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Abstract: High piezoresistivity of cement-based composites tuned by conductible fillers provides a
feasible way to develop self-sensing smart structures and buildings. However, the microstructural
mechanisms remain to be properly understood. In the present work, the piezoresistivity of cement
mortar with different dosages of graphene nanoplatelets (GNPs) was investigated, and the microstruc-
ture was assessed by electron scanning microscopy (SEM) and mercury intrusion porosimetry (MIP).
Two surface fractal models were introduced to interpret the MIP data to explore the multi-scale fractal
structure of the GNP-modified cement mortars. Results show that the incorporation of GNPs into
cement mortar can roughen the fracture surfaces due to the GNPs’ agglomeration. Gauge factor (GF)
rises and falls as GNP content increases from 0% to 1% with the optimal piezoresistivity observed at
GNP = 0.1% and 0.05%. The GF values of the optimum mortar are over 50 times higher than those
of the reference mortar. Fractal dimensions in macro and micro fractal regions change with GNP
content. Analysis shows that the fractal dimensions in micro region decrease first and then increase
with the increase of GF values. GNPs not only impact the fractal structure of cement mortar, but also
alter the tunneling and contact effects that govern the piezoresistivity of composite materials.

Keywords: graphene; mortar; piezoresistivity; fractal dimension; model

1. Introduction

Highly piezoresistive cement-based materials (CBMs) are urgently needed for the
development of self-sensing smart structures and buildings. A general way to tune the
piezoresistive properties, as well as the mechanical properties and microstructure of CBMs
is incorporating conductible fillers into the material matrix, as this route shows the fea-
ture of ease to fabrication and control [1–3]. Graphene-based nano fillers (GBNFs) may
be a preferable candidate to tune both the piezoresistive and mechanical properties of
cement-based materials due to its many excellent physical properties, such as mechanical
properties [4], thermal-electric performance [5] and carrier mobility [6].

Depending on the derivatives of graphene, different GBNFs are chosen for new cement
composite development [7–9]. Graphene oxide (GO) and graphene nanoplatelets (GNPs)
may be two of the most widely used GBNFs to tune the material properties of CBMs [10,11].
Compared with GO, that is widely used to enhance the mechanical properties of CBMs
due to its stronger surface actions [12–14], GNPs that are composed of several layers of
graphene with the diameter of several microns and thickness of less than 100 nanometers
shows benefits to enhance the electrical properties of CBMs owing to its high electrical
conductivity [15]. The improvement in the mechanical properties of CBMs by GBNFs is
generally attributed to the enhanced cement hydration, tightly packed, and uniformly
distributed hydration crystals, and decreased or eliminated cracks and flaws of the material
matrix [16]. However, these effects may be counterbalanced by the raised flaws of the
agglomerations of GBNFs, so strength may decrease at high GBNF dosages [17,18]. The
optimal contents of GNPs for strength enhancements are reported in relatively broad
intervals (10.8~83.7%) [19–21]. Similar trends are reported for the piezeresistivity of CBMs
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with GNPs [22]. However, the high content of GNPs in the cement matrix will lead to
the decrease of piezoresistive performances, which limits the application of GNPs for
developing self-sensing structural materials. Our previous work suggested that when GNP
content is too high, the conductive paths are completely connected and the piezoresistive
performance is not improved any more [23].

Both the mechanical and piezoresistive properties of CBMs blended with GBNFs
are intimately associated with their microstructure that shows extreme complexity and
heterogeneity [24]. For example, the pores in cement composites possess the broad ranges
from nanometer (hydrated calcium silicate, C-S-H and inter-particle pores) to millimeter
(residual air voids) [25]. Therefore, the quantitative characterization of the microstructure
of CBMs remains facing big challenges at present. Fractal theories may provide preferable
solutions to address complex structures of materials [26,27]

