (w(Z)Arzb’ili)’h_l Z / $) 1MUY £ (s)ds + i T I"¥ 1y (o)

—kZTS/ ds—ka,/ /¢ Fdtds
+k/ ¥ (s ds—I?fpguv )+F(Zﬂz/ Iallpguv()
+2911¢gwg] ki@/ o(s)ds

=

_kzyl/c / ¢’ (t)o(t)dtds
[y syuls)ds — 1 fo(a >)}

fuo(2) = f(z,u(z),0(2)), guo(z) = g(z,u(z),v(z)).

(12)

(13)

(14)



Fractal Fract. 2021, 5, 162 8 of 20
For the sake of convenience, we use the following notations:
R VLGRS B V1) i NI R 1l
! T(a;+1) IAIT(7) Ta;+1)
— ()"t L (o) — (o))
+|B'(Z”rw+gfsw)] (15)
_ ) —¢(0) — y(c)m*!
Ay = AT ) [\ |(2u, HZ)
() — $(e)™ (9(d) — y(c)™
+];9f r](a1+1) ) +151 fman ) (16)
_ -1
A = k() - (c))+%[mnkw<d>—w<c»
+|B|(|k|zrs —p(©)+5 \k|2vr (6r) = 9(0)?)]. (17)
A = ORI [\A|(|k|f9 $()
314 2 (9 n) = $(©))2) + BIIKI (9(d) = y(c))], (18)
_ ) o) L (pler) = 9™ b ($(o) = ()™
B = |AIT (1) [ <U’ZE zx+1) +;TS I(a; +1) )
Ay )
_ @@ =) | @ =) ((d) =g
B o= rEan A A T
(1) — (o)) (&) — ()™
(S R Lo e )] 20)
($(d) = 9(c))"
By = W[w(u«mu P(o) — $(0))
431K ; o (9(er) = $(0))?) + ITIIKI (9 (d) = (0))], (21)
_ 1—1
B = () - p(e) + LD HDL 14k p(a) - e
+Ir] (1K ie;)(w(;—) —p(@) + 5K iuiwm) —9(e)?)]- (22)
j= i=

4.1. Existence and Uniqueness Result via Banach Fixed Point Theorem

Here, by using the Banach contraction mapping principle, we prove an existence and
uniqueness result.

Theorem 1. Assume that A # 0and f, g : [c,d] x R — R two functions satisfying the condition:

(Hy) there exist positive real constants {1, {5 such that, for all z € [c,d] and u;,v; € R,i = 1,2
we have

If(z u1,01) — f(zu2,02)| < b (Jug —ua|+ |01 — 02| ),
1§(z,u1,01) — §(z,u2,02)| < bp(|ug — ua|+ | v1 — 02 | ).

Then, system (5) admits a unique solution on [c, d| provided that
0 (A1 +Br) + (A + By) + A3 + Ay + B3 + By < 1, (23)

where A;, B;,i = 1,2,3,4 are given by (15)—(18) and (19)—(22) respectively.
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Proof. We transform system (5) into a fixed point problem, (u,v)(z) = P(u,v)(z), where
the operator P is defined as in (12). Applying the Banach contraction mapping principle,
we show that the operator P has a unique fixed point, which is the unique solution of
system (5).

Letsup,c (.4 [f(2,0,0)| := M < oo and sup, | 4 |(2,0,0)| := N < c0. Next, we set
By :={(u,v) € X x X: ||(u,v)| <r} with

(./41 +Bl) + N(.Az +Bz)
= 1 — (A1 4+ By) + (A + By) + A3+ Ay + Bs + By

(24)
Observe that B, is a bounded, closed, and convex subset of X.
First, we show that PB, C B,.
For any (u,v) € By, z € [c,d], using the condition (H; ), we have
|fuo(2)| = |f(z,u(2),0(2))| [f(z,u(z),0(z)) — f(2,0,0)] + | f(2,0,0)]

M\u( )+ o(2)]) + M
G(l[ull + lloll) + M < &y + M,

IAN AN

and
|guo(2)] = |g(z,u(z),0(2))| < La(llull +[[o]) + N < &or + N.

