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Abstract: This paper is devoted to the fundamental problem of investigating the solvability of initial-
boundary value problems for a quasi-linear pseudo-parabolic equation of fractional order with a
sufficiently smooth boundary. The difference between the studied problems is that the boundary
conditions are set in the form of a nonlinear boundary condition with a fractional differentiation
operator. The main result of this work is establishing the local or global solvability of stated problems,
depending on the parameters of the equation. The Galerkin method is used to prove the existence
of a quasi-linear pseudo-parabolic equation’s weak solution in a bounded domain. Using Sobolev
embedding theorems, a priori estimates of the solution are obtained. A priori estimates and the
Rellich–Kondrashov theorem are used to prove the existence of the desired solutions to the considered
boundary value problems. The uniqueness of the weak generalized solutions of the initial boundary
value problems is proved on the basis of the obtained a priori estimates and the application of the
generalized Gronwall lemma. The need to consider and study such initial boundary value problems
for a quasi-linear pseudo-parabolic equation follows from practical requirements, such as solving
fractional differential equations that simulate physical processes that occur during the study of liquid
filtration processes, etc.

Keywords: pseudo-parabolic equation; the Caputo fractional derivative; Mittag–Leffler function; a
priori estimates; Galerkin approximations; weak solution; global solvability; uniqueness of solution

1. Introduction

It is known that one of the most effective ways to study environmental processes
using mathematical methods is their modeling in the form of differential equations. Many
problems of natural science research have led to the study of various types of initial-
boundary values and direct and inverse problems for partial differential equations.

The interest in equations with mixed derivatives, which has increased recently for
the pseudo-parabolic equation in particular, is explained by the needs of mechanics, other
applied disciplines, and mathematical science itself. The solutions of many practically
important problems arising in the study of liquid filtration processes in fractured porous
media; the movement of underground water with a free surface in multilayer media;
the transfer of moisture, heat, and salts in porous media; and so on are connected with
the need to study boundary value problems for pseudo-parabolic equations of the third
order [1–7]. For example, in [2], a one-dimensional initial-boundary value problem for a
pseudo-parabolic equation with variable coefficients and a fractional Caputo derivative
with respect to time variables is considered. A priori estimates are obtained, from which
the uniqueness of the solution of the problem and its stability with respect to the initial
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data and the right part are proved. The convergence of the solutions of the associated
difference problem to the solution of the differential problem is established.

Recently, fractional differential calculus has been widely used in the description of
various mathematical models of physical processes [1,8–11]. In this regard, great attention
is paid to partial differential equations of fractional order, which are a generalization of
partial differential equations of integer order. At the same time, various statements are pos-
sible [6–8,12–15]. The paper [6] is devoted to the study of the solvability of boundary value
problems with integral conditions for a class of quasi-linear pseudo-parabolic equations.
The existence, uniqueness, and continuous dependence of a strong and weak generalized
solution are proved. Applying the iterative process obtained for a linear problem, the
existence, uniqueness, and continuous dependence of a weak generalized solution of a
nonlinear problem are proved.

Boundary value problems for pseudo-parabolic equations and degenerate pseudo-
parabolic equations with a Caputo fractional derivative are studied in [2,3,16]. For loaded
pseudo-parabolic equations of fractional order, we can note the work [17], where, with the
help of the obtained priori estimates, the uniqueness of the solution and its stability with
respect to the initial data and the right part are proved, as well as the convergence of the
associated difference problem’s solutions to the solution of the differential problem with
speed O

(
h2 + τ

)
, where h and τ are steps in spatial and temporal variables.

In [3,18,19], a non-local problem is studied for a pseudo-parabolic equation with
fractional Caputo derivatives of the order σ, 0 < σ < 1 for time and spatial variables,
where the fractional derivatives have the order α, β, α > 0, β > 0. Using the embedding
theorem of S.L. Sobolev, the existence and uniqueness theorems of the problem are proved
under certain restrictions on the order of the fractional derivatives α and β.

The works [4–7,12–15,20–29] are devoted to the study of the solvability of various
classes of problems for a pseudo-parabolic equation with a fractional derivative.

In this paper, the issues of local and global solvability of a problem with initial and
nonlinear boundary conditions for a pseudo-parabolic equation with fractional Caputo
derivatives are investigated. The existence and uniqueness theorems of the local and global
generalized solutions of the problem are proved by the Galerkin approximation method.

The novelty of this work is the study of the issues of unique solvability of initial
boundary value problems for a quasi-linear pseudo-parabolic fractional equation with
nonlinear boundary conditions with Caputo fractional differentiation operators.

2. Materials and Methods
2.1. Statement of the Problem

We consider in the cylinder QT = {(x, t) : x ∈ Ω, Ω ⊂ Rn, 0 < t < T} a quasi-linear
pseudo-parabolic equation of fractional order:

Dα
0,t(u− ∆u)− ∆u + c(x, t)u = b(x, t)|u|p−2u. (1)

where Ω ⊂ Rn, n ≥ 3 is a bounded domain, ∂Ω ∈ C2,δ, δ ∈ (0, 1), is smooth enough, p
and α are given positive constants, and 0 < α < 1, c(x, t) and b(x, t) are given functions,
and Dα

0,tu(x, t) = 1
Γ(1−α)

∫ t
0

us(x,s)
(t−s)α ds is a fractional differentiation operator in a sense of

Caputo [10].

Problem K. To find a solution u(x, t) of Equation (1) that satisfies the initial condition:

u(x, 0) = u0(x), x ∈ Ω, (2)

and non-linear boundary condition:

Dα
0,t

∂u
∂n

+
∂u
∂n

+ K(x, t)|u|σ−2 u|Γ = 0, (3)
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where Γ = ∂Ω× (0, T) and σ is a positive constant.
We note that the solvability issues of the problem K in the case of α = 1 have been

studied in [30]. For the integer parameter α, problems with Dirichlet–Neumann boundary
conditions have been investigated in [31,32].

We denote by Wα(QT), 0 < α < 1 Hilbert space with norm:

‖u‖2
Wα(QT)

= ‖u‖2
L∞(0,T;W1

2 (Ω)) + ‖D
α
0,tu‖

2
L∞(0,T;W1

2 (Ω))
,

where the norms of spaces are defined as follows:

‖u‖Lp(Ω) ≡ ‖u‖p,Ω =

(∫
Ω
|u|pdx

) 1
p
, 1 < p < ∞.