According to the fractal theories, an object showing the structure with self-similarity
in certain scales may be characterized by a non-integer value, named fractal dimen-
sions [28–31]. Due to the clear physical meanings, and elegant and simple expression,
at present, various fractal theory-based models were developed to interpret the microstruc-
ture/pore structure data obtained by different test methods, including nitrogen adsorp-
tion/desorption [32–34], mercury intrusion porosimetry (MIP) [35–37], small-angle scatter-
ing of X-rays (SAXS) or neutrons (SANS) [38–40], nuclear magnetic resonance (NMR) [41],
and scanning electronic microscopy (SEM) [42]. Meanwhile, great efforts were made to
establish quantitative links between fractal dimensions and macro properties [43–47]. Niu
et al. [43] suggested that the microstructural complexity indexed by fractal dimensions
can directly reflect the mechanical properties of concrete. The appealing relationships
between fractal dimensions and macro properties (e.g., strength, permeability, and chloride
diffusivity) of CBMs imply that fractal theories can narrow the gaps between complex
material structure and various macro properties [25,27,48,49]. Given the debates on the
structural associations to the piezoresistivity of cement composites blended with GBNFs, it
thus provides great incentives to clarify the relationships between the fractal structure and
piezoresistive behaviors of cement composites.

The aim of this work was to explore the relationships between piezoresistive properties
of GNP-modified cement mortar and the fractal characteristics measured by MIP. To this
end, cement composites with five different GNP contents (0%, 0.05%, 0.1%, 0.5% and 1%)
were fabricated, and the fractional changes in resistivity (FCRs) and GFs were measured
to assess the piezoresistive behaviors under compression tests. Two fractal models were
employed to evaluate the fractal characteristics of the GNP-modified cement composites
from the pore structure data by MIP tests. The fractal dimension-gauge factor relationships
were reported and the piezoresistive mechanisms were discussed.

2. Materials and Methods
2.1. Materials

A Portland cement in the type of PI 42.5 was adopted as the binding material. The
chemical compositions and main minerals provided by the producer are listed in Table 1,
where CaO, SiO2, Al2O3, and Fe2O3 are the components with the highest proportions, and
the minerals of C3S, C2S, C3A, and C4AF occupy 94% of the total mass. The density and
specific surface area of the cement are 3.1 g/mL and 3450 cm2/g. A natural quartz sand
with silica (SiO2) content ≥96% and the fineness modulus of 2.6 was used as the aggregate.
GNPs powder with a purity >99.5% was purchased from XFNANO Materials Co., Ltd.
(Nanjing, China). The GNPs powder shows the mean diameter of 5–10 µm, thickness of
3–10 nm, specific surface area of 31.657 m2/g, tap density of 0.075 g/mL, apparent density
of 0.05 g/mL, and electrical conductivity of 500–1000 S/cm.
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Table 1. Chemical and mineral composition of cement.

Chemical Composition Percentage Mineral Percentage

SiO2 22.15 C3S 56.54
Al2O3 4.51 C2S 20.87
Fe2O3 3.39 C3A 6.22
CaO 65.36 C4AF 10.31
MgO 2.31
SO3 0.46

NaOeq 0.488
f-CaO 0.95

2.2. Specimen Preparation

The dispersion of nano fillers can greatly impact the macro properties of cement com-
posites [50], so controls of GNPs dispersion were first tested. A melamine-based dispersant
was selected to disperse the GNPs powder due to its higher dispersion efficiency and
stabilization on the exfoliated GNPs suspension than polycarboxylic acid and naphthalene
sulfonate dispersants according to our previous data [31]. The stably dispersed GNP
suspension was prepared as follows: first, the melamine-based dispersant was dissolved
into water to prepare the dispersant solution. Later, the GNP powder was mixed with
the dispersant solution, and experienced ultrasonic stirrings (CS5000D 20 kHz, Jiekang,
Shenzhen, China) for 5 min followed by a water bath cooling for another 5 min. The process
was repeated three times in total to achieve the homogeneously dispersed GNP suspension.
After that, the GNP suspension was settled for 4 h to check its stabilization. Our tests
showed that no sediments occurred to the prepared GNPs suspension, suggesting the good
dispersion efficiency and stabilization (Figure 1).
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Figure 1. Chart flow of GNP-modified cement mortar preparation (left) and an example of examining
the dispersion efficiency of GNP suspension and SEM characteristic of GNP particles (right).