Then, we obtain
P1(w,0)(2)
1 [ o) lds + 1727 el )

_ 1
+ (lp(d|)/\|#)((c)))7 {|A| ( ZVI/ Ial lp|guv| )ds + Z 01"V qj‘g”v“g])

IN

HMZG/ (N%HHZ%/ /¢UW)W%
K[ 9O lds + 15 ool @) + 18I Zw/ ()1 | (5)ds
+2751“1¢|fw s —|—|k|2'rs/ s)|ds

K'Y o ' ' dtds + |k ' ds + I |quol (d
+|§vlw@[¢MMMtH|%¢@m@w+gwUﬂ
o) = el + LI g4 3
WD) = (@) W) =)t o

a1 (L g g e

" ()~ P
L0 F](E1+1)

IN

+

3 (far + N) + [K] iej(w(gj) — ()l
= =

+5 \kIZﬂz p())?[lo]l + [kl (p(d) — p(c)|ul

(p(d) — p(c))™
+ F(oq +1)

o (Y(gr) = y(e)) ! v
(€r+M)—|—|B|(r;vr ey (r+ ™)

0s) = D™ o W) + [k 3 -
+2 “1+1) (brr + M) + | \S;Ts(lP(Us) p(c))[ull
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+5 \kIZvr ()2 [lull + K ((d) — (o)l

) — H)
@D (MJFN))]
) — g™ (p(d) — gl () — ple))®
(r+ I + Aty (41T
D= ple)t & (plos) —gle)m
+|B|(ZUV r(zx +2) +s:ZlTs T(ag +1) ]}

(p(d) —y(e)"! L () — (o)
+(£27+N){ IAIT(7) “M(i;’“ T(@ +2)
1P())) 1) + ‘Bl (¢(d) B 1/’(@)‘“]

m
0
+Z;] oc1+1 T(@ +1)

IN

(d) —p(c))7? q
AT [|A||k|(¢(d) —(c)) + |B| (|k| S;rs(lp(as) = 9(c))

4 _ c -1 m
#3H orwier) - 9(e)?)] ) + PO [l (11 L (08 - vte)
r= j=

+§nymwwo—woﬂy+wmuwa—wun
= Ai(lrr + M) + Ax(byr + N) + (A + Ay).

Hence o o
le(u,U)H < A1(€17+M) +A2(€21’+ N) -+ 7’(./43 +.A4).

Similarly, we find that
1P2(u,0)|| < Bi(tar + M) + Ba(lor + N) +1(Bs + Ba).
Consequently, we have
[Pyl < [G(A+B) + (Ao + Bo) + As + Ay + Bs + By |
+(A1+B)M+ (A2 + B2)N <,
which implies that PB, C B;.
Next we show that P : X x X — X x & is a contraction.

Using condition (H;), for any (u1,v1), (u2,v2) € X x X and for each z € [c,d],
we have

|P1(u1,01)(2) = Pr(uz,02)(2)]
1 [ 9lua(5) — w5+ 127, s 2

(p(d) — ()" .
! [AIT(7) “M(Z}h/ 5)1 lp|g”101 Suyo, |(5)ds

IN

nooo &
Y 0 g0, — il @)+ 2 05 [ 9 )lon(s) — va(s)lds
=1

j=1

2 [0 [ s+ [0 5) = s s
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IN

<

+I§i;¢|fu101 fuzvz| > + |B‘ va/ [“1¢|fulvl fu202|(5)d5
+2uwﬂﬁm ﬁmwsﬂﬂzu/ )i (5) = 2(s)lds

ﬂﬂgwl1M@1W@u@W%+M[¢%W«@—w@W

+I§ilp|gulvl = 8upvy | (d))}

K (p(d) — ()i — o] + LA =D g 1 41y — 2all)