‖u‖2
L∞(0,T;W1

2 (Ω)) = ess.sup
t∈[0,T]

‖u‖2
W1

2 (Ω), ‖u‖W l
p(Ω) =

(
∑l

k=0 ‖D
ku‖p

p,Ω

) 1
p ,

Dku =
∂|k|

∂xk1
1 . . . xkn

n
; k = (k1, . . . , kn) is multi-index, |k| = k1 + . . . + kn,

D1u ≡ Du ≡ ∇u =

(
∂u
∂x1

, . . . ,
∂u
∂xn

)
, D0u = u.

In what follows, we assume that the data of the problem satisfies the following
conditions:

c(x, t) ≥ c∗0 > 0, 0 < b0 ≤ b(x, t) ≤ b1, ∀(x, t) ∈ QT ,∣∣∣Dα
0,tb(x, t)

∣∣∣ ≤ b2, 0 < K0 ≤ K(x, t) ≤ K1, ∀(x, t) ∈ QT ,
(4)

Definition 1. A weak generalized solution of the problem K (1)–(3) is a function u(x, t) ∈
Wα(QT) ∩ Lσ(Γ), 0 < α < 1 almost everywhere for t ∈ [0, T] satisfying the following inte-
gral equality: ∫

Ω

(
Dα

0,tu ·ω +
n
∑

i=1
Dα

0,t
∂u
∂xi
· ∂ω

∂xi
+ c(x, t)uω

)
dx

+
∫

Γ K(x, t)|u|σ−2uωdΓ =
∫

Ω b(x, t)|u|p−2uωdx,
(5)

for all functions ω ∈ L2
(
0, T; W1

2 (Ω)
)
∩ Lσ(Γ).

2.2. Local Solvability of Problem K: Galerkin Approximations

Let us consider the case where p > 2 and let u0(x) ∈W1
2 (Ω).

In space W1
2 (Ω), we choose a system of functions

{
Ψj(x)

}
, forming a basis in this

space. Due to the fact that the space W1
2 (Ω) is separable, such a system exists. The

approximate solution of the problem to (1)–(3) is represented as follows:

um(x, t) = ∑m
k=1 υmk(t)Ψk(x), (6)

where
{

Ψj(x)
}

is the orthogonal system of functions in W1
2 (Ω), and the coefficients υmk(t)

are found from the system of equations:

m
∑

k=1
Dα

0,tυmk(t)
∫
Ω

{
ΨkΨjdx +

m
∑

i=1

∂Ψk
∂xi

∂Ψj
∂xi

}
dx +

∫
Ω c(x, t)umΨjdx +

∫
Ω∇um∇Ψjdx

+∑m
k=1 υmk

∫
Γ K(x, t)|um|σ−2ΨkΨjdΓ = ∑m

k=1 υmk
∫

Ω b(x, t)|um|p−2ΨkΨjdx,
(7)

with conditions

um0 = um(0) = ∑m
k=1 υmk(0)Ψk = ∑m

k=1 αkΨk, (8)
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and
um0 → u0 strongly in W1

2 (Ω) at m→ ∞, (9)

Let us introduce notations

→
υ m = {υ1m(t), . . . , υmm(t)}T ,

→
α ≡ {α1, . . . , αm}T , akj =

∫
Ω

[
ΨkΨj +

(
∇Ψk∇Ψj

)]
dx,

Ckj =
∫

Ω
c(x, t)ΨkΨjdx +

∫
Ω
∇Ψk∇Ψjdx,

bkj = −
∫

Γ
K(x, t)|um|σ−2ΨkΨjdΓ+

∫
Ω

b(x, t)|um|p−2ΨkΨjdx,

Am ≡
{

ajk

}
,
→
Cm ≡

{
Cjk

}
,
→
F m

(→
υ m

)
≡
{

bjk

(→
υ m

)}→
υ m.

Then, the system of Equation (7) with Condition (8) will take the following ma-
trix form:

AmDα
0,t
→
υ m +

→
Cm
→
υ m ≡

→
F m

(→
υ m

)
,
→
υ m(0) =

→
α .

Below, we present several well-known lemmas necessary to establish some estimates.

Lemma 1. (see [23]) For any absolutely continuous on [0, T] function υ(t), the following inequal-
ity holds:

υ(t)Dα
0,tυ

2(t) ≥ 1
2

Dα
0,tυ

2(t), 0 < α < 1.

Lemma 2. (see [25]) For any function u ∈W1
2 (Ω), the inequality holds:

‖u‖p
p,Ω ≤ C1

(
‖∇u‖2

2,Ω + ‖u‖2
2,Ω

) θp
2 ‖u‖(1−θ)p

2,Ω ≤ C1

(
‖∇u‖2

2,Ω + ‖u‖2
2,Ω

) θp
2 +

(1−θ)p
2 ≤ C1

(
‖∇u‖2

2,Ω + ‖u‖2
2,Ω

) p
2 ,

where

C1 =

(
2(n− 1)

n− 2

)θp
, θ =

(p− 2)n
2p

, 0 < θ < 1, 2 < p <
2n

n− 2
, n ≥ 3.

Lemma 3. (see [25]) For any function u ∈W1
2 (Ω), the inequality holds:

‖u‖q
q,Γ ≤ C1

(
‖∇u‖2

2,Ω + ‖u‖2
2,Ω

) θp
2 ‖u‖(1−θ)p

2,Ω ≤ C1

(
‖∇u‖2

2,Ω + ‖u‖2
2,Ω

) θp
2 +

(1−θ)p
2 ≤ C1

(
‖∇u‖2

2,Ω + ‖u‖2
2,Ω

) p
2 ,

where

Γ = ∂Ω ∈ C2,δ, δ ∈ (0, 1), C1 =

(
2(n− 1)

n− 2

)θq
, θ =

(q− 2)n + 2
2q

, 0 < θ < 1,

2 < q <
2(n− 1)

n− 2
, n ≥ 3.

We multiply both parts of (7) by υmj(t) and sum over j = 1, . . . , m; then, we obtain
an equality:∫

Ω

{
umDα

0,tumdx +∇umDα
0,t∇um

}
dx +

∫
Ω|∇um|2dx +

∫
Ω c(x, t)|um|2dx

+
∫

Γ K(x, t)|um|σdΓ =
∫

Ω b(x, t)|um|pdx.
(10)
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By applying Lemma 1 and Lemma 2 to (10), and taking into account Condition (4), we
obtain the following:

1
2 Dα

0,t
∫

Ω

{
|um|2 + |∇um|2

}
dx +

∫
Ω|∇um|2dx + c∗0

∫
Ω|um|2dx

+K0
∫

Γ|um|σdΓ ≤ b1C1
(
‖um‖2 + ‖∇um‖2) p

2 .

