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Abstract: In this paper, we develop a suitable multigrid iterative solution method for the numerical
solution of second- and third-order discrete schemes for the tempered fractional diffusion equation.
Our discretizations will be based on tempered weighted and shifted Grünwald difference (tempered-
WSGD) operators in space and the Crank–Nicolson scheme in time. We will prove, and show
numerically, that a classical multigrid method, based on direct coarse grid discretization and weighted
Jacobi relaxation, performs highly satisfactory for this type of equation. We also employ the multigrid
method to solve the second- and third-order discrete schemes for the tempered fractional Black–
Scholes equation. Some numerical experiments are carried out to confirm accuracy and effectiveness
of the proposed method.

Keywords: high-order tempered-WSGD operator; the tempered fractional derivative; multigrid
method; damped Jacobi method

1. Introduction

In this paper, we will develop a multigrid method to numerically solve, highly effi-
ciently, the tempered fractional diffusion equation. Multigrid is known to be an efficient
and powerful numerical technique, particularly, for solving elliptic partial differential
equations (PDEs). The convergence rate is usually independent of the mesh size [1,2].
Different methodological enhancements have been considered to generalize the range of
applicability of the multigrid method, such as nontrivial smoothing methods, for example,
in [3,4], coarsening and interpolation, like in [5,6], convection dominated problems [7], and
so on, each time enlarging the range of robust and efficient multigrid applications, see
also [8].

Recently, multigrid methods have also been applied to solving fractional diffusion
equations (FDE) in the literature [9–13]. Fractional diffusion equations are governed by their
long range interactions, so that, after discretization, full matrices result. These full matrices
may possess a favorable structure, like a Toeplitz matrix structure, which is beneficial
regarding efficient matrix-vector multiplication. Pang and Sun [9], for example, developed
multigrid methods where the coarse grid operator retained the Toeplitz-like structure, by
means of the Meerschaet–Tadjeran method. Hamid et al. constructed multigrid methods for
a two-dimensional FDE problem, which was discretized by means of a CN-WSGD scheme,
and they confirmed that multigrid methods performed better than classical preconditioners
based on multilevel circulant matrices, in [13]. Gu, et al. [14] reformulated the classical
time-stepping schemes as a kind of parallel-in-time (PinT) methods for both one- and
two-dimensional space fractional diffusion equations and the fast Krylov subspace method
with tau preconditioners is used to solve the resulting discretized linear systems.

It is well-known that a fractional derivative can be employed to accurately describe
memory properties and hereditary effects of materials and processes. Differential equations
with fractional operators are nowadays commonly applied in different fields of science
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and engineering, for example, in physics [15–18], hydrology [19–22], biology [23,24], or
even finance [25–28]. Fractional derivatives also have a natural application when studying
anomalous diffusion (for an extensive review, we refer to [29]). In another setting, Lévy
flight models are used to mathematically describe the super-diffusion phenomenon, whose
jumps have infinite moments in complex systems. So-called tempered fractional operators
were introduced to describe probability density functions related to the positions of parti-
cles, by applying an exponential tempering of the probability of large jumps occurring in
these Lévy flights [30]. These tempered derivatives have applications in physics [31–33],
ground water hydrology [34], and even in finance [35,36].

A recent significant research effort on discretization methods for differential equations
with tempered fractional derivatives has resulted in accurate finite element techniques [37],
finite differences [31,33,38], and also spectral methods [32,39,40]. For example, Cartea
and Del-Castillo-Negrete [35] defined a finite difference scheme to price exotic options
under Lévy processes. Zhang et al. [36] presented a second-order discretization for the
tempered fractional Black–Scholes equation and analyzed the stability and convergence
properties of it. Li and Deng [31] defined higher-order discretizations based on a weighted
and shifted Grünwald type approximation for the tempered fractional derivative. They
also provided stability and convergence results for a second-order discretization of the
tempered fractional diffusion equation. Zhao et al. [41] designed the first-order fully
implicit and semi-implicit schemes for the nonlinear tempered fractional diffusion equation
with variable coefficients, where the stabilities and convergences of the two numerical
schemes are proved under several assumptions. Then the PinT implementation of the fully
implicit scheme is given and the resulting nonlinear system is solved by using the fast
preconditioned iterative method.

In [42], we developed the third-order discretizations based on the weighted and
shifted Grünwald type difference (WSGD) for the tempered fractional derivatives. We also
analyzed the stability and convergence properties for the tempered fractional diffusion
equation, and proved that the third-order accurate scheme is unconditionally stable for
a large ranges of problem parameters. A third-order scheme for the tempered Black–
Scholes equation is also proposed and tested numerically. In this paper, we focus on
the multigrid solution method for the tempered fractional diffusion and the fractional
Black–Scholes equation, discretized by means of the second and third order CN-WSGD
schemes we proposed before. Numerical results confirm that the proposed method is
accurate and efficient.

The paper is organized as follows. In Section 2, we will provide the discretization
details for the tempered fractional diffusion equation. Sections 3.1 and 3.2 describe the
components of the multigrid method for the second-order and the third-order discrete
schemes for the fractional diffusion equation. A contribution of this paper is the multigrid
convergence analysis for these discrete schemes in this section. In Section 4, we then present
some numerical results to confirm the accuracy and efficiency of the proposed methods.
Moreover, we also solve the fractional Black–Scholes equation in this section. Finally, we
summarize our findings in the last section.

2. Numerical Schemes for the Tempered Fractional Diffusion Equation

We consider the following tempered fractional diffusion equation

∂u(x, t)
∂t

= cl(x, t) · aDα,λ1
x u(x, t) + cr(x, t) · xDα,λ2

b u(x, t) + f (x, t),

(x, t) ∈ (a, b)× (0, T),

u(a, t) = 0, u(b, t) = 0, t ∈ (0, T),

u(x, 0) = S(x), x ∈ (a, b),

(1)
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where α ∈ (1, 2), f (x, t) is the source term, cl(x, t), cr(x, t) ≥ 0 with cl(x, t) + cr(x, t) 6= 0,
aDα,λ

x u(x) =a Dα,λ
x u(x) − αλα−1∂xu(x) − λαu(x), and xDα,λ

b u(x) =x Dα,λ
b u(x)+

αλα−1∂xu(x)− λαu(x).
The Riemann–Liouville tempered fractional derivatives, that we encounter in this

equation, are defined as follows.

Definition 1 (See [31]). For α ∈ (n− 1, n), let u(x) be (n− 1)-times continuously differentiable
on (a, b) with its nth derivative integrable on any subinterval of [a, b], and λ ≥ 0. Then, the left
Riemann–Liouville tempered fractional derivative of order α is defined as

aDα,λ
x u(x) = (e−λx

aDα
xeλx)u(x) =

e−λx

Γ(n− α)

dn

dxn

∫ x

a

eλξ u(ξ)
(x− ξ)α−n+1 dξ; (2)

the right Riemann–Liouville tempered fractional derivative of order α is defined as

xDα,λ
b u(x) = (eλx

xDα
b e−λx)u(x) =

(−1)neλx

Γ(n− α)

dn

dxn

∫ b

x

e−λξ u(ξ)
(ξ − x)α−n+1 dξ, (3)

where ‘a’ and ‘b’ can be extended to −∞ and ∞, respectively.

We will construct a high-order scheme based on the tempered-WSGD operators for
the tempered fractional derivative in space. The following results are developed for the
tempered fractional operators in [31,42].