The solid raw materials (cement and sand) and the homogeneously dispersed GNPs
suspension were mixed together according to the mixing proportions shown in Table 2.
Low speed stirrings for 180 s and high speed stirrings for 30 s were employed to prepare
the homogeneous mortar slurries (Figure 1). Five levels of GNP contents were designed,
namely, 0%, 0.05%, 0.1%, 0.5% and 1% by cement weight. The cement mortar specimens
were then labeled as CM-GNPX (X = percentages of GNPs) (Table 2).

The homogenously mixed mortar slurries were cast into cuboid steel molds in
40 × 40 × 160 mm3. Vibrations were performed for 30 s to remove the air bubbles en-
trapped in the slurries. A total of 4 copper electrodes in 40 × 60 mm2 were embedded
in the set positions of each mortar. The specific geometric configuration of the copper
electrodes is shown in Figure 2. After that, plastic films were used to seal all specimens to
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avoid the possible moisture loss at early curing ages. After primary curing for 24 h, the
specimens were demoulded and gently removed into a curing chamber for standard curing
(temperature of 20 ◦C and relative humidity > 95%) until next tests.

Table 2. Mix proportions of the GNP-modified cement mortars.

Sample ID GNP(%) Cement (g) Water (g) Sand (g) Dispersant (g)

CM-GNP0 0

900 330 2700 4.5
CM-GNP0.05 0.05
CM-GNP0.1 0.1
CM-GNP0.5 0.5
CM-GNP1 1.0
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Figure 2. Arrangement of four-probe piezoresistive test.

After 28 d curing, all the specimens were oven dried at 60 ◦C for 48 h to remove
the capillary water. Then the exposed parts of the copper electrodes were wrapped with
conductive tape and connected with clips to decrease the impacts of contact resistance. The
circuit of the four-probe piezoresistive tests is shown in Figure 2.

2.3. Experiments and Methods
2.3.1. Piezoresistive Test

When all the arrangements of the four-probe piezoresistive tests were readily prepared,
the specimens were fixed on the loading frame of an INSTRON high-accurate mechanical
testing machine (Type 8820, Intrusion, Plano, TX, USA). A triangular-wave loading scheme
(from 0 to 30 kN) was designed. As the loads rose and fell for three cycles, the specimens
experienced recycled compression stresses between 0 to 18.75 MPa, and the signals of
electrical resistance were recorded.

Fractional resistance change(FCR), R/R0, was adopted to assess the relative changes of
electrical resistance of the specimens during cyclic loads. A sensitivity index, gauge factor
(GF = (∆R/R0)/ε), with ε standing for the stains under external loads), is used to evaluate
the piezoresistivity of the GNPs-modified cement mortars at low strains [51,52].

2.3.2. MIP Test

MIP tests were carried out in a device of Autopore IV 9510 (Micromeritics Instrument
Corporation, Norcross, GA, USA). The samples for MIP tests were collected from the
central part of each undamaged cement mortar, and dried in an oven at 60 ◦C for 24 h to
remove the physically confined water. The intrusion pressure was gradually increased
from 0.54 psi (3.7 kPa) to 60,000 psi (414 MPa) with each pressure step for 10 s. To obtain the
pore size data, cylindrical pores with the mercury-substrate contact angle of 130 degrees
and the surface tension between vapor and liquid mercury of 485 N/m were adopted.



Fractal Fract. 2021, 5, 148 5 of 15

2.3.3. SEM Test

The micro-morphology of GNP-modified cement mortars was analyzed by FEI Quanta
FEG650 field emission SEM (ThermoFisher, Hillsboro, OR, USA). Samples with the size
around 10 mm were also prepared from crushed cement mortar. No surface polishing was
applied to preserve the original morphology of the fractured surfaces. The acceleration
voltages of 20 kV, spot line of 3 nm and the working distances of 10~15 mm were set for all
SEM tests.