We write the resulting differential inequality as follows:

Dα
0,t

(
‖um‖2 + ‖∇um‖2

)
+ C0

(
‖um‖2 + ‖∇um‖2

)
≤ C2

(
‖u‖2 + ‖∇um‖2

) p
2 , (11)

where C0 = min(1; c∗0), C2 = 2C1b1.
Defining y(t) = ‖u‖2 + ‖∇u‖2, then we can represent (11) in the form:

Dα
0,ty(t) + C0y(t) ≤ C2[y(t)]

p
2 .

From here, we obtain:

y(t) ≤ Eα,1(−C0tα)y(0) + C2

∫ t

0
(t− s)α−1Eα,α

(
−C2(t− s)α)[y(s)] p

2 ds, (12)

where Eα,β(z) is the Mittag–Leffler function:

Eα,β(z) = ∑∞
k=0

zk

Γ(αk + β)
.

Lemma 4. (see [9]) The following estimates are valid for the Mittag–Leffler function:
if 0 < α < 1 and µ > 0, then there is a constant M1 > 0 such that

0< Eα,1(−µtα) ≤ M1

1 + µtα
≤ M1, t >0. (13)

if 0 < α < 1 and µ > 0, then there is a constant M2 > 0, such that

0< tα−1Eα,α(−µtα) ≤ M2tα−1, t >0. (14)

From (12), taking into account (13) and (14), we have the following:

y(t) ≤ M1y(0) + M2C2

∫ t

0
(t− s)α−1[y(s)]

p
2 ds. (15)

Suppose that the following condition is satisfied:

t <

 2α

(p− 2)M2C2(M1y(0))
p−2

2

 1
α

, 0 ≤ t < T,

then in (15), using the lemma of Gronwall–Bellman–Bihari [25], we obtain the inequality:

y(t) ≤ M1y(0)[
1− M2C2(p−2)

2α (M1y(0))
p−2

2 tα

] 2
p−2

,
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or, considering the notation, we have:

‖um(x, t)‖2
2,Ω + ‖∇um(x, t)‖2

2,Ω

≤
M1

(
‖um(x,0)‖2

2,Ω+‖∇um(x,0)‖2
2,Ω

)
[

1−(p−2)M
p−2

2
1

(
‖um(x,0)‖2

2,Ω+‖∇um(x,0)‖2
2,Ω

) p−2
2 M2C2

2α tα

] 2
p−2

.

From this estimate, we can conclude that there is T0 > 0, such that

‖um‖2
2,Ω + ‖∇um‖2

2,Ω + K0

∫
Γ
|um|σdΓ ≤ C3, for each t ∈ [0, T], T < T0, (16)

where C3 is a constant, independent of m ∈ N.
Now we multiply Equality (7) by Dα

0,tυmj(t) and sum over j = 1, . . . , m. As a result,
we obtain the following:

‖Dα
0,tum‖2

2,Ω
+ ‖∇Dα

0,tum‖2
2,Ω =

−
∫

Ω∇umDα
0,t∇umdx−

∫
Ω c(x, t)umDα

0,tumdx
−
∫

Γ K(x, t)|um|σ−2umDα
0,tumdΓ +

∫
Ω b(x, t)|um|p−2umDα

0,tumdx.
. (17)

Applying the inequalities of Jung, Helder, and Lemma 3, we evaluate each term of the
right part (17):

|−
∫

Ω
∇umDα

0,t∇um| ≤
1
4
‖Dα

0,t∇um‖2 + ‖∇um‖2.

|−
∫

Ω
c(x, t)umDα

0,tumdx| ≤ 1
2
‖Dα

0,tum‖2 +
c2

1
2
‖um‖2.∣∣∣∣∣∣−

∫
Γ

K(x, t)|um|σ−2umDα
0,tumdΓ

∣∣∣∣∣∣ ≤ K1

∫
Γ

∣∣Dα
0,tum

∣∣|um|σ−1dΓ

≤ K1

∫
Γ

|um|
2(n−1)(σ−1)

n dΓ

 n
2(n−1)

∫
Γ

∣∣Dα
0,tum

∣∣ 2(n−1)
n−2 dΓ

 n−2
2(n−1)

≤ K1C
σ−1

σ
1 Cσ−1

3

(
‖Dα

0,tum‖2
2,Ω + ‖∇Dα

0,tum‖2
2,Ω

) 1
2

≤ K2
1C

2(σ−1)
σ

1 C2(σ−1)
3 + 1

4

(
‖Dα

0,tum‖2
2,Ω + ‖∇Dα

0,tum‖2
2,Ω

)
,

where 2 < σ < 2(n−1)
n−2 , n ≥ 3.

|
∫

Ω b(x, t)|um|p−2umDα
0,tumdx| ≤ b1

∫
Ω

∣∣∣Dα
0,tum

∣∣∣|um|p−1dx

≤ b1
(∫

Ω|u|
pdx
) 1

2

(∫
Ω|um|

n(p−2)
2 dx

) 1
n
(∫

Ω

∣∣∣Dα
0,tum

∣∣∣ 2n
n−2 dx

) n−2
2n

≤ b1C
p−1

p
1 Cp−1

3

(
‖Dα

0,tum‖2
2,Ω + ‖∇Dα

0,tum‖2
2,Ω

) 1
2

≤ b2
1C

2(p−1)
p

1 C2(p−1)
3 + 1

4

(
‖Dα

0,tum‖2
2,Ω + ‖∇Dα

0,tum‖2
2,Ω

)
,

where 2 < p < 2n
n−2 , n ≥ 3.