Remark 1. In this paper, we consider a well-defined function u(x) on a bounded interval [a, b],
and the function u(x) will be zero extended for x < a or x > b, so that u(x) ∈ L1(R), and
aDα+l,λ

x u(x), xDα+l,λ
b u(x) and their Fourier transforms belong to L1(R). The α-th order left

and right Riemann–Liouville tempered fractional derivatives of u(x) at grid point x can then be
approximated by tempered-WSGD operators LDα,λ

h,k u and RDα,λ
h,k u, as follows

aDα,λ
x u(x)− λαu(x) =

1
hα

[ x−a
h ]+p

∑
l=0

g(k,α)
l,λ u(x− (l − p)h)− 1

hα

m

∑
j=1

γje
pjhλ(1− e−hλ)αu(x) + O(hk)

=LDα,λ
h,k u(x) + O(hk),

xDα,λ
b u(x)− λαu(x) =

1
hα

[ b−x
h ]+p

∑
l=0

g(k,α)
l,λ u(x + (l − p)h)− 1

hα

m

∑
j=1

γje
pjhλ(1− e−hλ)αu(x) + O(hk)

=RDα,λ
h,k u(x) + O(hk),

see [31,42] for details. The second- and third-order operators are given in Sections 2.1 and 2.2.

Let the equidistant time partition, tj = jτ (0 ≤ tj ≤ T, j = 0, . . . , N), and spatial grid,
xi = a + ih (a ≤ xi ≤ b, i = 0, . . . , M), be defined, where τ = T/N and h = (b− a)/M.
Using the high-order tempered-WSGD operators LDα,λ

h,k u and RDα,λ
h,k u (as explained in

Remark 1), high-order scheme for the first-order spatial derivative with δk,xu = ∂xu +
O(hk), and a Crank–Nicolson discretization in time, the numerical scheme for (1) reads

uj+1
i − uj

i
τ

= cj+ 1
2

l,i ·
(

LDα,λ
h,k uj+ 1

2
i − αλα−1δk,xuj+ 1

2
i

)
+ cj+ 1

2
r,i ·

(
RDα,λ

h,l uj+ 1
2

i + αλα−1δk,xuj+ 1
2

i

)
+ f j+ 1

2
i + O(τ2 + hk),

(4)

where uj
i represents the solution of (1) at the point (xi, tj), cj

l,i = cl(xi, tj), cj
r,i = cr(xi, tj)

and f j+ 1
2

i = 1
2 ( f (xi, tj) + f (xi, tj+1)). Rewriting gives us
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uj+1
i − τ

2

[
cj+1

l,i

(
LDα,λ

h,k uj+1
i

)
+ cj+1

r,i

(
RDα,λ

h,k uj+1
i

)
− αλα−1

(
cj+1

l,i − cj+1
r,i

)
δk,xuj+1

i

]
= uj

i +
τ

2

[
cj

l,i

(
LDα,λ

h,k uj
i

)
+ cj

r,i

(
RDα,λ

h,k uj
i

)
− αλα−1

(
cj+1

l,i − cj+1
r,i

)
δk,xuj

i

]
+ τ f j+ 1

2
i + O(τ3 + τhk).

(5)

Denote by U j
i the solution of the numerical scheme for (1) at point (xi, tj). The

numerical scheme can now be written as

U j+1
i − τ

2

[
cj+1

l,i

(
LDα,λ

h,k U j+1
i

)
+ cj+1

r,i

(
RDα,λ

h,k U j+1
i

)
− αλα−1

(
cj+1

l,i − cj+1
r,i

)
δk,xU j+1

i

]
= U j

i +
τ

2

[
cj

l,i

(
LDα,λ

h,k U j
i

)
+ cj

r,i

(
RDα,λ

h,k U j
i

)
− αλα−1

(
cj+1

l,i − cj+1
r,i

)
δk,xU j

i

]
+ τ f j+ 1

2
i .

(6)

We will use the following notations, for vector Un = (Un
1 , Un

2 , . . . , Un
M−1)

T . Fur-

ther, φl,m(λ) = ∑m
j=1 γje

pjλ(1− e−hλ)α, Cj
l = diag(cj

l,1, cj
l,2, · · · , cj

l,M−1), Cj
l = diag(cj

r,1, cj
r,2,

· · · , cj
r,M−1), and

Bk,λ =



g(k,α)
1,λ − φk,m(λ) g(k,α)

0,λ

g(k,α)
2,λ g(k,α)

1,λ − φk,m(λ) g(k,α)
0,λ

... g(k,α)
2,λ g(k,α)

1,λ − φk,m(λ)
. . .

g(k,α)
n−2,λ . . .

. . . . . . g(k,α)
0,λ

g(k,α)
n−1,λ g(k,α)

n−2,λ . . . g(k,α)
2,λ g(k,α)

1,λ − φk,m(λ)


. (7)

The corresponding matrix form of (6) then reads

Âj+1
h,k U j+1 +

αλα−1τ

2
(Cj+1

l + Cj+1
r )δk,xU j+1 = f j+1

h,k , (8)

where

Âj+1
h,k =

(
I − τ

2hα
(Cj+1

l Bk,λ − Cj+1
r BT

k,λ)
)

, (9)

f j+1
h,k =

(
I +

τ

2hα
(Cj

l Bk,λ + Cj
rBT

k,λ)
)

U j − αλα−1τ

2
(Cj

l + Cj
r)δk,xU j + τF̂j+ 1

2
i , (10)

and

F̂n+ 1
2 =



f n+ 1
2

1

f n+ 1
2

2
...

f n+ 1
2

M−2

f n+ 1
2

M−1


+

Un+ 1
2

0
hα



cn+ 1
2

l,1 g(k,α)
2,λ + cn+ 1

2
r,1 g(k,α)

0,λ

cn+ 1
2

l,2 g(k,α)
3,λ

...

cn+ 1
2

l,M−2g(k,α)
M−1,λ

cn+ 1
2

l,M−1g(k,α)
M,λ


+

Un+ 1
2

M
hα



cn+ 1
2

r,1 g(k,α)
M,λ

cn+ 1
2

r,2 g(k,α)
M−1,λ
...

cn+ 1
2

r,M−2g(k,α)
3,λ

cn+ 1
2

r,M−1g(k,α)
2,λ + cn+ 1

2
l,1 g(k,α)

0,λ


. (11)

2.1. Second-Order Discrete Scheme for the Tempered Fractional Diffusion Equation

We first present the second-order scheme for the tempered fractional diffusion
Equation (1). Here, the second-order operators are defined as follows,

LDα,λ
h,2 u(xj) =

1
hα

j+1

∑
k=0

g(2,α)
k,λ u(xj−k+1)−

1
hα

γ2(h, λ)(1− e−hλ)αu(xj), (12)

RDα,λ
h,2 u(xj) =

1
hα

N−j+1

∑
k=0

g(2,α)
k,λ u(xj+k−1)−

1
hα

γ2(h, λ)(1− e−hλ)αu(xj), (13)



Fractal Fract. 2021, 5, 145 5 of 23

where
γ2(h, λ) = γ1ehλ + γ2 + γ3e−hλ,

with γj satisfying the following conditions,
γ1 =

α

2
+ γ3,

γ2 =
2− α

2
− 2γ3,

(14)

and the weights g(2,α)
k,λ , k = 0, · · · , j + 1, are given by

g(2,α)
0,λ = γ1ω

(α)
0 ehλ, g(2,α)

1,λ = γ1ω
(α)
1 + γ2ω

(α)
0 ,

g(2,α)
k,λ =

(
γ1ω

(α)
k + γ2ω

(α)
k−1 + γ3ω

(α)
k−2

)
e−(k−1)hλ, k ≥ 2.