F(tx +1)
((d) — (c))" (p(5:) — (c))T+1
AT {H(Zw D ] + o = w2l

+ igj (IP(?() ¥(c))™ (bar + N) + || Zej((p(gj) —¢(c))|jo1 — 02|
j=

1+1) =
31K L ()~ #(€) 201 —oall + 9@ () s — ]
+(%%+q)hﬂm—wHﬂm—MW
+w(2w DB s =+ on — )
1o a;fﬁ”]auwy—w|+|m—vm>
K 2790 = (6Dl — sl + 31K 3 0 (pler) ~ ) P — ]
-HH@M)—womn—ww+”ﬁ%;f$V“@wm—uﬂ+wm—vﬂ0}
fa(lr = sl + o = o { L=
+(lli(d|)A|11,b((c)))7 “ NI (dza f(l)))"‘1 +|B|(ivr(¢(grr)(;l¢fz)))“l“

T
Pl

+hﬂm—wWWm—wM“(

)~ p()T () — PR+
mww> [W<§ @ +2)

A
En ) g s

—p(e))r1
+mrmﬁﬂwwa—wawf“?M§Q” [1AIIKI(p(d) ~ (0))

q
+|B|(|k| ;75('#( —¢(c)) + = |k\ 2 r(9(cr) —lP(C))Z)”

r=1

(9(b) = (@)
TR Mmm;@¢@—¢w>

+;mf;mwm»—wwﬁ)+wmuww—wwnhm—wm
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= (L1 A1 + LA ([Jlug — ua + [[v1 — vall) + Asllur — uz|| + Agllor — 02|
(1AL + b Ay) + Az + Ag)([[or — 02| + [[o1 — v2]),

A

and therefore
[P1(ur,01) = Pr(uz, 02)[| < (GrAr + Lo Az) + Az + Ag) (Jlug — uz| + [log —02]). (25)
Similarly, we find that
[P2(u1,v1) = Pa(uz, v2)|| < (C1B1 + 6B2) + B + By) ([[ur — uz| + [|lor —v2]).  (26)

From (25) and (26), it yields

[P (ur, u1) —Puz, uz)|| < {51(A1+51)+52(A2+32)+«43+A4+B3+B4}

% (llir = wall + flor = val])-

Since (1(Ay + By) + 6a( Az + By) + Az + Ay + B3 + By < 1, by (23), the operator P
is a contraction. Therefore, using the Banach contraction mapping principle (Lemma 1),
the operator P has a unique fixed point. Hence, system (5) has a unique solution on [c, d].
The proof is completed. [

4.2. Existence Result via Leray-Schauder Alternative

The Leray-Schauder alternative (Lemma 3) is used in the proof of our first existence
result.

Theorem 2. Let A # 0,and f, g : [c,d] x R? — R be continuous functions. Assume that:

(Hy) There exist real constants u;,v; > 0 for i = 1,2 and uy, vy > 0 such that for all u,v € R,
we have

f(zu(z),0(2)] < uo+uaful +uzlo|,
< vo+o1]ul + vzl

If (Ay + Br)ug + (Ax + Ba)og + A3 + By < Land (Ay + By)ug + (Ax + Ba)op + Ay +
Bs < 1, where A;, B; for i = 1,2 are given by (15)—(18) and (19)—(22), respectively, then the
system (5) admits at least one solution on [c, d].

Proof. Obviously, the operator P is continuous, due to the continuity of the functions f, g
on [c,d] x R2. Now, show that the operator P : X x X — X x X is completely continuous.
Let B, C X X X be a bounded set, where B, = {(u,v) € X x X : ||(4,v)|| < r}. Then,
for any (u,v) € By, there exist positive real numbers Wy and W, such that |fy(z)| =

[f(z,u(t),v(z))| < Wi and |guo(z)| = [g(z,u(z),v(z))] < Wa.
Thus, for each (1,v) € B, we have

P1(1,0) )|
1 [ lu(s)lds + 1787 ()

(l[)(d) _ 1p(c))’7 aq; - TR .
AN WWZ%/ ) lgue ()5 + 10,7 ol )

IN

HHZO/ ote)ds 14 S [ 66) [ lotolass

[ @l 27 el ) (X [ 901 ol
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IN

<

+ZTSI“11/J|f,w s —|—|k|ZTs/ s)|ds
+Ik zvr [ 6 [ Oluas

K[ 9ot lds + 12 gl )|

(p(d) —9(c))™
k[ (p(d) —p(c))[ull "’le

(¥(d) —p(c))7! Lo () — (o)t (¥(&) — ple))™
AT ) DM(ZW (@ +2) W2 +29 F](oq—i-l) W2

n

+[k| 29 =)ol + 5 Ikl Zﬂl = 9(0)?|loll

((d) — ()" P (pler) — p(c)) it
+|k\<¢<d>—w<c>>\|u||+Ww1)+|B|(;vr S .