Taking into account (16) and the above inequalities from Identity (17), we have a
second a priori estimate:

‖Dα
0,tum‖2

2,Ω + ‖∇Dα
0,tum‖2

2,Ω ≤ C4,
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for all t ∈ [0, T], T < T0.
From these estimates, it follows that

um is bounded in L∞

(
0, T; W1

2 (Ω)
)

. (18)

Dα
0,tum is bounded in L∞

(
0, T; W1

2 (Ω)
)

. (19)

K(x, t)|um|σ−2 is bounded in L∞(0, T; Lσ′(Γ)), σ′ =
σ

σ− 1
> 1. (20)

|um|p is bounded in L∞

(
0, T; W1

2 (Ω)
)

, 2 < p <
2n

n− 2
, n ≥ 3. (21)

|um|p−2um is bounded in L∞(0, T; L p
p−1

(Ω)), 2 < p <
2n

n− 2
, n ≥ 3. (22)

From (18) it follows that there exists subsequence umk of sequence um,* weakly con-
verging to some element L∞

(
0, T; W1

2 (Ω)
)
, [31], i.e.:

umk → u ∗ weakly L∞

(
0, T; W1

2 (Ω)
)

.

Similarly, it follows from (18)–(22) that there is such a sequence
{

umk

}
⊂ {um} where

umk → u weakly in L2

(
0, T; W1

2 (Ω)
)

.

By virtue of the Rellich–Kondrashov theorem, the embedding W1
2 (QT) is compact in

L2(QT). This means that from the sequence um we can choose the subsequence umk such
that umk → u in norm L2(QT), which means that it converges almost everywhere.

The above arguments allow us to pass to the limit at (7) when m→ ∞ . First, we
multiply both parts of Equality (7) by dj(t) ∈ C[0, T] and, summing both parts of the
resulting identity on j =
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 | | ∈ (0, ; (Γ)),    = ,   | | ∈ (0, ; ( )). 

2.3. Uniqueness of the Local Generalized Solution of the Problem K 

Theorem 2. Let ( ) ∈ ( ),  2 < < ,  ≥ 3, then generalized solution of the problem 
K (1)–(3) on the interval(0, ), <  is unique. 

we have the following:

∫
Ω

(
Dα

0,tu · µ +
m
∑

i=1
Dα

0,t
∂u
∂xi
· ∂µ

∂xi
+ c(x, t)uµ

)
dx

+
∫

Γ K(x, t)|u|σ−2uµdΓ =
∫

Ω b(x, t)|u|p−2uµdx,
(23)

almost everywhere t ∈ [0, T], where µ(x, t) = ∑m
j=1 dj(t)ψj(x).

In (23) passing to the limit at m→ ∞ , we obtain (5) for ω = µ. Since the set of all
functions µ(x, t), where µ(x, t) = ∑m

j=1 dj(t)ψj(x), is dense in Wα(QT) ∩ Lσ(Γ), then that
limit relation holds for all ω ∈ L2

(
0, T; W1

2 (Ω)
)
.

Thus, the following Theorem 1 is proved.

Theorem 1. Let Condition (4) be satisfied and

2 < p <
2n

n− 2
, 2 < σ <

2(n− 1)
n− 2

, n ≥ 3,

then for any function u0(x) ∈W1
2 (Ω), almost everywhere t ∈ (0, T), T < T0where

T0 =

 2α

2(p− 2)b1M2M
p−2

2
1

(
2(n−1)

n−2

) (p−2)n
2
(
‖u(x, 0)‖2

2,Ω + ‖∇u(x, 0)‖2
2,Ω

) p−2
2


1
α

,
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There exists a weak generalized solution u(x, t) of the problem K (1)–(3), and the following
inclusions take place:

u ∈ L∞
(
0, T; W1

2 (Ω)
)
, |um|

σ
2 ∈ L2

(−
QT

)
,
−
QT = (0, T)× Γ, Dα

0,tu ∈ L2
(
0, T; W1

2 (Ω)
)
,

|u|σ−2u ∈ L∞(0, T; Lσ′(Γ)), σ′ = σ
σ−1 , |u|p ∈ L∞

(
0, T; W1

2 (Ω)
)
.

2.3. Uniqueness of the Local Generalized Solution of the Problem K

Theorem 2. Let u0(x) ∈W1
2 (Ω), 2 < p < 2n

n−2 , n ≥ 3, then generalized solution of the problem
K (1)–(3) on the interval (0, T), T < T0 is unique.

Proof of Theorem 2. Suppose the problem K (1)–(3) has two solutions: u1(x, t) and u2(x, t).
Then their difference u(x, t) = u1(x, t)− u2(x, t) satisfies the condition u(x, 0) = 0 and
the identity∫

Ω

(
Dα

0,tu ·ω +
n
∑

i=1
Dα

0,t
∂u
∂xi
· ∂ω

∂xi
+ c(x, t)uω

)
dx +

∫
Γ

K(x, t)
(
|u1|σ−2u1 − |u2|σ−2u2

)
ωdΓ =∫

Ω b(x, t)
(
|u1|p−2u1 − |u2|p−2u2

)
ωdx.

(24)

By virtue of the fact that ω(x, t) ∈ L2
(
0, T; W1

2 (Ω)
)
, then we can take u(x, t) as ω(x, t);

i.e., suppose ω(x, t) = u(x, t). Then, we have the following:∫
Ω

(
Dα

0,tu · u + ∑n
i=1 Dα

0,t
∂u
∂xi
· ∂u

∂xi
+ c(x, t)|u|2

)
dx +

∫
Γ K(x, t)|u|σ−2

(
|u1|σ−2u1 − |u2|σ−2u2

)
udΓ =∫

Ω b(x, t)
(
|u1|p−2u1 − |u2|p−2u2

)
udx.

(25)

We estimate the right-hand side of (25) by applying the following well-known alge-
braic inequalities:∣∣|u1|qu1 − |u2|qu2

∣∣ ≤ (q + 1)
(
|u1|q + |u2|q

)
|u1 − u2|, q > 0,∣∣(∣∣u1

∣∣qu1−
∣∣u2
∣∣qu2

)
(u1 − u2)

∣∣ ≥ ∣∣u1 − u2
∣∣q+2, q >0,

(26)

and Lemma 2. We then have:∣∣∣∫Ω b(x, t)
(
|u1|p−2u1 − |u2|p−2u2

)
udx

∣∣∣ ≤ b1(p− 1)
∫

Ω(|u1|p−2 + |u2|p−2)u2dx

≤ b1(p− 1)
(∫

Ω

(
|u1|p−2 + |u2|p−2

)2
u2dx

) 1
2 (∫

Ω u2dx
) 1

2

≤ b1(p− 1)
(∫

Ω

(
|u1|p−2 + |u2|p−2

) 2r
r−2 dx

) r−2
2r (∫

Ω urdx
) 1

r
(∫

Ω u2dx
) 1

2

≤ b1(p− 1)