2.3.4. Fractal Models

The pore structure data by MIP tests were interpreted by Neimark’s model (N-model)
and Zhang’s model (Z-model) that both start from the energy conservation [53,54]. For the
N-model, the surface areas can be estimated as [53]:

S = − 1
γ cos θ

∫ Vp

0
PdV (1)

where γ is the surface tension of mercury and θ is the contact angle between mercury and
pore surface; P and V represent the mercury intrusion pressure and volume, respectively.

For simplification, pores are idealized as cylindrical tubes with different radii. Pfeifer
and Avnir [55] pointed out that the necessary and sufficient condition of internal pore
surface with fractal characteristics is:

dV
dr

∝ r2−D (2)

where r represents the pore radius, D represents the fractal dimensions (2 ≤ D < 3). The
mercury intrusion pressure, P and the minimum pore diameter, r, that mercury can reach,
can be related by the Washburn equation,

P =
2γ cos θ

r
. (3)

Substituting Equations (2) and (3) into Equation (1), the logarithmic proportional
relationship between the pore inner surface and the invasion pressure is obtained (identical
to the N-model):

log(S) ∝ (D − 2) log(P) (4)

Considering the same energy regime of mercury intrusion in porous materials, Zhang
and Li [56] put forward the logarithmic ratio between cumulative intrusion, Wn, and
cumulative mercury intrusion surface, Qn, which can be expressed as:

ln(Wn) = C + ln(Qn) (5)

where C is a constant and n represents an invasion stage. In each invasion stage, the
invasion work, Wn, and the invasion parameter, Qn, can be expressed as:

Wn =
n

∑
i=1

Pi∆Vi (6)

Qn = r2−D
n VD/3

n (7)

The substitution of Equations (6) and (7) into Equation (5), and the fractal dimensions,
D, can be obtained as the slope of Wn/rn

2 and Vn
1/3/rn [57]:

ln
(

Wn

r2
n

)
= D ln

(
V1/3

n
rn

)
+ C (8)

Equation (8) is identical to the Z-model for fractal dimensions calculation.
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3. Results and Discussions
3.1. SEM Characteristics

SEM micro-morphology characteristics are shown in Figure 3. For CM-GNP0, cement
hydration products closely compact together, forming a dense cement matrix, so relatively
flat fracture surfaces can be observed (Figure 3a). When GNPs are incorporated into the
cement mortar, the fracture surfaces become much rougher. At low GNP content, i.e.,
CM-GNP0.05, GNPs are wrapped by cement hydration products without agglomerations
(Figure 3b). However, with the increase of GNP content, more GNPs can be observed on
the fractured surfaces (Figure 3c), and multi-layer GNPs may be overlapped to form GNP
corrugations (Figure 3d). For CM-GNP1, the agglomeration of GNPs becomes a porous
graphene coacervate (Figure 3e,f). This porous structure of large GNP agglomerations
would certainly bring a negative effect on the mechanical properties of CBMs [58] but may
have benefits to build tunnels for electron transport [23]. The roughness enhancement in
fracture surfaces of cement composites with GBNFs is reported elsewhere [59].
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Figure 3. Typical SEM characteristics of GNPs-modified cement mortars: (a) CM-GNP0, (b) CM-GNP0.05, (c) CM-GNP0.1,
(d) CM-GNP0.5, (e) CM-GNP1, and (f) agglomerations in a local area of CM-GNP1.

3.2. Piezoresistive Behaviors

The variations of fractional changes in electrical resistivity and axial stress under
cyclic compression loading for different GNP-modified cement composites are illustrated
in Figure 4. Generally, under cyclic compression loading, the negative FCR values are
obtained due to the shortages in conductive paths. Apparently, the insignificant FCR values
are observed in the CM-GNP0, CM-GNP0.05 and CM-GNP1 samples. At the middle GNP
contents, the FCR curves of GNP-modified cement mortars become more obvious. For
the samples with 0.1% and 0.5% GNP contents (CM-GNP0.1 and CM-GNP0.5), the FCR
values become to −10~−12%/MPa. The similar FCR values of CBM modified with fillers
are reported elsewhere [60,61].
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Figure 4. Stress and FCR curves of the GNP-modified cement mortars during the cyclic compression loads.