(15)

We will present the second-order scheme for the tempered fractional diffusion equa-
tion in detail here. Using the tempered-WSGD operators, LDα,λ

h,2 =L Dα,γ1,γ2,...,γ4
h,−1,0,1 and

RDα,λ
h,2 =R Dα,γ1,γ2,...,γ4

h,−1,0,1 for the tempered fractional derivatives, and the second-order
scheme for the first-order spatial derivative, the numerical scheme can now be written as,

U j+1
i − τ

2

[
cj+1

l,i ·
(

LDα,λ
h,2 U j+1

i

)
+ cj+1

r,i ·
(

RDα,λ
h,2 U j+1

i

)]
+

ταλα−1

4h

(
cj+1

l,i − cj+1
r,i

)(
U j+1

i+1 −U j+1
i−1

)
= U j

i +
τ

2

[
cj

l,i ·
(

LDα,λ
h,2 U j

i

)
+ cj

r,i ·
(

RDα,λ
h,2 U j

i

)]
− ταλα−1

4h

(
cj

l,i − cj
r,i

)(
U j

i+1 −U j
i−1

)
+ f j+ 1

2
i .

(16)

The corresponding matrix form of (16) then reads

Aj+1
h,2 U j+1 = f j+1

h,2 , (17)

with Âj+1
h,2 , F̂n+ 1

2 as defined in (9), (11) when k = 2, H2 = tridiag{−1, 0, 1},

Aj+1
h,2 = Âj+1

h,2 +
ταλα−1

4h
(Cj+1

l − Cj+1
r )H2, (18)

and

f j+1
h,2 =

(
I +

τ

2hα
(Cj

l B2,λ + Cj
rBT

2,λ)−
ταλα−1

4h
(Cj+1

l − Cj+1
r )H2

)
U j + τF̂j+ 1

2
i . (19)

The stability and convergence of the second-order scheme for the tempered fractional
diffusion Equation (1), when cl(x, t) and cr(x, t) are constants have already been presented
in [31]. In a similar way, we can derive and prove the following theorem, based on the
lemma below.

Lemma 1 (From [31]). For 1 < α < 2 and λ ≥ 0, if

max
{
(2− α)(α2 + α− 8)

2(α2 + 3α + 2)
,
(1− α)(α2 + 2α)

2(α2 + 3α + 4)

}
< γ3 <

(2− α)(α2 + 2α− 3)
2(α2 + 3α + 2)

,

then the weight coefficients ω
(α)
k and g(2,α)

k,λ satisfy the following properties,

1. ω
(α)
0 = 1, ω

(α)
1 = −α, 0 ≤ . . . ≤ ω

(α)
3 ≤ ω

(α)
2 ≤ 1,

∞

∑
k=0

ω
(α)
k = 0,

2. γ1ehλ + γ2 + γ3e−hλ = 1 + γ1

(
ehλ + e−hλ − 2

)
+ α

2

(
1− e−hλ

)
> 1,

3. g(2,α)
1,λ ≤ 0, g(2,α)

0,λ + g(2,α)
2,λ ≥ 0, g(2,α)

k,λ ≥ 0(k ≥ 3).
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Theorem 1. For 1 < α < 2, and λ ≥ 0, if a1 < γ3 < a2, the numerical scheme (16) is stable for

a1 = max{ (2− α)(α2 + α− 8)
2(α2 + 3α + 2)

,
(1− α)(α2 + 2α)

2(α2 + 3α + 4)
}

and

a2 =
(2− α)(α2 + 2α− 3)

2(α2 + 3α + 2)
.

Denoting ej
i = uj

i − U j
i , i = 1, 2, . . . , M − 1 and Ej = (ej

1, ej
2, . . . , ej

M−1)
T , j = 1, 2, . . . , N,

moreover, it is found that
Ej

h ≤ c(τ2 + h2), 1 ≤ j ≤ N − 1. (20)

2.2. Third-Order Discrete Scheme for the Tempered Fractional Diffusion Equation

In this work, we also consider the third-order operators. They are defined as

LDα,λ
h,3 u(xj) =

1
hα

[ x−a
h ]+1

∑
k=0

g(3,α)
k,λ u(xj−k+1)− γ3(h, λ)(1− e−hλ)αu(xj)

, (21)

and

RDα,λ
h,3 u(xj) =

1
hα

[ b−x
h ]+1

∑
k=0

g(3,α)
k,λ u(xj+k−1)− γ3(h, λ)(1− e−hλ)αu(xj)

, (22)

where
γ3(h, λ) = γ1ehλ + γ2 + γ3e−hλ + γ4e−2hλ,

with γj satisfying the following conditions

γ1 =
α2

8
+

5
24

α− γ4,

γ2 = −α2

4
+

1
12

α + 1 + 3γ4,

γ3 =
α2

8
− 7

24
α− 3γ4.

(23)

The weights, g(3,α)
k,λ , k = 0, · · · , j + 1, are found to be

g(3,α)
0,λ = γ1ω

(α)
0 ehλ, g(3,α)

1,λ = γ1ω
(α)
1 + γ2ω

(α)
0 ,

g(3,α)
2,λ =

(
γ1ω

(α)
2 + γ2ω

(α)
1 + γ3ω

(α)
0

)
e−hλ,

g(3,α)
k,λ =

(
γ1ω

(α)
k + γ2ω

(α)
k−1 + γ3ω

(α)
k−2 + γ4ω

(α)
k−3

)
e−(k−1)hλ, k ≥ 3.

(24)

Using the tempered-WSGD operators, LDα,λ
h,3 =L Dα,γ1,γ2,...,γ4

h,−1,0,1,2 and RDα,λ
h,3 =R Dα,γ1,γ2,...,γ4

h,−1,0,1,2 ,
for the tempered fractional derivatives, and the fourth-order scheme for the first-order
spatial derivative, we find the following numerical discretization for (1)

U j+1
i − τ

2

[
cj+1

l,i ·
(

LDα,λ
h,3 U j+1

i

)
+ cj+1

r,i ·
(

RDα,λ
h,3 U j+1

i

)]
+

ταλα−1

24h

(
cj+1

l,i − cj+1
r,i

)(
8(U j+1

i+1 −U j+1
i−1 )− (U j+1

i+2 −U j+1
i−2 )

)
= U j

i +
τ

2

[
cj

l,i ·
(

LDα,λ
h,3 U j

i

)
V j

i+1) + cj
r,i ·
(

RDα,λ
h,3 U j

i

)]
− ταλα−1

24h

(
cj

l,i − cj
r,i

)(
8(U j

i+1 −U j
i−1)− (U j

i+2 −U j
i−2)

)
+ f j+ 1

2
i .

(25)
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The matrix form now looks as follows

Aj+1
h,3 U j+1 = f j+1

h,3 , (26)

with Âj+1
h,3 , F̂n+ 1

2 as defined in (9), (11) with k = 3,

f j+1
h,3 =

(
I +

τ

2hα
(Cj

l B3,λ + Cj
rBT

3,λ)−
ταλα−1

24h
(Cj+1

l − Cj+1
r )H3

)
U j + τF̂j+ 1

2
i , (27)

and

Aj+1
h,3 = Âj+1

h,3 +
ταλα−1

24h
(Cj+1

l − Cj+1
r )H3, (28)

with

H3 =



0 8 −1
−8 0 8 −1
1 −8 0 8 −1
... 1 −8 0

. . .

0 . . .
. . . . . . 0 8

0 . . . . . . 1 −8 0


. (29)

We have already discussed the stability and convergence of the third-order scheme
for the tempered fractional diffusion Equation (1) when cl(x, t) and cr(x, t) are constants in
the paper [42]. Before we introduce the stability and convergence of the third-order scheme
(25), we define the functions

fB(x) =
N−1

∑
k=0

g(3,α)
k,λ ei(k−1)x − φ(λ), fBT (x) =

N−1

∑
k=0

g(3,α)
k,λ e−i(k−1)x − φ(λ), (30)

and the generating function,

f (α, λ; x) =
fB(x) + fBT (x)

2
. (31)

We obtain the stability for the numerical scheme (25), based on the theorem below.