((∫
Ω|u1|

2r(p−2)
r−2 dx

) r−2
2r

+

(∫
Ω|u2|

2r(p−2)
r−2 dx

) r−2
2r
)
×
(∫

Ω urdx
) 1

r
(∫

Ω u2dx
) 1

2 ,

where r = 2n
n−2 , 2 < p < 2n

n−2 , n ≥ 3. Then, by the embedding theorem of Sobolev,
W1

2 (Ω) ⊂ Lr(Ω) and W1
2 (Ω) ⊂ L2r(p−2)/(r−2)(Ω), taking into account the smoothness of

solutions u1(x, t) and u2(x, t), we come to the following estimation:∣∣∣∣∫
Ω

b(x, t)
(
|u1|p−2u1 − |u2|p−2u2

)
udx

∣∣∣∣ ≤ C5

(
‖∇u‖2

2,Ω + ‖u‖2
2,Ω

)
. (27)

From Estimate (27), taking into account Condition (4) and Lemma 1, as well as
algebraic inequalities, we obtain:

Dα
0,t

∫
Ω

[
|u|2 + |∇u|2

]
dx + C0

∫
Ω

[
|u|2 + |∇u|2

]
dx + K0

∫
Γ
|u|σdΓ ≤ C5

(
‖∇u‖2

2,Ω + ‖u‖2
2,Ω

)
, (28)

where C0 = min
{

1; c∗0
}

.
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From Inequality (28) we obtain:

Dα
0,t

∫
Ω

[
|u|2 + |∇u|2

]
dx ≤ C5

(
‖∇u‖2

2,Ω + ‖u‖2
2,Ω

)
,

from which we have:∫
Ω

[
|u|2 + |∇u|2

]
dx ≤ Eα,1(C5tα)

∫
Ω

[
|u(x, 0)|2 + |∇u(x, 0)|2

]
dx,

that leads to
∫

Ω

(
|∇u|2 + |u|2

)
dx = 0 almost everywhere on the time interval (0, T), T < T0,

which represents the uniqueness of the generalized solution. Thus, Theorem 2 is proved. �

2.4. The Existence of a Global Solution to the Problem K (1)–(3) for 1 < p ≤ 2

Theorem 3. Let Condition (4) be satisfied and 1 < p ≤ 2, 1 < σ < 2(n−1)
n−2 , n ≥ 3. Then, for any

u0(x) ∈ W1
2 (Ω) on the interval (0, T), there exists the generalized solution u(x, t) of the Problem

K (1)–(3), and the following inclusions take place:

u ∈Wα(QT) ∩ Lσ(Γ).

Proof of Theorem 3. As in the proof of Theorem 1, multiplying both parts (7) by υmj(t)
and summing over j =
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The validity of the following lemma is given in [25].

Lemma 5. (see [25]) If u ∈W1
2 (Ω), 1 < q < 2, then the following inequality is true:

∫
Ω

|u|qdx ≤

∫
Ω

|u|2dx


q
2

|Ω|
2−q

2 ≤ c

1 +
∫
Ω

|u|2dx +
∫
Ω

|∇u|2dx

.

Applying Lemma 1 and the condition of Theorem 3, as well as Lemma 5, we obtain
the inequality

Dα
0,t
∫

Ω

[
|um|2 + |∇um|2

]
dx + c∗0

∫
Ω

[
|um|2 + |∇um|2

]
dx+∫

Γ K(x, t)|um|σdΓ ≤ cb1

(
1 + ‖um‖2

2,Ω + ‖um‖2
2,Ω

)
.

Denoting y(t) ≡ 1 + ‖um(x, t)‖2
2,Ω + ‖∇um(x, t)‖2

2,Ω, then the last inequality will be
written as:

Dα
0,ty(t) + c∗0y(t) ≤ cb1y(t) + c∗0 .

From here, we obtain:

y(t) ≤ Eα,1(−c∗0tα)y(0) + cb1
∫ t

0 (t− s)α−1Eα,α
(
−c∗0(t− s)α)y(s)ds+∫ t

0 (t− s)α−1Eα,α
(
−c∗0(t− s)α)c∗0ds,

(29)

From Inequality (29), by virtue of (13) and (14), we have:

y(t) ≤ M1y(0) +
M2c∗0tα

α
+ cb1M2

∫ t

0
(t− s)α−1y(s)ds. (30)

The proof of the following lemma is given in [33].
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Lemma 6. (see [33]) Suppose b ≥ 0, β > 0 and a(t) is a nonnegative function locally integrable
on 0 ≤ t ≤ T with

u(t) ≤ a(t) + b
∫ t

0
(t− s)β−1u(s)ds,

on this interval, then

u(t) ≤ a(t) + θ

t∫
0

E′β(θ(t− s))a(s)ds, 0 ≤ t ≤ T,

where
θ = (bΓ(β))

1
β , Eβ(z) =

∞
∑

n=0

znβ

Γ(nβ+1) , E′β(z) = d
dz Eβ(z),

E′β(z)→ zβ−1

Γ(β)
as z→ +0, E′β(z)→ ez

β as z→ +∞,

Eβ(z)→ ez

β as z→ +∞.

If a(t) = a is a constant, then u(t) ≤ aEβ(θ t), 0 ≤ t ≤ T.
Applying Lemma 6 in Inequality (30), we obtain the validity of the following estimate:

y(t) ≤ M1y(0) + M2c∗0 tα

α +

dcb1M2Γ(α)e
1
α

t∫
0

Eα,1

(
dcb1M2Γ(α)e

1
α (t− s)α

)(
M1y(0) + M2c∗0 sα

α

)
ds, 0 ≤ t ≤ T.