The plots of specific FCR data against the axial strain for all the GNP-modified cement
mortar specimens are presented in Figures 5–7, and the statistical chart of the slopes
(identical to the GF values) is shown in Figure 8. Roughly, the FCR-strain plots conform to
a linear form (Figures 5–7), and the CM-GNP0.1 and CM-GNP0.5 samples show relatively
good correlations between the resistivity changes and the deformation changes (Figure 6).
It is noteworthy that, at the beginning of strains, the huge data variability appears, which
may be caused by the insufficient initial contact between the probes and cement matrix [23].
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GF values show great sensitivity to GNP contents. At low GNP contents, i.e., CM-GNP0
and CM-GNP0.01, as shown in Figure 5, the GF values are relatively low (GF = 2.336
and 7.799, respectively). At such low contents of conductible fillers, the tunnel effect [62]
may play a part but has a limited effect on the increases of GF values. As the GNP
content increases (i.e., CM-GNP0.05 and CM-GNP0.1, shown in Figure 6), the GF values
increase by more than one order of magnitude (GF = 118.709 and 80.114, respectively).
In proper filler contents, GNPs can form a semi-conductive grid in cement matrix [63,64].
The optimal GF values of the GNP-modified cement mortars are higher than the values
reported elsewhere (35–55.3) [65–67]. Different carbon derivatives and dispersion methods
used in the literature may account for the GF differences. For example, the relative plate
surfaces of GO particles used in [67] may reduce the contact possibilities for the samples
under mechanical loads, so the GF values are lower than that of GNP-modified cement
mortar, where the high irregular corrugations of GNPs provide more contact surfaces
during piezoresistive tests [23].However, when the GNP content is too high, the completely
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conductive grid is formed and the electrical resistance will not change obviously under
external loads. As shown in Figure 7, the GF values of CM-GNP1 are reduced heavily
to 4.127.
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3.3. Fractal Dimensions and Fractal Regions

Fractal plots were performed to the MIP data (Figure 9) to obtain the fractal charac-
teristics. In Figure 9, only the linear parts with the slopes between 2 and 3 are adopted
as the fractal regions, whereas those with the slopes over 3 or less than 2 (the shadowed
areas in Figure 9) are discarded due to the loss of physical meanings [28]. The specific
fractal characteristics calculated from the N-model (DN) and Z-model (DZ) are presented
in Tables 3 and 4. It shows that the fractal dimensions evaluated by the Z-model are sys-
tematically smaller than those by the N-model, which is attributed to the intrinsic physical
differences between the two models. Similar findings are reported elsewhere [68].

Table 3. Surface fractal analysis by the N-model.

Specimen CM-GNP0 CM-GNP0.05 CM-GNP0.1 CM-GNP0.5 CM-GNP1

GNP 0 0.05% 0.1% 0.5% 1%

Region I DN 2.877 2.784 2.814 2.843 2.776
Pore diameter >4322 nm >4050 nm >4526 nm >4452 nm >4520 nm

Region II DN - - - - -
Pore diameter 32–4322 nm 40–4050 nm 40–4526 nm 32–4452 nm 32–4520 nm

Region III DN 2.611 2.543 2.552 2.534 2.567
Pore diameter <32 nm <40 nm <40 nm <32 nm <32 nm

Table 4. Surface fractal analysis by the Z-model.