Lemma 2 (From [42]). Let the matrices B3,λ and BT
3,λ be given via the numerical scheme (7). For

λ ≥ 0, h > 0 and α ∈ [1, 2], if we can find (analytically, or with the help of numerical techniques)
values of γj for which the generating functions f (α, λ; x) of Bλ are negative, then the eigenvalues
of the matrix B3,λ are negative too.

In a similar way as in [42], we have the following theorem.

Theorem 2. If, for 1 < α < 2, the generating functions f (α, λ; x) given in (31), are negative, the
numerical scheme (25) is stable.

Theorem 3. Assuming function u(x, t) to be the solution of Equation (1) on a bounded interval
(a, b)× (0, T), which can be zero extended for x < a or x > b, so that u ∈ L1(0, T; R), and

aDα+3,λ
x u and its Fourier transform also belong to L1(0, T; R). Let’s denote by ej

i = uj
i −U j

i ,

i = 1, 2, . . . , M− 1, and Ej = (ej
1, ej

2, . . . , ej
M−1)

T , j = 1, 2, . . . , N. With solutions uj
i and U j

i
of Equations (5) when k = 3 and (25), respectively, we have, for 1 < α < 2, if f (α, λi; x) < 0,
i = 1, 2,

Ej
h ≤ c(τ2 + h3), 1 ≤ j ≤ N − 1. (32)
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It is our aim in this paper to solve the resulting discrete equations by means of a
multigrid technique. The challenge here is, of course, the occurance of the nonlocality of
these discretization schemes for the tempered fractional derivatives.

3. Multigrid Method for Tempered Fractional Diffusion Equation

In this subsection, we provide a multigrid method (see, for example in [8]) to solve
the presented linear systems originating from the discretized fractional diffusion equations.
Actually, the classical multigrid setting will be employed here, based on the direct coarse
grid discretization. The corresponding two-grid algorithmic description is the following:

1. Pre-smoothing:

• Compute Ũ j+1,m
h by applying ν1 (≥ 0) steps of a smoothing procedure to U j+1,m

h

Ũ j+1,m
h = Sν1(U j+1,m

h , Ah,k, f j+1
h,k )

2. Coarse-grid correction:

• Define the residual: rh = f j+1
h,k − Ah,kŨm,j+1

h ,
• Restrict the residual (fine-to-coarse grid transfer): rH = IH

h rh,
• Solve AH,k v̂H = rH ,
• Interpolate the correction (coarse-to-fine grid transfer): v̂h = Ih

H v̂H ,

• Compute a new approximation: Ŭ j+1,m
h = Ũ j+1,m

h + v̂h.

3. Post-smoothing:

• Compute U j+1,m+1
h by applying ν2 (≥ 0) steps of a smoothing procedure to

Ŭ j+1,m
h

U j+1,m+1
h = Sν2(Ŭm,j+1

h , Ah,k, f j+1
h,k ).

For the above description, the notation is as follows:

• ν1, ν2 denote the number of smoothing steps. We will use νi = 0, 1, 2.
• The classical fine-to-coarse restriction operator IH

h is employed,

IH
h =

1
4


1 2 1

1 2 1
. . .

1 2 1

. (33)

• The scaled transpose of the restriction is the coarse-to-fine interpolation operator, i.e.,
Ih
H = 2(IH

h )′.
• The fine grid operator Ah,k and the coarse grid operator AH,k are defined as in Equa-

tions (18) or (28). Obviously, the coefficient matrix possess the Toeplitz-like structure.
• The recursive generalization of this classical two-grid scheme towards multiple grids

is well-known.

For the tempered fractional diffusion equation, we will be using the damped Jacobi iteration
as the smoother. Here we use

diag(Ah,k)zm+1 = (diag(Ah,k)− Ah,k)um + f m. (34)

Then
um+1 = um + ω

(
zm+1 − um

)
= um + ω

(
diag(Ah,k)

−1((diag(Ah,k)− Ah,k)um + f m)− um
)

=
(

I −ω · diag(Ah,k)
−1 · Ah,k

)
um + ω · diag(Ah,k)

−1 · f m.

(35)
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We can easily generalize the classical Jacobi iteration by introducing a relaxation parameter
ω, in the standard way, i.e.,

Sh,ω = I −ω · diag(Ah,k)
−1 · Ah,k, (36)

where diag(Ah,k) represents the main diagonal of matrix Ah,k. The smoother then becomes,

Sω(u0, Ah,k, fh,k) = Sh,ωu0 + ω · diag(Ah,k)
−1 · f j+1

h,k . (37)

Remark 2. For general full matrices, a matrix-vector multiplication is an expensive task. However,
in the present context with the fractional diffusion equations, we can benefit from the choices made
within the discretization and regarding the multigrid components. The overall computational
complexity of the multigrid method here is therefore O(M log M) at each time step, despite the fact
that we’re dealing with a full matrix. In this paper, the resulting coefficient matrix which contains
three Toeplitz matrices possesses a Toeplitz-like structure. It is however nontrivial to use fast Toeplitz
solvers directly when the coefficients cl , cr would depend on the spatial position, i.e., c = c(x, t).

3.1. Multigrid Convergence Analysis for Second-Order Tempered Fractional Diffusion Scheme

Here, we will analyze the convergence of the multigrid method for the second-order
discrete scheme. To simplify the analysis, we assume that cr = cl = c > 0. Then we have
Ah,k = Âh,k. We denote by

Bh = − cτ

2hα
(B2,λ + BT

2,λ),

a0 = 1− 2d
(

g(2,α)
1,λ −

(
γ1ehλ + γ2 + γ3e−hλ

)
(1− e−hλ)α

)
,

a1 = a−1 = −d
(

g(2,α)
0,λ + g(k,α)

2,λ

)
aj = a−j = −dg(2,α)

j+1,λ,

with j = 2, 3, 4, . . .. Then, we find that Ah,2 = I + Bh is a symmetric Toeplitz matrix, of the
following form,

Ah,2 = I − d(B2,λ + BT
2,λ) =



a0 a1 a2 · · · aN−2
a−1 a0 a1 · · · aN−3

a−2 a−1 a0
. . .

...
...

. . . . . . . . . a2

a−(N−3)
. . . . . . . . . a1

a−(N−2) a−(N−3) . . . a−1 a0


, (38)

where d = cτ
2hα .

We need the following lemmas regarding the properties of our matrix, in order to
prove multigrid convergence.

Lemma 3 (From [31]). Using the notation,

b1 = max
{
(2− α)(α2 + α− 8)

2(α2 + 3α + 2)
,
(1− α)(α2 + 2α)

2(α2 + 3α + 4)

}
and b2 =

(2− α)(α2 + 2α− 3)
2(α2 + 3α + 2)

.

For 1 < α < 2, and λ ≥ 0, if b1 < γ3 < b2, then the matrix,

Bh =
B + BT

2
,

is diagonally dominant and all eigenvalues of Bh are negative.
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Moreover, if a matrix is real-valued, symmetric, strictly diagonally dominant or
irreducibly diagonally dominant, with positive diagonal entries, then it is positive [31].

We have the following lemma regarding our matrix Ah,2.

Lemma 4. For 1 < α < 2 and λ ≥ 0, if b1 < γ3 < b2, the matrix Ah,2 defined in (18) is
diagonally dominant and all eigenvalues of Ah,2 are positive.