Taking into account the notation, we obtain the first a priori estimate from here:

‖um‖2
2,Ω + ‖∇um‖2

2,Ω +
∫

Γ
K(x, t)|um|σdΓ

≤
(

M1

(
1 + ‖um(x, 0)‖2

2,Ω + ‖∇um(x, 0)‖2
2,Ω

)
+

M2c∗0tα

α

)

+ [cb1M2Γ(α)]
1
α

t∫
0

Eα,1

(
[cb1M2Γ(α)]

1
α (t− s)α

)

×
(

M1

(
1 + ‖um(x, 0)‖2

2,Ω + ‖∇um(x, 0)‖2
2,Ω

)
+

M2c∗0sα

α

)
ds ≤ C3, 0 ≤ t ≤ T < ∞,

where C3 is a constant independent from m ∈ N.
We derive the second a priori estimate in the same way as for 2 < p < 2n

n−2 , n ≥ 3. Let
us evaluate each term of the right part of Relation (17), applying the inequalities of Jung,
Helder, and Lemma 5, we obtain:∣∣∣∣∣− ∫Ω ∇umDα

0,t∇umdx

∣∣∣∣∣ ≤ 1
2‖Dα

0,t∇um‖2
2,Ω + 1

2‖∇um‖2
2,Ω∣∣∣∣∣− ∫Γ K(x, t)|um|σ−2umDα

0,tumdΓ

∣∣∣∣∣ ≤ K1
∫
Γ

∣∣∣Dα
0,tum

∣∣∣|um|σ−1dΓ

≤ K1

(∫
Γ
|um|

2(n−1)(σ−1)
n dΓ

) n
2(n−1)

(∫
Γ

∣∣∣Dα
0,tum

∣∣∣ 2(n−1)
n−2 dΓ

) n−2
2(n−1)

≤ K1C
σ−1

σ
1 Cσ−1

3

(
‖Dα

0,tum‖2
2,Ω + ‖∇Dα

0,tum‖2
2,Ω

) 1
2

≤ K2
1C

2(σ−1)
σ

1 C2(σ−1)
3 + 1

4

(
‖Dα

0,tum‖2
2,Ω + ‖∇Dα

0,tum‖2
2,Ω

)
,
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where 2 < σ < 2(n−1)
n−2 , n ≥ 3.∣∣∣∣∣∫Ω b(x, t)|um|p−2umDα

0,tumdx

∣∣∣∣∣ ≤ b1
∫
Ω

|um|p−1Dα
0,tumdx

≤ b1

(∫
Ω

|um|2(p−1)dx

) 1
2
(∫

Ω

∣∣∣Dα
0,tum

∣∣∣2dx

) 1
2

≤ b1‖um‖2,Ω‖Dα
0,tum‖2,Ω ≤ b1C

1
2
1 ‖Dα

0,tum‖2,Ω ≤ b2
1C1 +

1
4‖Dα

0,tum‖2,Ω,

where 1 < p ≤ 2, n ≥ 3.
Substituting these inequalities into Identity (17), we obtain the following:

‖Dα
0,tum‖2

2,Ω + ‖Dα
0,tum‖2

2,Ω ≤ C4,

for all t ∈ [0, T].
As before, multiplying Equality (7) by dj(t) ∈ C[0, T] and summing up both parts of

the resulting identity over j =
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Doing the same as in the case of 2 < p < 2n
n−2 , n ≥ 3, we prove the validity of the

following theorem:

Theorem 4. Assume that 1 < p ≤ 2, n ≥ 3. Then for any function u0(x) ∈W1
2 (Ω), on interval

(0, T) there exists a unique generalized solution of the Problem K (1)–(3).

Proof of Theorem 4. Acting the same as in the proof of Theorem 2, we assume that
the Problem K has two solutions u1(x, t) and u2(x, t). Then for the difference u(x, t) =
u1(x, t)− u2(x, t) we obtain Identity (24), for any function ω(x, t) ∈ L2

(
0, T; W1

2 (Ω)
)
. Since

ω(x, t) ∈ L2
(
0, T; W1

2 (Ω)
)
, assuming ω(x, t) = u(x, t), we have (25).

Then, applying the following known inequalities:∣∣(∣∣u1
∣∣qu1−

∣∣u2
∣∣qu2

)
(u1 − u2)

∣∣ ≥ ∣∣u1 − u2
∣∣q+2, q >0,(

|u1|p−2u1 − |u2|p−2u2, u1 − u2

)
≤ γ(p)|u1 − u2|p, 1 < p ≤ 2.

(31)

we estimate the right-hand side of (25); taking into account Inequality (31), we have:∣∣∣∣∫
Ω

b(x, τ)
(
|u1|p−2u1 − |u2|p−2u2

)
udx

∣∣∣∣ ≤ b1γ(p)‖u‖p
p,Ω ≤ cb1γ(p)

(
1 + ‖u‖2

2,Ω + ‖∇u‖2
2,Ω

)
. (32)

By virtue of (32) and Lemma 1, then from (25) we obtain:

Dα
0,t
∫

Ω

[
|u|2 + |∇u|2

]
dx + C0

∫
Ω

[
|u|2 + |∇u|2

]
dx

+K0
∫

Γ|u|
σdΓ ≤ 2cb1γ(p)

(
1 + ‖u‖2

2,Ω + ‖∇u‖2
2,Ω

)
,

(33)

where C0 = min
{

2c∗0 ; 2
}

.
Let us represent Inequality (33) in the form:

Dα
0,t

(
1 + ‖u‖2

2,Ω + ‖∇u‖2
2,Ω

)
+ C0

(
1 + ‖u‖2

2,Ω + ‖∇u‖2
2,Ω

)
≤ C0 + 2cb1γ(p)

(
1 + ‖u‖2

2,Ω + ‖∇u‖2
2,Ω

)
.
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or
Dα

0,t

(
1 + ‖u‖2

2,Ω + ‖∇u‖2
2,Ω

)
+ C0

(
1 + ‖u‖2

2,Ω + ‖∇u‖2
2,Ω

)
≤ (C0 + 2cb1γ(p))

(
1 + ‖u‖2

2,Ω + ‖∇u‖2
2,Ω

)
.

Denoting y(t) ≡ 1 + ‖um(x, t)‖2
2,Ω + ‖∇um(x, t)‖2

2,Ω, then the last inequality will be
written as:

Dα
0,ty(t) + C0y(t) ≤ (2cb1γ(p) + C0)y(t).

From here, we obtain:

y(t) ≤ Eα,1(−C0tα)y(0) + (C0 + 2cb1γ(p))
∫ t

0
(t− s)α−1Eα,α

(
−C0(t− s)α)y(s)ds, (34)

In Inequality (34), applying (13) and (14), we obtain:

y(t) ≤ M1y(0) + (C0 + 2cb1γ(p))M2

t∫
0

(t− s)α−1y(s)ds.