Specimen CM-GNP0 CM-GNP0.05 CM-GNP0.1 CM-GNP0.5 CM-GNP1

GNP 0 0.05% 0.1% 0.5% 1%

Region I DZ 2.472 2.447 2.446 2.465 2.422
Pore diameter >2416 nm >3011 nm >3044 nm >2681 nm >3069 nm

Region II DZ - - - - -
Pore diameter 50–2416 nm 40–3011 nm 50–3044 nm 40–2681 nm 50–3069 nm

Region III DZ 2.562 2.459 2.551 2.482 2.506
Pore diameter <50 nm <40 nm <50 nm <40 nm <50 nm
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To clearly illustrate the scale dependence of fractal properties, all fractal regions are
presented in Figure 10. Measured by pore range, fractal region I corresponds roughly
to the capillary pores, resulted from the unfilled space of hydration products. Region
III can be related to the inter-layer or inter-granular pores of the hydration product C-S-
H of cement. In the classic C-S-H model, these C-S-H gels form a ‘globule’, having an
intrinsic gap of about 2.2 nm and then these globules assemble together to form C-S-H
solid, having an intrinsic granular gap of about 5.6 nm [25]. However, for the transition
region II, the pore size falls into the smaller capillary pore range, of which the surface is
more related to other hydrates than C-S-H [69]. Interestingly, the values of DN in region
III are close to the fractal dimensions of cauliflower (D = 2.80), while those of DZ are
approaching the fractal dimensions of Apollonian spheres (D = 2.474) (Tables 3 and 4).
However, the findings do not indicate that the microstructure of cement mortars follows
the Apollonian spheres compaction structure or the cauliflower structure, because fractal
dimensions cannot uniquely define a pore-solid structure of a material with complex
microstructure [70].

3.4. Relationship Between Gauge Factor and Fractal Dimensions

The relationship between GF and fractal dimensions in the micro region (region III)
is plotted in Figure 11. Under both methods, fractal dimensions decrease first and then
increase with the increase of GF values. The lowest fractal dimensions appear in the samples
with the highest GNP content. The complex GF-fractal dimension relationships induce
difficulties in practical applications of fractal theories for electrical properties prediction.
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The mechanisms of piezoresistivity of CBMs with conductible fillers (e.g., GNPs
in this work) relay on the complex interactions between the fillers and cement matrix
(Figure 12).At low or zero filling extents, such as CM-GNP0 and CM-GNP0.05, GNPs are
relatively dilute in the cement matrix, and the distances between the neighbored GNPs
can hardly trigger the tunnel effect, so the piezoresistive behaviors of the materials are
not obvious (Figures 5 and 8). As more GNPs are included in the cement matrix, the
distances of the GNPs become closer, and the tunnel effect may be triggered. In this tunnel
effect, when potential energy is applied to both ends to form a potential barrier V, some
particles with kinetic energy E in the conductor can pass through the potential barrier V
from one side to the other side under the condition that E < V (left panel in Figure 12) [60].
This regime would greatly increase the piezoresistivity of cement mortars with proper
conductible fillers, such as CM-GNP0.1 and CM-GNP0.5.

However, the semi-conductive status dominated by the tunnel effect can easily be
changed as the content of conductible fillers is further increased. In our case, the heavily
included GNPs (CM-GNP0.1) are feasible to form not only the agglomerations that increase
the surface roughness of the fracture surfaces (Figure 3e,f), but also the percolation paths
that change the material to be conductible (right panel in Figure 12). In this case, contact
conduction becomes dominant [52,71]. It is noteworthy that the above tunneling and
contact conduction mechanisms can change the piezoresistive properties significantly, but
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may have little impacts on the packing patterns of C-S-H in micro scales. So the fractal
dimensions, that reflect the compaction of nano particles [66], are changed in minor extents
for the cement mortars with GNPs (Table 3; Table 4). Practically, from the findings of
this work, it shows complex relationship between the piezoresistive behaviors of cement
composites and fractal dimensions.
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4. Conclusions

The incorporation of GNPs into cement mortar impacts the microstructure and piezore-
sistive performance of cement mortar in different regimes. Proper GNP contents can im-
prove the FCR and GF values. The cement mortar with 0.1% GNPs shows the optimum
GF values at 118.7, almost two orders of magnitude higher than the neat cement mortar.
Fractal analyses by the N-model and the Z-model show that the pore structure of the
GNP-modified cement mortars have macro- and micro-fractal regions. Fractal dimensions
show no appealing correlations with GNP content, but have non-linear relationships with
GF values. The tunneling effect and percolation effect dominates the piezoresistivity of the
cement mortars with low and high GNP contents respectively.
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50. Szeląg, M. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load.