Proof. From Lemma 1, we obtain,

a0 > 1,

aj = a−j < 0, j = 1, 2, 3, · · · .
(39)

Therefore, we have the following result for the ith row of the matrix Ah,2

N−i−1

∑
j=−(i−1)

aj ≥
∞

∑
j=−∞

aj

= |a0| − 2
∞

∑
j=1
|aj|

= 1− 2d

(
∞

∑
j=0

g(2,α)
j,λ −

(
γ1ehλ + γ2 + γ3e−hλ

)
(1− e−hλ)α

)
= 1.

(40)

It can seen that the matrix Ah,2 is strictly diagonally dominant for 1 < α < 2. From
Lemma (3), we then conclude that Ah,2 is a symmetric, positive definite matrix.

We will use the following inner products,

〈u, v〉0 = 〈diag(Ah,2)u, v〉, 〈u, v〉1 = 〈Ah,2u, v〉, 〈u, v〉2 = 〈diag(Ah,2)
−1 Ah,2u, Ah,2v〉.

Here 〈·, ·〉 is the Euclidean inner product.

Theorem 4 (From [43]). For a symmetric, positive definite matrix Ah,k, suppose that the damping
parameter ω, in the damped Jacobi smoother, in (36), is properly chosen, to fulfill

1/ω ≥ ρ(diag(Ah,k)
−1 Ah,k), (41)

where ρ(·) denotes the spectral radius of the matrix. Then, Sh,ω in (36) satisfies

‖Sh,ωeh‖2
1 ≤ ‖eh‖2

1 −ω‖eh‖2
2, ∀ eh ∈ RN−1. (42)

The inequality (42) is the well-known smoothing property [2]. We find that ‖Sh,ω‖ ≤ 1,
when ω satisfies (41). As Ah,2 is symmetric, positive definite and diagonally dominant,
we have

ρ(diag(Ah,2)
−1[Ah,2 − diag(Ah,2)]) ≤ 1,

hence
ρ(diag(Ah,2)

−1 Ah,2) ≤ 2. (43)

Here we choose 0 < ω ≤ 1/2 which satisfies (41).
For the two-grid method (TGM), the correction operator is given by

TTGM = I − Ih
H(AH,2)

−1 IH
h Ah,2.

Therefore, the convergence factor of the TGM reads ‖(Sh,ω)
ν2 TTGM(Sh,ω)

ν1‖. For conve-
nience, we consider here the case that ν1 = 0, and ν2 = 1.
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Theorem 5 (From [43]). Let Ah be symmetric and positive definite and let ω > 0 be chosen such
that Sh,ω satisfies the smoothing condition (42), i.e.,

‖Sh,ωeh‖2
1 ≤ ‖eh‖2

1 −ω‖eh‖2
2, ∀ eh ∈ RN−1. (44)

Suppose that Ih
H has full rank and that there exists a scalar β > 0, such that

min
eH∈RN/2−1

‖eh − Ih
HeH‖2

0 ≤ β‖eh‖2
1, ∀ eh ∈ RN−1. (45)

Then, β ≥ ω and the convergence factor of the TGM satisfies

‖Sh,ω · TTGM‖1 ≤
√

1−ω/β. (46)

In other words, we just need to find a suitable β-value to satisfy (46) and then we
find that the convergence of TGM is independent of N. Let LN−1 = tridiag(−1, 2,−1) be
the (N − 1)× (N − 1) one-dimensional discrete Laplacian matrix. Then LN−1 is also a
symmetric positive definite Toeplitz matrix.

Lemma 5. For 1 < α < 2 and λ ≥ 0, if b1 < γ3 < b2, we denote Brest = Bh + a1LN−1. Then
Brest is symmetric positive definite.

Proof. Since both Bh and LN−1 are symmetric Toeplitz, Brest is also symmetric Toeplitz. We
have

Brest =



b̃0 b̃1 b̃2 · · · b̃N−2
b̃−1 b̃0 b̃1 · · · b̃N−3

b̃−2 b̃1 b̃0
. . .

...
...

. . . . . . . . . b̃2

b̃−(N−3)
. . . . . . . . . b̃1

b̃−(N−2) b̃−(N−3) . . . b̃−1 b̃0



=



a0 − 1 + 2a1 0 a2 · · · aN−2
0 a0 − 1 + 2a1 0 · · · aN−3

a−2 0 a0 − 1 + 2a1
. . .

...
...

. . . . . . . . . a2

a−(N−3)
. . . . . . . . . 0

a−(N−2) a−(N−3) . . . 0 a0 − 1 + 2a1


,

(47)

where b̃0 = −2d(g0 + g2 + g1 − φ(x)) > 0, b̃1 = b̃−1 = 0 and

b̃j = b̃−j = −dgj+1 < 0, j = 2, 3, · · · , N − 1.

For the k-th row, we then obtain that

b̃0 −
N−(k+1)

∑
j=1−k,j 6=0

|b̃| = −2d(g0 + g2 + g1 − φ(x))− d(
k

∑
j=3

gj +
N−k

∑
j=3

gj)

≥ −2d(g0 + g2 + g1 − φ(x))− d(
N−1

∑
j=3

gj +
N−1

∑
j=3

gj)

= −2d
N−1

∑
j=0

gj > 0.

(48)
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Hence, Brest is strictly diagonally dominant, and we know that Brest is positive since
b̃0 > 0.

From Lemma 5, it’s easy to see that

〈Ah,2uh, uh〉 = 〈(I + Brest − a1LN−1)uh, uh〉 ≥ 〈(I − a1LN−1)uh, uh〉, ∀ uh ∈ RN−1. (49)

Now we are ready to provide the proof for the TGM convergence, in the following theorem.

Theorem 6. Suppose that Ah,2 is defined in (18) and ω ≤ 1/2 such that Sh,ω satisfies the
smoothing condition (42). The convergence factor of the TGM satisfies

‖Sh,ω · TTGM‖1 < 1. (50)

Proof. We denote
uh = (u1, u2, · · · , uN−1) ∈ RN−1

and
uH = (ũ1, ũ2, · · · , ũN/2−1) ∈ RN/2−1,

where
ũj = u2j, 1 ≤ j ≤ N/2− 1.

Let u0 = uN = 0. Then we have,

‖uh − Ih
HuH‖2

0 = a0

N/2−1

∑
j=0

(
u2j+1 −

1
2

u2j −
1
2

u2j+2

)2

= a0

N/2−1

∑
j=0

(
u2

2j+1 +
1
4

u2
2j +

1
4

u2
2j+2 − u2j+1u2j − u2j+1u2j+2 +

1
2

u2ju2j+2

)

≤ a0

N/2−1

∑
j=0

(
u2

2j+1 +
1
2

u2
2j +

1
2

u2
2j+2 − u2j+1u2j − u2j+1u2j+2

)

= a0

N−1

∑
j=0

(
u2

j − ujuj+1

)
.

(51)
It suggests that

N−1

∑
j=1

u2
j =

N−1

∑
j=0

1
2
(u2

j + u2
j+1) ≥

N−1

∑
j=1

ujuj+1. (52)

From Lemma 5, we obtain

‖uh‖2
1 = 〈Ah,2uh, uh〉 ≥〈(I − a1LN−1)uh, uh〉

=
N−1

∑
j=1

[
(1− 2a1)u2

j + 2a1ujuj+1

]
≥− 2a1

N−1

∑
j=1

(
u2

j − ujuj+1

)
.

(53)

To satisfy (45), we here take

β =− a0

2a1
=

1− 2d
(

g(2,α)
1,λ −

(
γ1ehλ + γ2 + γ3e−hλ

)
(1− e−hλ)α

)
2d
(

g(2,α)
0,λ + g(2,α)

2,λ

)
=
−g(2,α)

1,λ +
(

γ1ehλ + γ2 + γ3e−hλ
)
(1− e−hλ)α

g(2,α)
0,λ + g(2,α)

2,λ

+
1

2d
(

g(2,α)
0,λ + g(2,α)

2,λ

) .