From the latter, taking into account the above notation, we have:

1 + ‖um‖2
2,Ω + ‖∇um‖2

2,Ω ≤ M1

(
1 + ‖um(x, 0)‖2

2,Ω + ‖∇um(x, 0)‖2
2,Ω

)
+C1M2

∫ t
0 (t− s)α−1

(
1 + ‖um(x, s)‖2

2,Ω + ‖∇um(x, s)‖2
2,Ω

)
.

(35)

We consider the function:

U(t) ≡ sup
s∈[0,t]

(
‖um(x, s)‖2

2,Ω + ‖∇um(x, s)‖2
2,Ω

)
Then from Inequality (35) we obtain the following inequality:

1 + U(t) ≤ M1 + C1M2
tα

α
+ C1M2

tα

α
U(t). (36)

It is clear that at M1 + C1M2
tα

α < 1, M1 < 1, C1M2
tα

α < 1, i.e., t < t1, M1 < 1, where

tα
1 = min

{
α

C1 M2
; α(1−M1)

C1 M2

}
, Inequality (36) holds if and only if U(t) = 0 at t ≤ t1. However,

then, from (35), we obtain such an inequality:

1 + U(t2) ≤ M1 + C1M2
tα
2 − tα

1
α

+ C1M2
tα
2 − tα

1
α

U(t2),

that under conditions

M1 + C1M2
tα
2 − tα

1
α

< 1,C1M2
tα
2 − tα

1
α

< 1, i.e., tα
2 < 2tα

1 ,

holds if and only if U(t) = 0 at t ≤ t2. Continuing this procedure, we will eventually obtain:

U(t) = 0 for t ∈ [0, T],

which leads to
∫

Ω

(
|u|2 + |∇u|2

)
dx = 0 almost everywhere on the time interval, meaning

that the weak generalized solution is unique. Thus, the uniqueness of the generalized
solution of the problem K(1)–(3) is proved. �
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2.6. Solvability of a Problem with Nonlinear Boundary Conditions for One Variant of a Fractional
Order Pseudo-Parabolic Equation

As before, we consider in the cylinder QT = {(x, t) : x ∈ Ω, Ω ⊂ Rn, 0 < t < T} the
initial-boundary problem for Equation (1), assuming that the coefficient b(x, t) = −q(x, t):

Dα
0,t(u− ∆u)− ∆u + c(x, t)u + q(x, t)|u|p−2u = 0, (37)

where q(x, t) is a given function. With respect to the coefficients of Equation (37), we
assume that the following conditions are met:

c(x, t) ≥ c∗0 > 0, 0 < q0 ≤ q(x, t) ≤ q1, ∀(x, t) ∈ QT ,∣∣∣Dα
0,tq(x, t)

∣∣∣ ≤ q2, 0 < K0 ≤ K(x, t) ≤ K1, ∀(x, t) ∈ QT .
(38)

Problem Kq. Find a solution of Equation (37) satisfying the conditions (2)–(3).
Similarly, as shown in Section 2, taking into account b(x, t) = −q(x, t), the concept of

a weak generalized solution of the problem Kq is defined.

Theorem 5. Let Condition (38) be satisfied and 1 ≤ p ≤ 2n
n−2 , 1 ≤ σ ≤ 2(n−1)

n−2 , n ≥ 3. Then for
any function u0(x) ∈W1

2 (Ω) almost everywhere on the interval (0, T) there is a weak generalized
solution u(x, t) of the Problem Kq.

Proof of Theorem 5. Proceeding in the same way as shown in Section 3, we will look for
an approximate solution of the Problem Kq, in the form (6). In this case, υmk(t) will be
found from the following system:

m
∑

k=1
Dα

0,tυmk(t)
∫

Ω

{
ΨkΨj +

m
∑

i=1

∂Ψk
∂xi

∂Ψj
∂xi

}
dx +

∫
Ω c(x, t)umΨjdx +

∫
Ω∇um∇Ψjdx

+∑m
k=1 υmk

∫
Γ K(x, t)|um|σ−2ΨkΨjdΓ+∑m

k=1 υmk
∫

Ω q(x, t)|um|p−2ΨkΨjdx = 0,

(39)

with Conditions (8) and (9).
Let us introduce the notation

→
υ m = {υ1m(t), . . . , υmm(t)}T ,

→
α ≡ {α1, . . . , αm}T , akj =

∫
Ω

[
ΨkΨj +

(
∇Ψk∇Ψj

)]
dx,

Ckj =
∫

Ω c(x, t)ΨkΨjdx +
∫

Ω∇Ψk∇Ψjdx,

qkj = −
∫

Γ K(x, t)|um|σ−2ΨkΨjdΓ−
∫

Ω q(x, t)|um|p−2ΨkΨjdx,

Am ≡
{

ajk

}
,
→
Cm ≡

{
Cjk

}
,
→
F m

(→
υ m

)
≡
{

qjk

(→
υ m

)}→
υ m.

Then, the system of Equations (8) and (39) takes the matrix form:

AmDα
0,t
→
υ m +

→
Cm
→
υ m = −

→
F m

(→
υ m

)
,
→
υ m(0) =

→
α .

Multiply both parts of (39) by υmj(t) and sum over j =
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Ω

{
umDα

0,tumdx +∇umDα
0,t∇um

}
dx +

∫
Ω|∇um|2dx +

∫
Ω c(x, t)|um|2dx

+
∫

Γ K(x, t)|um|σdΓ +
∫

Ω q(x, t)|um|pdx = 0.

Applying Lemma 1 and Condition (38), we obtain the inequality:

1
2 Dα

0,t
∫

Ω

{
|um|2 + |∇um|2

}
dx +

∫
Ω|∇um|2dx + c∗0

∫
Ω|um|2dx

+K0
∫

Γ|um|σdΓ + q0
∫

Ω|um|pdx ≤ 0.
(40)



Fractal Fract. 2021, 5, 134 14 of 17

From Inequality (40), it follows that

Dα
0,ty(t) + C0y(t) ≤ 0,

y(0) = y0 = ‖um(x, 0‖)2
2,Ω + ‖∇um(x, 0‖)2

2,Ω,

where C0 = min
{

2c∗0 ; 2
}

, y(t) = ‖um(x, t‖)2
2,Ω + ‖∇um(x, t‖)2

2,Ω.

Now let
−
y(t) be a solution of the following Cauchy problem:

Dα
0,t
−
y(t) + C0

−
y(t) = 0,

−
y(0) =

−
y0 = ‖um(x, 0)‖2

2,Ω + ‖∇um(x, 0)‖2
2,Ω.