Nanomaterials 2017, 7, 269. [CrossRef]
51. Wu, Z.Q.; Wei, J.; Dong, R.Z. Graphene-based piezoresistive composite and applicationin crack monitoring. J. ZheJiang Univ.

2020, 54, 233–240.
52. Frac, M.; Waldemar, P. Piezoresistive properties of cement composites with expanded graphite. Compos. Commun. 2020, 19, 99–102.

[CrossRef]
53. Neimark, A.V. A new approach to the determination of the surface fractal dimension of porous solids. Phys. A 1992, 191, 258–262.

[CrossRef]
54. Rootare, H.M.; Prenzlow, C.F. Surface areas from mercury porosimeter measurements. J. Phys. Chem. 1967, 71, 2733–2736.

[CrossRef]
55. Pfeifer, P.; Avnir, D. Chemistry in noninteger dimensions between two and three I. Fractal theory of heterogeneous surface.

J. Chem. Phys. 1983, 79, 3558–3565. [CrossRef]

http://doi.org/10.1016/j.conbuildmat.2020.118807
http://doi.org/10.1016/j.conbuildmat.2021.123121
http://doi.org/10.1016/j.measurement.2021.110019
http://doi.org/10.1016/j.snb.2018.10.113
http://doi.org/10.4028/www.scientific.net/NHC.13.341
http://doi.org/10.1016/j.fuel.2021.120823
http://doi.org/10.1016/j.conbuildmat.2020.122231
http://doi.org/10.1016/j.fuel.2020.118754
http://doi.org/10.1016/j.physb.2017.12.036
http://doi.org/10.1016/S0008-8846(01)00591-9
http://doi.org/10.3390/app9081602
http://doi.org/10.1016/j.conbuildmat.2020.119856
http://doi.org/10.3390/app11136189
http://doi.org/10.3390/math9131566
http://doi.org/10.1016/j.conbuildmat.2013.03.049
http://doi.org/10.1016/j.conbuildmat.2017.03.140
http://doi.org/10.1016/j.coco.2020.100563
http://doi.org/10.3390/nano7090267
http://doi.org/10.1016/j.coco.2020.03.005
http://doi.org/10.1016/0378-4371(92)90536-Y
http://doi.org/10.1021/j100867a057
http://doi.org/10.1063/1.446210


Fractal Fract. 2021, 5, 148 15 of 15

56. Zhang, B.; Li, S. Determination of the surface fractal dimension for porous media by mercury porosimetry. Ind. Eng. Chem. Res.
1995, 34, 1383–1386. [CrossRef]

57. Zhang, B.; Liu, W.; Liu, X. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by
mercury porosimetry. Appl. Surf. Sci. 2006, 253, 1349–1355. [CrossRef]

58. Matalkah, F.; Soroushian, P. Graphene nanoplatelet for enhancement the mechanical properties and durability characteristics of
alkali activated binder. Constr. Build. Mater. 2020, 249, 118773. [CrossRef]

59. Du, H.; Gao, H.J.; Pang, S.D. Improvement in concrete resistance against water and chloride ingress by adding graphene
nanoplatelet. Cem. Concr. Res. 2016, 83, 114–123. [CrossRef]

60. Papanikolaou, I.; Arena, N.; Al-Tabbaa, A. Graphene nanoplatelet reinforced concrete for self-sensing structures—A lifecycle
assessment perspective. J. Clean. Prod. 2019, 240, 118202. [CrossRef]

61. Al-Dahawi, A.; Sarwary, M.H.; Öztürk, O.; Yıldırım, G.; Akın, A.; Sahmaran, M.; Lachemi, M. Electrical percolation threshold of
cementitious composites possessing self-sensing functionality incorporating different carbon-based materials. Smart Mater. Struct.
2016, 25, 105005. [CrossRef]

62. Jia, X.W.; Zhang, X.; Ma, D.; Yang, Z.F.; Shi, C.L.; Wang, Z. Conductive properties and influencing factors of electrically conductive
concrete: A review. Mater. Rep. 2017, 31, 90–97.