(54)
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From Lemma 3, we have

g(2,α)
0,λ + g(k,α)

2,λ

2
=
|g(2,α)

0,λ + g(k,α)
2,λ |

2
< −g(2,α)

1,λ +
(

γ1ehλ + γ2 + γ3e−hλ
)
(1− e−hλ)α (55)

Combining (54) and (55) with ω ≤ 1
2 , we have β > 1

2 , and

1− ω

β
> 0. (56)

Based on Theorem 5, we obtain

‖Sh,ω · TTGM‖1 ≤
√

1−ω/β < 1. (57)

Remark 3. It can be seen that the TGM converges linearly from Theorem 6 when Ah,2 is defined
in (18) and ω ≤ 1/2. In fact, the TGM will also be stable when ω > 1/2 but satisfies ‖Sh,ω ·
TTGM‖1 < 1. The numerical examples in Section 4 also show cases like this.

3.2. Multigrid Convergence for the Third-Order Tempered Fractional Diffusion Discretization

In this subsection, we will repeat the analysis of the multigrid convergence, but now
for third-order accurate schemes for the tempered fractional diffusion equation.

To simplify the multigrid analysis of the third-order scheme, we assume cr = cl = c > 0,
and we denote by

B̃h = − cτ

2hα
(B3,λ + BT

3,λ),

p0 = 1− 2d
(

g(3,α)
1,λ −

(
γ1ehλ + γ2 + γ3e−hλ + γ4e−2hλ

)
(1− e−hλ)α

)
,

p1 = p−1 = −d
(

g(3,α)
0,λ + g(3,α)

2,λ

)
, and pj = p−j = −dg(3,α)

j+1,λ,

with j = 2, 3, 4, . . .. We then find that Ah,3 = Ph = I + B̃h is a symmetric Toeplitz matrix of
the following form,

Ph = I + B̃h = I − d(B3,λ + BT
3,λ) =



p0 p1 p2 · · · pN−2
p−1 p0 p1 · · · pN−3

p−2 p−1 p0
. . .

...
...

. . . . . . . . . p2

p−(N−3)
. . . . . . . . . p1

p−(N−2) p−(N−3) . . . p−1 p0


, (58)

where d = cτ
2hα .

For α ∈ (1, 2), we denote

q1 = max


α5

8
+

7
12

α4 − 5
8

α3 − 49
12

α2 + 3α

α3 + 6α2 + 11α + 6
,

α5

8
+

α4

3
− 67

24
α3 − 23

6
α2 +

175
6

α− 30

α3 + 6α2 + 11α + 6

, (59)
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and

q2 = min


1
8

α4 +
7

12
α3 +

1
8

α2 − 13
6

α

α2 + 5α + 8
,

α5

8
+

11
24

α4 − 41
24

α3 − 107
24

α2 +
163
12

α− 8

α3 + 6α2 + 11α + 6

, (60)

where α ∈ (1, 2).
The impact of varying α on q1 and q2 is graphically illustrated in Figure 1. Particularly,

it can be observed that when α ∈ (1.26, 1.71), q1 < q2 and (q1, q2) 6= ∅.

Figure 1. The impact of α ∈ (1, 2) on q1 and q2 defined in (59) and (60).

Again, we will be looking into the matrix properties for the third-order discretization.
For this, we will be using the following lemmas and theorems.

Theorem 7 (From [42]). For α ∈ (1.26, 1.71), λ ≥ 0 and q1 ≤ γ4 ≤ q2, the following properties
are satisfied, g(3,α)

1,λ ≤ 0, g(3,α)
0,λ + g(3,α)

2,λ ≥ 0, g(3,α)
k,λ ≥ 0(k ≥ 3).

Lemma 6 (From [42]). Let the matrices B3,λ and BT
3,λ be given by (7) when k = 3. For λ ≥

0, h > 0 and α ∈ (1.26, 1.71), let f (α, λ; x) be the generating function of H =
B3,λ+BT

3,λ
2 . If

γ4 ∈ (q1, q2), we have f (α, λ; x) < 0 and B3,λ is negative.

For α ∈ (1.26, 1.71), we obtain the following result, which is similar to Lemma 1.

Lemma 7. For 1.26 < α < 1.71, λ ≥ 0, and q1 ≤ γ4 ≤ q2, the matrix Ph = I − d(B3,λ + BT
3,λ)

is diagonally dominant and all eigenvalues of Ph are positive.

Proof. From Theorem 7, we obtain

p0 > 1,

pj = p−j < 0, j = 1, 2, 3, . . . .
(61)
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Therefore, we find the following result for the i-th row of matrix Ph

N−i−1

∑
j=−(i−1)

pj ≥
∞

∑
j=−∞

pj

= |p0| − 2
∞

∑
j=1
|pj|

= 1− 2d

(
∞

∑
j=0

g(3,α)
j,λ −

(
γ1ehλ + γ2 + γ3e−hλ + γ4e−2hλ

)
(1− e−hλ)α

)
= 1.

(62)

It can seen that matrix Ph is strictly diagonally dominant, for 1.26 < α < 1.71. From
Lemma 3, we conclude that Ph is a symmetric, positive definite matrix.

Using the same inner products as for the second-order case, i.e.,

〈u, v〉0 = 〈diag(Ph)u, v〉, 〈u, v〉1 = 〈Phu, v〉, 〈u, v〉2 = 〈diag(Ph)
−1Phu, Phv〉.

with 〈·, ·〉 the Euclidean inner product, and also using ω ≤ 1/2, which satisfies (41) for the
third-order scheme (25), we have, similar to Lemma 5, the following lemma

Lemma 8. For α ∈ (1.26, 1.71) , we denote B̃rest = B̃h + p1LN−1. Then B̃rest is symmetric,
positive definite, when q1 ≤ γ4 ≤ q2.

We thus obtain the following theorem regarding the TGM convergence.

Theorem 8. Suppose that Ph is defined as in (58) and ω ≤ 1/2 such that S̃h,ω satisfies the
smoothing condition (42). The convergence factor of the TGM then satisfies

‖S̃h,ω · TTGM‖1 < 1. (63)

Proof. The definition of uh and uH are the same as in Theorem 6, with u0 = uN = 0. We
have the following result, which is similar to (51)

‖uh − Ih
HuH‖2

0 =p0

N/2−1

∑
j=0

(
u2j+1 −

1
2

u2j −
1
2

u2j+2

)2

≤p0

N−1

∑
j=0

(
u2

j − ujuj+1

)
.

(64)

This result suggests that
N−1

∑
j=1

u2
j ≥

N−1

∑
j=1

ujuj+1. (65)

From Lemma 8, we obtain

‖uh‖2
1 = 〈Phuh, uh〉 ≥〈(I − p1LN−1)uh, uh〉

=
N−1

∑
j=1

[
(1− 2q1)u2

j + 2q1ujuj+1

]
≥− 2q1

N−1

∑
j=1

(
u2

j − ujuj+1

)
.

(66)
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To satisfy (45), we will here use

β =− q0

2q1
=

1− 2d
(

g(3,α)
1,λ −

(
γ1ehλ + γ2 + γ3e−hλ + γ4e−2hλ

)
(1− e−hλ)α

)
2d
(

g(3,α)
0,λ + g(3,α)

2,λ

)

=
−g(3,α)

1,λ +
(

γ1ehλ + γ2 + γ3e−hλ + γ4e−2hλ
)
(1− e−hλ)α

g(3,α)
0,λ + g(3,α)

2,λ

+
1

2d
(

g(3,α)
0,λ + g(3,α)

2,λ

) .