The solution of this problem can be written explicitly as:

−
y(t) = Eα,1(−C0tα)y(0).

Since the Inequality y(t) ≤ −y(t) holds, and taking into account (13), we obtain:

y(t) ≤ Eα,1(−C0tα)y(0) ≤ M1y(0)
1 + C0tα

.

Thus, it is shown that

‖um(x, t)‖2
2,Ω + ‖∇um(x, t)‖2

2,Ω ≤
M1

(
‖u(x, 0)‖2

2,Ω + ‖∇u(x, 0)‖2
2,Ω

)
1 + C0tα

≤ C1, ∀t ≥ 0.

Now we multiply Equality (39) by Dα
0,tυmj(t) and sum by j =
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‖Dα
0,tum‖2

2,Ω + ‖∇Dα
0,tum‖2

2,Ω =
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∫

Ω∇umDα
0,t∇umdx−

∫
Ω c(x, t)umDα

0,tumdx

−
∫

Γ K(x, t)|um|σ−2umDα
0,tumdΓ−

∫
Ω q(x, t)|um|p−2umDα

0,tumdx.
(41)

The right-hand side of Identity (41) is evaluated similarly as (17). Thus, from Iden-
tity (41) we obtain:

‖Dα
0,tum‖2

2,Ω + ‖Dα
0,tum‖2

2,Ω ≤ C4,

for all t ∈ (0, T).
Furthermore, the proof of Theorem 5 is performed in the same way as when proving

Theorem 3. �

Now we prove the uniqueness of the weak generalized solution of the Problem Kq.

Theorem 6. Let u0(x) ∈W1
2 (Ω), p > 1, n ≥ 3 be executed. Then a weak generalized solution of

the Problem Kq (37), (2), (3) on interval (0, T) is unique.

Proof of Theorem 6. Assume that the Problem Kq (37), (2), (3) has two solutions u1(x, t) and
u2(x, t). Then their difference u(x, t) = u1(x, t)− u2(x, t) satisfies the condition u(x, 0) = 0
and the identity:

∫
Ω

(
Dα

0,tu ·ω +
n
∑

i=1
Dα

0,t
∂u
∂xi
· ∂ω

∂xi
+ c(x, t)uω

)
dx +

∫
Γ

K(x, t)
(
|u1|σ−2u1 − |u2|σ−2u2

)
ωdΓ

+
∫

Ω q(x, t)
(
|u1|p−2u1 − |u2|p−2u2

)
ωdx = 0,
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Due to the fact that ω(x, t) ∈ L2
(
0, T; W1

2 (Ω)
)
, then as ω(x, t) we can take u(x, t);

i.e., suppose ω(x, t) = u(x, t):∫
Ω

(
Dα

0,tu · u +
n
∑

i=1
Dα

0,t
∂u
∂xi
· ∂u

∂xi
+ c(x, t)|u|2

)
dx +

∫
Γ

K(x, t)|u|σ−2
(
|u1|σ−2u1 − |u2|σ−2u2

)
udΓ

+
∫

Ω q(x, t)
(
|u1|p−2u1 − |u2|p−2u2

)
udx = 0.

(42)

By applying Lemma 1 to Inequality (31), from (42), we obtain the differential inequality:

Dα
0,t

∫
Ω

[
|u|2 + |∇u|2

]
dx + C0

∫
Ω

[
|u|2 + |∇u|2

]
dx + K0

∫
Γ
|u|σdΓ + q0

∫
Ω
|u|pdx ≤ 0, (43)

where C0 = min
{

2c∗0 ; 2
}

.
Inequality (43) can be written as:

Dα
0,t

∫
Ω

[
|u|2 + |∇u|2

]
dx + C0

∫
Ω

[
|u|2 + |∇u|2

]
dx ≤ 0.

From the last inequality it follows that

Dα
0,ty(t) + C0y(t) ≤ 0,

y(0) = ‖um(x, 0)‖2
2,Ω + ‖∇um(x, 0)‖2

2,Ω = 0,

where:
y(t) ≡ ‖um(x, t)‖2

2,Ω + ‖∇um(x, t)‖2
2,Ω.

Now let
−
y(t) be a solution of the following Cauchy problem:

Dα
0,t
−
y(t) + C0

−
y(t) = 0,

−
y(0) = ‖um(x, 0)‖2

2,Ω + ‖∇um(x, 0)‖2
2,Ω = 0.

(44)

The solution of this problem can be written explicitly as follows:

−
y(t) = Eα,1(−C0tα)y(0).

Since the inequality y(t) ≤ −y(t) is satisfied by virtue of Estimate (13), we obtain:

y(t) ≤ Eα,1(−C0tα)y(0), t ≥ 0,

which, by virtue of (44), implies the uniqueness of a weak generalized solution of the
problem Kq (37), (2), (3). Thus, Theorem 6 is proved. �

3. Discussion and Conclusions

Note that the problems of solvability of the Dirichlet and Neumann problem analogues
for a linear degenerate pseudo-parabolic equation with a fractional Caputo derivative are
studied in [3,6–8].

For integer values α = 1 and α = 2, the theorems on the existence and uniqueness of a
weak solution of the analogue of the problem K (1)–(3) are proved in [30–32].

This paper provides the first study of the problems of unique solvability of initial
boundary value problems for a quasi-linear pseudo-parabolic fractional equation with
nonlinear boundary conditions with Caputo fractional differentiation operators.

The following main results are obtained for the fractional order quasi-linear pseudo-
parabolic Equation (1):

- The questions of unique solvability of boundary value problems are formulated and
investigated, the difference of which is that the fractional differentiation operators
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participate both in the equation itself and in the boundary condition in the form of a
nonlinear condition;

- A theorem on the local solvability of the problem K is proved for 2 < p < 2n
2 ,

2 < σ < 2(n−1)
n−2 , n ≥ 3;

- The uniqueness theorem of the local solution of the problem K is proved if the
conditions are satisfied (2 < p < 2n

2 , n ≥ 3);
- The uniqueness theorem of a global solution of the Problem K for 1 < p ≤ 2 and

the existence theorem of a global solution of the problem K under the conditions
1 < σ < 2(n−1)

n−2 , n ≥ 3 are established;
- For one variant of a pseudo-parabolic equation of fractional order, the existence and

uniqueness theorems of a global solution of an initial boundary value problem with
nonlinear boundary conditions are proved.
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