63. Belli, A.; Mobili, A.; Bellezze, T.; Tittarelli, F.; Cachim, P. Evaluating the Self-Sensing Ability of Cement Mortars Manufactured
with Graphene Nanoplatelets, Virgin or Recycled Carbon Fibers through Piezoresistivity Tests. Sustainability 2018, 10, 4013.
[CrossRef]

64. Li, D.B.; Lei, P.B.; Zhang, H.C.; Liu, J.P.; Lu, W.; Majewski, P. Co-Effects of Graphene Oxide and Cement on Geotechnical Properties
of Loess. Adv. Mater. Sci. Eng. 2021, 2021, 7429310.

65. García-Macías, E.; Alessandro, A.D.; Castro-Triguero, R.; Pérez-Mira, D.; Bertini, F.U. Micromechanics modeling of the uniaxial
strain-sensing propertyof carbon nanotube cement-matrix composites for SHM applications. Constr. Build. Mater. 2017,
163, 195–215.

66. Li, H.; Xiao, H.; Ou, J. Effect of compressive strain on electrical resistivity ofcarbon black-filled cement-based composites. Constr.
Build. Mater. 2006, 28, 824–828.

67. Guo, R.X.; Suo, Y.X.; Xia, H.T.; Yang, Y.; Ma, Q.M.; Yan, F. Study of Piezoresistive Behavior of Smart Cement Filled with Graphene
Oxide. Nanomaterials 2021, 11, 206. [CrossRef]

68. Zeng, Q.; Luo, M.; Pang, X.; Li, K. Surface fractal dimension: An indicator to characterize the microstructure of blended
cement-based materials. Appl. Surf. Sci. 2013, 282, 302–307. [CrossRef]

69. Fan, J.C.; Zhang, B. Repair of ordinary Portland cement concrete using alkali activated slag/fly ash: Freeze-thaw resistance and
pore size evolution of adhesive interface. Constr. Build. Mater. 2021, 300, 124334. [CrossRef]

70. Lv, Q.; Qiu, Q.; Zheng, J.; Wang, J.; Zeng, Q. Fractal dimension of concrete incorporating silica fume and its correlations to pore
structure, strength and permeability. Constr. Build. Mater. 2019, 228, 116986.

71. Han, J.X.; Cai, J.M.; Pan, J.L.; Sun, Y.Q. Study on the conductivity of carbon fiber self-sensing high ductility cementitious
composite. J. Build. Eng. 2021, 43, 103125. [CrossRef]

http://doi.org/10.1021/ie00043a044
http://doi.org/10.1016/j.apsusc.2006.02.009
http://doi.org/10.1016/j.conbuildmat.2020.118773
http://doi.org/10.1016/j.cemconres.2016.02.005
http://doi.org/10.1016/j.jclepro.2019.118202
http://doi.org/10.1088/0964-1726/25/10/105005
http://doi.org/10.3390/su10114013
http://doi.org/10.3390/nano11010206
http://doi.org/10.1016/j.apsusc.2013.05.123
http://doi.org/10.1016/j.conbuildmat.2021.124334
http://doi.org/10.1016/j.jobe.2021.103125

	Introduction 
	Materials and Methods 
	Materials 
	Specimen Preparation 
	Experiments and Methods 
	Piezoresistive Test 
	MIP Test 
	SEM Test 
	Fractal Models 


	Results and Discussions 
	SEM Characteristics 
	Piezoresistive Behaviors 
	Fractal Dimensions and Fractal Regions 
	Relationship Between Gauge Factor and Fractal Dimensions 

	Conclusions 
	References