L (los) = y(e)™ 1
+ L R e 3 (0s) — 90

#3141 L or9(6r) — 9(e) 2l + (@) - pie)lol + LR w,)]

(p(d) —p(e))™ | (p(d) — ()" 7, (@(d
A v v e vives md (O]

T
Lo (o) —pla)mtt & (9(os) — (o)™
+B syl

+) %

T'(ay +2)

)
I L = L | RS T )

q

L) 15( ) [|A||k|(lp(d)—¢(c))+|B\(|k|;rs(tll(ffs)—tp(C))

_ c -1 m
#3140 wier) - 9(e)?) ]} + PO [l (11 L (08 - vte)
] £

21K iw(xp(w) — 9(c))?) + [BIIk (9 (d) = (c))]

= AW+ AW, +r(Az + Ay),

which yields

[P1(w,0)[| < AWy + Ay Wy + (A3 + Ay).

Similarly, we obtain that

[P2(u,0)|| < BiWq+ BoW, +1(Bs + By).

Hence, from the above inequalities, we find that the operator P is uniformly bounded, since

[P (u,0)|| < (A1 + Bi)Wi + (B1 + Bo)Wo +1(Az + Ay + B3 + By).
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Next, we prove that the operator P is equicontinuous. Let 77, 7» € [c,d] with 7y < 1.
Then, we have

IN

IN

IA

[P1(u,0)(12) — P1(u,0)(m1)|
I fuo(m) — 1 "’fwzm)\

(p(m2) = 9(0)" " = (p(m) — (c)) ! y
i |A\rm 1 [lAl(Zuz / §) 1% guo () |ds

+ 29 1 | o (87)| + K| 29 /C "(s)]v(s)|ds

j=1

+|k|zuz/c ) [/ 0 leoldtds + K| [ 9 6) u)lds + ¥ fo )
p
HIBI( Ko [ 9O el + L0 o)

+Ik| ZTS/ (s)[u(s)|ds + [K ZU,/C /Cstp’(t)|u(t)|dtds

[ 9ol + 12 g0l )|

oo () — () = (p(m) — g(s)a !
Wy /c lP (S) : 1—-(“1) ! ds
(o3 _ ap—1
+/n w,(s)(w(rz)r(z()s)) s
(¥(r2) = 9(e)" ' = (P(r) — p(c)? — ()t
+ AT () : ['N(Z’“ T 12
mo($(8) = ple))n u
+];9]- IJ(, 1) Wz+|k\;9j(¢(€j)—t/ﬂ(c))l\v!|

+5 IkIZ% 1i) = ()2 [loll + 1kl (¢ (d) — p(c))llu]

(¥(d) — (c)* E (ler) ()
+WW1> + 1] (r;v’ T(a; 1 2) Wi

L ((os) — ()™ d
+ LRI s 3 0s) — 900

4 B @
#5141 L0060~ 0Pl + () - yie) ol + PP

Fla ) [20() = ()™ + (p(m) = p(e)* = (9(m) — 9(e))"

[($(r2) = ()" = (p(m) = ()] |, )P —pe)m
[AIT(7) ! T(a +1)

_I_

Lo (pler) =)t L (9(os) — p(e))™
+|B|W1(Zlvr 7] +S:Zl Tt 1) )

(W) g g (BE) 9N g (0) i)

+ —
ATty TETT T@m D

q
+r{ 1811k (9(d) = p(e)) + [BI (1K L w:((e) = #(0))



Fractal Fract. 2021, 5, 162 15 of 20

1, & u
+3lkl L orwlen) = w(e)?) |+ r[181 (1K L 6i((@)) — 9(c)

]

51K émw(m) —9(0))) + IBIIk|(9(d) - (c))] }

Therefore, we obtain
|Py(u,0) () — P1(u,0)(11)| =+ 0, as 7 — .
Analogously, we can obtain the following inequality:

|P2(u,v) (1) — Pa(u,v)(11)| = 0, as 1 — .