(67)

With Lemma 6, we find

g(3,α)
0,λ + g(3,α)

2,λ

2
=
|g(3,α)

0,λ + g(3,α)
2,λ |

2
< −g(3,α)

1,λ +
(

γ1ehλ + γ2 + γ3e−hλ + γ4e−2hλ
)
(1− e−hλ)α. (68)

Combining (67) and (68), with ω ≤ 1
2 , gives us β > 1

2 , and,

1− ω

β
> 0. (69)

Based on Theorem 5, we thus obtain

‖Sh,ω · TTGM‖1 ≤
√

1−ω/β < 1. (70)

4. Numerical Example

In this section, we use the V-cycle and provide some numerical results for the tempered
fractional diffusion equation, and for the tempered fractional Black–Scholes equation
to verify the theoretical multigrid results. So, we will analyze the practical multigrid
convergence with a classical multigrid scheme for a number of test cases with tempered
fractional derivatives. Here we use the the stopping criterion as follows

‖r(k)h ‖

‖r(0)h ‖
< 10−7, (71)

where r(k)h is the residual vector after k iterations.

4.1. The Tempered Fractional Diffusion Equation

Example 1. We first consider the tempered fractional diffusion equation, which is defined as follows

∂u(x, t)
∂t

=
(

0Dα,λ
x u(x, t)

)
+
(

xDα,λ
1 u(x, t)

)
+ p(x, t),

(x, t) ∈ (0, 1)× (0, 1)

u(0, t) = 0, u(1, t) = 0, t ∈ (0, 1)

u(x, 0) = e−λxx1+α, x ∈ [0, 1].

(72)

In this example, the exact solution for (72) is given by u(x, t) = e−tx3(1− x)3, and the source term

p(x, t) =− e−tx3(1− x)3 − e−λx−t
(

0Dα
x

[
eλx(x3 − 3x4 + 3x5 − x6)

])
− eλx−t

(
xDα

1

[
e−λx((1− x)3 − 3(1− x)4 + 3(1− x)5 − (1− x)6)

])
,

is prescribed accordingly.
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We compute p(x, t) by using the following formulae

0Dα
x(e

λxxm) =0 Dα
x

(
∞

∑
n=0

λn

n!
xn+m

)
=

∞

∑
n=0

λnΓ(n + m + 1)
n!Γ(n + m− α + 1)

xn+m−α, (73)

and

xDα
1 (e
−λx(1− x)m) =xDα

1

(
∞

∑
n=0

λne−λ

n!
(1− x)n+m

)

=e−λ
∞

∑
n=0

λnΓ(n + m + 1)
n!Γ(n + m− α + 1)

(1− x)n+m−α.

(74)

In the numerical experiment, we take α = 1.5 ∈ (1.26, 1.71) (which is in the interval for which we
have proven multigrid convergence) and λ = 0.5 for the tempered fractional diffusion Equation (72).
We use γ3 = 0.01 ∈ (a1, a2) for the second-order scheme, and γ4 = −0.03 for the third-order
scheme (36) with N = M when k = 2 and k = 3.

Tables 1 and 2 present the corresponding L2 discretization errors and the number of multigrid
iterations based on the second-order scheme to reach the tolerance. Tables 3 and 4 show the
corresponding L2 discretization errors and the number of multigrid iterations for the third-order
scheme. Here we use V(ν1, ν2) to denote the multigrid V-cycle, where ν1 denotes the number of
pre-smoothing steps and ν2 the number of post-smoothing steps. From the result, we clearly see the
h-independent convergence of multigrid for these involved tempered fractional operators.

Table 1. L2 errors for (72) with different ω by the second-order scheme.

M Error Order
ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7

Iter Iter Iter Iter

25 1.18× 10−5 8 7 6 5
26 3.04× 10−6 1.96 8 6 5 4
27 7.72× 10−7 1.98 7 6 5 4
28 1.95× 10−7 1.99 7 5 4 4
29 4.89× 10−8 1.99 6 5 4 3

Table 2. L2 errors for (72) with ω = 0.5 by the second-order scheme.

M Error
V(0,1) V(1,0) V(1,1)

Iter Iter Iter

25 1.18× 10−5 13 12 7
26 3.04× 10−6 10 12 6
27 7.72× 10−7 8 11 6
28 1.95× 10−7 6 10 5
29 4.89× 10−8 6 8 5

Table 3. L2 errors for (72) with different ω by the third-order scheme.

M Error Order
ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7

Iter Iter Iter Iter

25 8.05× 10−6 12 9 7 5
26 1.14× 10−6 2.82 11 8 6 5
27 1.57× 10−7 2.86 10 7 6 4
28 2.16× 10−8 2.87 9 7 5 4
29 3.02× 10−9 2.84 8 6 5 4
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Table 4. L2 errors for (72) with ω = 0.5 by the third-order scheme.

M Error
V(0,1) V(1,0) V(1,1)

Iter Iter Iter

25 8.05× 10−6 16 17 9
26 1.14× 10−6 15 15 8
27 1.57× 10−7 13 14 7
28 2.16× 10−8 12 13 7
29 3.02× 10−9 10 11 6

4.2. The Tempered Fractional Black–Scholes Equations

In this subsection, we consider the following tempered fractional Black–Scholes equation
∂u(x, t)

∂t
+ a · ∂u(x, t)

∂x
+ b ·Bd Dα,λ1

x u(x, t) + d ·x Dα,λ2
Bu

u(x, t) = c · u(x, t) + bλα
1u(x, t) + dλα

2u(x, t), (75)

where α ∈ (1, 2), the parameters b, d, c, λ1 and λ2 are all non-negative. Here, we show,
experimentally, that the proposed schemes are robust and accurate, without any proof of
stability/convergence.

We consider the following problem, with a source term p(x, t), which was added to
test the numerical scheme, as follows,

∂u(x, t)
∂t

+ a
∂u(x, t)

∂x
+ bBd Dα,λ1

x u(x, t) + dxDα,λ2
Bu

u(x, t)

= c · u(x, t) + +bλα
1u(x, t) + dλα

2u(x, t) + p(x, t), (x, t) ∈ (Bd, Bu)× (0, T)

u(Bd, t) = 0, u(Bu, t) = 0, t ∈ (0, T)

u(x, T) = S(x), x ∈ (Bd, Bu), x ∈ (Bd, Bu).

(76)

4.2.1. Multigrid Results with the Second-Order Scheme

For this test case, we take tj = (N − j)τ, 0 ≤ tj ≤ T, j = 0, . . . , N and xi = Bd + ih,
Bd ≤ xi ≤ Bu, where τ = T/N and h = (Bu − Bd)/M. We use the tempered-WSGD
operators

LDα,λ1
h,2 =L Dα,γ1,γ2,γ3

h,−1,0,,1 and RDα,λ2
h,2 =R Dα,γ1,γ2,γ3

h,−1,0,1 ,

for the tempered fractional derivatives, and the second-order scheme for the first-order
spatial derivative, so that the discretization for (76) reads

∂ui
∂t

+ a
ui+1 − ui−1

2h
+ b
(

LDα,λ1
h,2 ui

)
+ d
(

RDα,λ2
h,2 ui

)
= c · ui + pi + O(h2), (77)

where ui is the solution of (76) when x = xi, and pi = p(xi, t).
The discretization in time is based on the Crank–Nicolson scheme, which, for (77),

reads,

−
uj+1

i − uj
i

τ
+ a

uj+ 1
2

i+1 − uj+ 1
2

i−1
2h

+ b
(

LDα,λ1
h,2 uj+ 1

2
i

)
+ d
(

RDα,λ2
h,2 uj+ 1

2
i

)
= c · uj+ 1

2
i + pj+ 1

2
i + O(τ2 + h2),

(78)

with uj
i the solution of (76) at point (xi, tj), and pj+ 1

2
i = p(xi, tj+ 1

2
).