Hence, the set P® is equicontinuous. Accordingly, the Arzeld-Ascoli theorem implies
that the operator P is completely continuous.

Finally, we show the boundedness of the set & = {(u,v) € X x X' : (u,v) = uP(u,v),
0 <u<1}.Letany (u,v) € E, then (u,v) = uP(u,v). We have, for all z € [c,d],

u(z) = uPr(n,0)(2), v(z) = WP2(u,)(2).

Then, we obtain

[ull < (uo+ wa[full + uallol])Ar + (v0 + o1 [[ul| + val|ol]) Az + [ul| (As + Bs),
loll < (uo +uaflull + uallol)) By + (00 + v1]lu]| + v2l[o]) B2 + [[0]| (A4 + Ba),
which imply that

lul| + o] < (A4 Bi)ug+ (Az + Ba)vg + [(«41 + Bi)uy + (A2 + B2)vy

+ Az + 83} ||| + [(Al + By)us + (Ax + By)vp + Ay + 134] ||

Thus, we obtain

(A1 + By)ug + (Az + By)vg
M '

where M* = min{1 — (A; + By)ug — (Az + Bo)vy — (As + B3), 1 — (A1 + Br)up — (A2 +
By)vy — (As + Bas)}, which shows that the set E is bounded. Therefore, via the Leray—
Schauder alternative (Lemma 3), the operator P has at least one fixed point. Hence, we
deduce that problem (5) admits a solution on [c, d], which completes the proof. [J

[(w,0)| <

(27)

4.3. Existence Result via Krasnosel'skii’s Fixed Point Theorem

Now we apply Krasnosel’skii’s fixed point theorem (Lemma 4) to prove our second
existence result.

Theorem 3. Let A # Oand f,g : [c,d] x R — R be continuous functions which satisfy the
condition (Hy) in Theorem 1. In addition, we assume that there exist two positive constants Z1, Z
such that, for all z € [c,d] and u;,v; € R,i = 1,2, we have

| f(z,u1,01) [< Z4

| f(Z, uq, Ul) |§ Zz. (28)

(d—c)™ 0t (d—c)™

Moreover, assume that Az + Ay < 1, B3+ By < 1and —
3T 3T T(ap+1) ' T(@ +1)

b < 1.

Then, problem (5) admits at least one solution on [c, d|.

Proof. Let the operator P, defined by (12), be decomposed into four operators as
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M(u,0)(z) = k/ct Y’ (s)u(s)ds
_ -1 n i _ m _
N s
i= j=
429/ v(s)dskay,/ / ' (H)o(t)dtds
+k/ ¥/ (s)u(s)ds — I'Y ‘pfm,(d)) +B( Zvr /gr P ()Y fo(s)ds
r=1 ¢
+ 2 Tslalilpfuv((fs) —k 2 Ts ‘/.05 l,l'/(s)u(s)ds
s=1 s=1 ¢
4 ¢r s
kY o, '(s '(H)u(t)dtds
Lo [ W6 [y
.d _
k[ 9 (s)o)ds — 115 (d) ),
Nwo)(z) = I fi(2),
T(u,0)(z) = -k : P (s)v(s)ds
% A fvr / T ()M fi (5)ds + irsl““"’hl(vs)
szrs/ dskaUr/ /¢ )dtds
[y poteds — 1 gun(@)) + (Lo [ 96T gun(s)ds

i=1

+ ‘Z;leﬁl:wgw((:j) —k ief / i ' (s)o(s)ds
]: _ JC
*kim/ / @' (B)o(t)dtds
+k/ )u(s)ds 71 fuv(d))],
R(”/ U) (Z) = Ic+ guv( ) (29)

Hence, P1(u,v)(z) = M(u,v)(z) + N(u,0)(z) and Pp(u,0)(z) = T(u,0)(z)+
R(1,v)(z). Let Bs = {(1,v) € X x X;||(u,0)|| < 6}, in which

5> max{ AZ1+ AxZy B1Zy+ ByZo }

1—(As+Ay)' 1—(Bs+By) )

First, we show that P (x,y) + P2(u,v) € B; for all (x,y), (u,v) € Bs. As in the proof
of Theorem 1, we have

| M(x,y)(z) +N(u, 0)(2) |< A1Zy + AsZy + (Az + Ag)d <6,
| R(x,y)(z) + S(u,v)(z) |< B1Z1 + BaZy + (B3 + By)d < 6. (30)

Accordingly, Py(x,y) + P2(u,v) € Bs and the condition (i) of Lemma 4 is satis-
fied. In the next step, we show that the operator (N, R) is a contraction mapping.
For (x,y), (u,v) € Bs, we obtain

[ Ny (2) = Nwo)(z) [ < I fay = fuo | (2)
< O(llx —ull +[ly = o) I* (1)(d)

(d—c)n

Sflﬁ(IIx—uIIJrIIy—UII (31)
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and

| R(x,y)(z) = R(u,0)(z) | < I | gxy —8uo | (2)
< O(lx — ull + ly — o[ I* (1)(d)
(d—c)n

< 2m(||X—”H+”]/—U”)' (32)

In view of (31) and (32), we obtain

[V, R)(x,y) — (N, R)(u,0)||
(d—c)™ N (d—c)™
T(vy+1) ' T(m+1)

(d—c)* (d—c)™

b+ =——
F(&l—f—l) F(ﬁ(l -I—l)
conclude that the condition (iii) of Lemma 4 is satisfied. In the next step, we verify the
condition (ii) of Lemma 4 for the operator (M, 7). By using the continuity of the functions
f,g, one can see that the operator (M, T) is continuous. On the other hand, for any
(u,v) € Bs, as in the proof of Theorem 1, we have

o | ([lx = ull + lly — o). (33)

Since {5 < 1, the operator (N, R) is a contraction and we

| M(,0)(2) |< (A - (4’(1‘,120; f(f) )21+ a2y + (s + A5 = P,

— &1
I Two)e) < B+ (8- P20 4 (v Bs =0 09

Accordingly, we have [[(M,T)(u,v)|| < P* + Q*, which implies that (M, T)B;
is uniformly bounded. Finally, it is shown that the set (M, 7 )B; is equicontinuous.
For this aim, let 7y, 7» € [c,d] with 7 < 1. For any (u,v) € By, similar to the proofs
of equicontinuous for the operators P; and P, in the Theorem 2, we can show that
IM(u,v) (1) = M(u,v)(11)|, | T (n,v)(12) —S(u,v)(11)| — 0as 1y — . Consequently,
the set (M, T)Bs is equicontinuous, and by applying the Arzeld—Ascoli theorem, the oper-
ator (M, T') will be compact on Bs. Therefore, by applying Lemma 4, problem (5) has at
least one solution on [c, d]. This completes the proof. [

Example 1. Consider the coupled system of -Hilfer-type sequential fractional differential equa-
tions with integro-multipoint boundary conditions:

1
Jrov(s) e

I %e_zsx(s)ds+£x LR ANECA I NE
311 37 \11 41 \ 11 437\ 11 /)"

Here oy = 5/4, @ = 7/4, B1 = 1/2, ¢(t) = (1 —e™2), ¢'(t) = 2¢7%, ¢ = 1/11,
d=12/11, 1 = 1/14, 11, =5/11,6, = 2/13,6, = 3/17,05 = 4/19,0, = 5/23, &1 = 4/11,
& =8/11,8 =10/11,& = 1,v; = 3/29, v, = 7/62,¢1 = 3/11, ¢, = 7/11, 7y = 8/37,
T =9/41, 3 = 10/43, 00 = 2/11, 00 = 6/11, 03 = 9/11,n =1, m = 4, p = 2,
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g = 3. We find that v = 13/8, 91 = 15/8, A ~ 0.9090586723, B ~ 0.5135134292, T' ~
04618499072, A ~ 0.7876865883, A ~ 0.4788871945, A; ~ 1.685246952, A, ~ 0.6395331644,
Az =~ 0.1399736659, A4 ~ 0.09267043416, B; ~ 0.9074990107, B, ~ 1.026284484, B3 ~
0.06726442842, B, ~ 0.1432037148.