The numerical discretization in space and time can be written as follows,

(1 +
τ

2
c)U j+1

i − τ

2

[
a

U j+1
i+1 −U j+1

i−1
2h

+ bLDα,λ1
h,2 U j+1

i + dRDα,λ2
h,2 U j+1

i

]

= (1− τ

2
c)U j

i +
τ

2

[
a

U j
i+1 −U j

i−1
2h

+ bLDα,λ1
h,2 U j

i + dRDα,λ2
h,2 U j

i

]
− Pj+ 1

2
i ,

(79)



Fractal Fract. 2021, 5, 145 19 of 23

where U j
i is the numerical solution for (76) at point (xi, tj), and Pj+ 1

2
i = τ

2 (pj
i + pj+1

i ).
The matrix equation for (79) is given by

AU j+1 = P̂j+1, (80)

where

A =



1 + τ
2 c − aτ

4h
aτ
4h 1 + τ

2 c − aτ
4h

... aτ
4h 1 + τ

2 c − aτ
4h

. . .
. . . . . . . . . − aτ

4h
. . . . . . . . . aτ

4h 1 + τ
2 c

−
τ

2

(
bB2,λ1 + dBT

2,λ2

)
,

Q =



1− τ
2 c − aτ

4h
aτ
4h 1− τ

2 c − aτ
4h

... aτ
4h 1− τ

2 c − aτ
4h

. . .
. . . . . . . . . − aτ

4h
. . . . . . . . . aτ

4h 1− τ
2 c

+
τ

2

(
bB2,λ1 + dBT

2,λ2

)
,

and

P̂j+1 = QUi +

(
Pj+ 1

2
1 , Pj+ 1

2
2 , . . . , Pj+ 1

2
M−1

)T
.

4.2.2. Multigrid Results for the Third-Order Scheme

Using the tempered-WSGD operators, LDα,λ1
h,3 =L Dα,γ1,γ2,...,γ4

h,−1,0,α−1,1 and RDα,λ2
h,3 =

RDα,γ1,γ2,...,γ4
h,−1,0,α−1,1, for the tempered fractional derivatives, and the fourth-order scheme for the

first-order spatial derivative, we obtain the following space discretization for (76),

∂ui
∂t

+ a
8(ui+1 − ui−1)− (ui+2 − ui−2)

12h
+ b
(

LDα,λ1
h ui

)
+ d
(

RDα,λ2
h ui

)
= c · ui + pi + O(h3).

(81)

For (81), the Crank–Nicolson time discretization can now be written as

(1 +
τ

2
c)U j+1

i − τ

2

[
a

8(U j+1
i+1 −U j+1

i−1 )− (U j+1
i+2 −U j+1

i−2 )

12h
+ bLDα,λ1

h,3 U j+1
i + dRDα,λ2

h,3 U j+1
i

]

= (1− τ

2
c)U j

i +
τ

2

[
a

8(U j
i+1 −U j

i−1)− (U j
i+2 −U j

i−2)

12h
+ bLDα,λ1

h,3 U j
i + dRDα,λ2

h,3 U j
i

]
− Pj+ 1

2
i .

(82)

The matrix form for (82) is
ÂU j+1 = P̃j+1, (83)

where

Â =



1 + τ
2 c − aτ

4h
aτ
4h 1 + τ

2 c − aτ
4h

... aτ
4h 1 + τ

2 c − aτ
4h

. . . . . .
. . . . . . − aτ

4h
. . . . . . . . . aτ

4h 1 + τ
2 c

−
τ

2

(
bB3,λ1 + dBT

3,λ2

)
,
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Q̂ =



1− τ
2 c − aτ

4h
aτ
4h 1− τ

2 c − aτ
4h

... aτ
4h 1− τ

2 c − aτ
4h

. . .
. . . . . . . . . − aτ

4h
. . . . . . . . . aτ

4h 1− τ
2 c

+
τ

2

(
bB3,λ1 + dBT

3,λ2

)
,

and

P̃j+1 = Q̂Ui +

(
Pj+ 1

2
1 , Pj+ 1

2
2 , . . . , Pj+ 1

2
M−1

)T
.

Example 2. We finally consider the following tempered fractional model

∂u(x, t)
∂t

+ a
∂u(x, t)

∂x
+ b
(

0D
α,λ1
x u(x, t)

)
+ d
(

0D
α,λ1
x u(x, t)

)
= c · u(x, t) + p(x, t),

(x, t) ∈ (0, 1)× (0, T)

u(0, t) = 0, u(1, t) = 0, t ∈ (0, T)

u(x, T) = S(x), x ∈ (0, 1),

(84)

where

p(x, t) =− (1 + aλα
1 + bλα

2 + p)u(x, t) + 3aeT−tx2(1− x)2(1− 2x)

+ be−λ1x+(T−t)
(

0Dα
xeλ1xu(x, t)

)
+ ceλ2x+(T−t)

(
xDα

1 e−λ2xu(x, t)
)

.

The exact solution of the above equation is given by u(x, t) = e−λx+(T−t)x3(1− x).
We will use the following parameters in the numerical tests, b = c = d = 1 and a = −0.5.

We choose α = 1.8, λ1 = 0.5, λ2 = 1, and τ = 10−4 in this case. Tables 5 and 6 present the
corresponding L2 discretization errors and the number of multigrid iterations for the second-order
scheme. Tables 7 and 8 show the corresponding L2 errors and the number of multigrid iterations
based on the third-order scheme.

Table 5. L2 errors for (84) with different ω by the second-order scheme.

M Error Order
ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7

Iter Iter Iter Iter

26 1.63× 10−5 9 7 6 6
27 4.10× 10−6 1.99 8 7 6 6
28 1.03× 10−6 2.00 7 6 5 6
29 2.57× 10−7 2.00 6 5 4 6
210 6.44× 10−8 2.00 5 4 4 5

Table 6. L2 errors for (84) with ω = 0.5 by the second-order scheme.

M Error
V(0,1) V(1,0) V(1,1)

Iter Iter Iter

26 1.63× 10−5 12 13 7
27 4.10× 10−6 10 12 7
28 1.03× 10−6 9 11 6
29 2.57× 10−7 7 10 5
210 6.44× 10−8 6 8 4
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Table 7. L2 errors for (84) with different ω by the third-order scheme.

M Error Order
ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7

Iter Iter Iter Iter

26 3.55× 10−6 9 7 6 5
27 4.69× 10−7 2.92 9 7 5 5
28 6.04× 10−8 2.96 9 7 5 4
29 7.63× 10−9 2.99 8 6 5 4
210 9.38×

10−10
3.02 8 6 5 4

Table 8. L2 errors for (84) with ω = 0.5, by the third-order scheme.

M Error
V(0,1) V(1,0) V(1,1)

Iter Iter Iter

26 3.55× 10−6 17 18 9
27 4.69× 10−7 17 18 9
28 6.04× 10−8 16 17 9
29 7.63× 10−9 15 16 8
210 9.38× 10−10 14 15 8

5. Conclusions

In this paper, we analyzed a classical multigrid method for second- and third-order
numerical schemes for the tempered fractional diffusion equation. We have detailed the
classical multigrid components, like the damped Jacobi smoothing iteration, and the direct
coarse grid approximation, which is based on the second- and third-order discrete schemes.
A focus of this paper was the multigrid convergence analysis, which was based on the
properties of the occurring discretization matrices.

Moreover, we have also shown that the multigrid method converged very well for the
tempered fractional Black–Scholes equation.

Obviously, the numerical schemes presented in this paper are computationally highly
accurate and efficient.
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