(i) If the nonlinear unbounded functions f and g are given by

17
tan™1 |u| N 11 (3v2 +4|v|>
9(1+sin*z)  10(11z+43)\ 1+ o]

1
11e~(E=11) /12 4 2)u| 1 2 1
p— — 1 ] —
f(z,u,0) 2(112—1—87)( T Tl )—f— (cos z+ )sm|v|+7, (36)

3
¢(z,u,0) = + 5 (37)
then we can verify the Lipchitz conditions as

|f(z,u1,v1) — f(z,u,02)| < <(lug —uz| + v — v2|)

O| — | =

|g(z,u1,v1) — §(z,u2,v2)| < = (Jug —uz| + |v1 — v2)),

in which Lipchitz constants ¢; = 1/8 and ¢, = 1/9. In addition, we can compute that
O (A + By) + (A + By) + Az + Ay + B3 + By =~ 0.9522963385 < 1.

Therefore, all assumptions of Theorem 1 are fulfilled and the conclusion of Theorem 1
can be applied—that the coupled system of {-Hilfer-type sequential fractional differential
equations with integro-multipoint boundary conditions (35) with (36)-(37) has a unique
solution on [1/11,12/11].

(ii) Consider the nonlinear functions f and g given by

1 1/ ul® 1, e
flz,u,0) = z+3+6<1+|u|15) +§|U’€ , (38)
2 23
cos"mz+1 1 . 1 v
g(z,u,v) = 3+M(1+s1n408)|u|+5<2|+|022>. (39)

Observe that the above two functions f and g are bounded by

11 1 1
<7 — —_
[z u,0)| < o5 + Zlul+ Zlol,

2 1 1
Ig(z,u,v)| < 3Tt 7’“| + g|7’|-

Thus, we choose constants from Theorem 2 by uy = 11/34, vg = 2/3, u; = 1/6,
v1 = 1/7, up = 1/7 and v, = 1/5. By direct computation, we have (A; + By)ug +
(Az + Bo)vy + A3z + B; = 0.8773363712 < 1 and (A1 + By)us + (Ax + Ba)vs + Ay + By =
0.9394299590 < 1. Applying Theorem 2, we deduce that the boundary value problem (35)
with (38) and (39) has at least one solution on [1/11,12/11].

(iii) Let the nonlinear bounded functions f and g defined by

11 9 1
f(z,u,v)—242+2+16<1+|u>—|—281r1|v|, (40)
(z,u,0) =1+ 7Tz+1tn*1|u|+é o (41)
gz, 0) =1 cos 1072 5\1+10] )

It is obvious that these two functions are bounded since

NN

flemo) <3, and |g(zu0) <
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In addition, the condition (H;) in Theorem 1 is satisfied with ¢ = 9/16 and ¢, = 4/5.
Hence, we obtain A3 + A4 = 0.2326441001 < 1, B; + By ~ 0.2104681432 < 1 and

(d—c)™ (d—c)™
T +1) ' T(m +1)

lr | ~ 0.9938694509 < 1.

Therefore, problem (35) with (40) and (41) has at least one solution on [1/11,12/11]
by using the benefit of Theorem 3. Finally, we give a remark that Theorem 1 cannot be used
for this problem because

O (A4 By) + 6o (A + Bay) + Az + Ay + B3 + By ~ 3.234185965 > 1.

5. Conclusions

In this paper, we investigated a coupled system of fractional differential equations
involving i-Hilfer fractional derivatives, supplemented with integro-multi-point boundary
conditions. Firstly, we proved the equivalence between a linear variant of the system (5)
and the fractional integral Equations (7) and (8). After that, the existence of a unique
solution for the system (5) was proved by using Banach'’s fixed point theorem. The Leray-
Schauder alternative and Krasnosel’skii’s fixed point theorem were used to obtain the
existence of solutions for the system (5). Moreover, examples were constructed to illustrate
our main results. The obtained results are new and enrich the literature on coupled systems
for nonlinear p-Hilfer fractional differential equations. The used methods are standard,
but their configuration on the problem (5) is new.
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