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Abstract: The covariance matrix of measurement noise is fixed in the Kalman filter algorithm. How-
ever, in the process of battery operation, the measurement noise is affected by different charging and
discharging conditions and the external environment. Consequently, obtaining the noise statistical
characteristics is difficult, which affects the accuracy of the Kalman filter algorithm. In order to
improve the estimation accuracy of the state of charge (SOC) of lithium-ion batteries under actual
working conditions, a fuzzy fractional-order unscented Kalman filter (FFUKF) is proposed. The
algorithm combines fuzzy inference with fractional-order unscented Kalman filter (FUKF) to infer the
measurement noise in real time and take advantage of fractional calculus in describing the dynamic
behavior of the lithium batteries. The accuracy of the SOC estimation under different working
conditions at three different temperatures is verified. The results show that the accuracy of the
proposed algorithm is superior to those of the FUKF and extended Kalman filter (EKF) algorithms.

Keywords: Kalman filter; state of charge; fuzzy inference; lithium-ion batteries

1. Introduction

The automobile industry has payed extensive attention to new energies to reduce the
emissions of greenhouse gases [1]. An important component of the new energy vehicles is
the power battery system. Lithium-ion batteries have the advantage of high energy density
and excellent performance cycles [2]. However, their safe and effective management are
crucial. The battery management system (BMS) is critical and the state of charge (SOC)
estimation plays a vital role in the BMS [3,4]. However, the SOC of the power battery
cannot be measured directly, and some efficient and accurate estimation methods must be
employed. Compared with electrochemical and data-driven models, the equivalent circuit
model (ECM) was widely adopted in recent years, which uses ideal resistors, capacitors,
constant voltage sources and other circuit devices to form a circuit network that describes
the characteristics of power batteries [5]. In addition, to obtain a reliable battery model,
the SOC estimation also requires a high precision algorithm. Recently, effective estimation
methods have been presented, such as the open circuit voltage (OCV) method [6], ampere-
hour integration method [7,8], Kalman filter algorithm, neural network method [9,10],
sliding mode observer [11,12], H∞ filter [13,14], adaptive particle filter [15] and others.
Each of these methods presents advantages and disadvantages. For example, the OCV is
the most direct method, but it requires the battery to stand for a long enough time. The
ampere-hour integration method is classic, easy and widely used, but its initial SOC is
difficult to obtain. The neural network method is popular with high estimation accuracy,
but it requires a large amount of experimental data as prior knowledge, and these data can
fully reflect the characteristics of the battery.
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The Kalman filter is currently the most used estimation algorithm. It includes the
extended Kalman filter (EKF) [16–18], unscented Kalman filter (UKF) [19,20], adaptive
Kalman filter [21–23], fuzzy unscented Kalman filter [24] and other variants. The EKF
uses the Taylor expansion to linearize high-order terms, resulting in error accumulation
during the iterative process. The UKF uses the unscented transformation to linearize
the nonlinear function of random variables by linear regression. Generally speaking, the
unscented transformation is more accurate than the Taylor series approach. However, the
statistical characteristics of the measurement noise are vital for the UKF, being difficult
to obtain accurately. Indeed, the statistical characteristics of the noise are affected by
uncertain factors, such as the system noise, which causes the UKF to converge slowly
and even to diverge. The adaptive Kalman filter method can estimate the process and the
observation noise online, improving the accuracy of the estimation [25]. However, when
the nonlinearity is strong, the estimation accuracy is limited.

Recently, it was found that fractional-order ECM (FECM), where constant phase
elements (CPE) are used instead of ideal capacitors [26], have advantages for describing
the dynamic behavior of lithium batteries. The FECM can accurately simulate the double-
layer effect of the battery electrode. Therefore, SOC algorithms based on FECM, such
as fractional-order unscented Kalman filter (FUKF) [27,28] and fractional-order extended
Kalman filter (FEKF) [29–31] have been proposed. Experimental results have also shown
that these methods improve the accuracy of the estimation when compared with the ECM.
However, the statistical characteristics of the measurement noise are still hard to obtain
accurately [32] and affect greatly the accuracy of the SOC estimation. In order to mitigate
this shortcoming, a new fuzzy fractional-order unscented Kalman filter (FFUKF) that
combines fuzzy inference and FUKF is proposed. This method can infer the measurement
noise in real time and has higher accuracy compared with traditional algorithms, according
to the difference between the actual and the theoretical value of the noise measurements.
The covariance matrix of the measurement noise is adjusted continuously to make the
FUKF more adaptive and accurate.

The main objective of this paper is (1) to propose a fractional-order second-order RC
equivalent circuit model of lithium batteries based on particle swarm optimization (PSO),
(2) to derive a FFUKF to solve the influence of measurement noise on SOC estimation accu-
racy, (3) to test the FFUKF under different working conditions and compare its performance
with the FUKF and EKF.

The paper is organized as follows. Section 2 introduces the fractional-order model
and its parameter identification. Section 3 presents the fuzzy controller. Section 4 lists the
steps of the FFUKF algorithm. Section 5 compares the results with those obtained with
existing algorithms. Section 6 outlines the main conclusions.

2. Theory and Method Research
2.1. Fractional-Order Calculus

In contrast with the integer-order derivative, the fractional-order derivative have many
definitions, such as the Grünwald-Letnikov (GL), Riemann-Liouville (RL), and Caputo
formulations. Here, the GL definition is used [33]:

t0 Dα
t x(t) = lim

∆T→0

(
1

∆Tα

) [t/∆T]

∑
j=0

(−1)j
(

α
j

)
x(t− j∆T), (1)

(
α
j

)
=

Γ(α + 1)
Γ(j + 1) · Γ(α− j + 1)

. (2)

with Γ(α) given by:

Γ(α) =
∫ +∞

0
ξα−1e−ξ dξ, (3)
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where t denotes the variable, with lower bound t0, ∆T stands for the sampling time, and
[t/∆T] is the memory length. The continuous-time GL derivative t0 Dα

t can be discretized
with a fixed memory length L, yielding:

Dαxk+1 =
1

∆Tα
xk+1 +

(
1

∆Tα

) L+1

∑
j=1

(−1)j
(

α
j

)
xk+1−j. (4)

2.2. Fractional-Order Model

In order to describe accurately the internal electrochemical reaction that occurs in
a battery, and to design an accurate and reliable lithium-ion battery SOC estimation
algorithm, an accurate model is necessary. It has been shown that the ECM describes
well the battery characteristics and that a second-order RC model yields good results in
terms of accuracy and computational complexity [34]. Usually, the ECM includes two ideal
resistors. However, for the complex electrochemical reactions inside the battery, the ideal
capacitance cannot be simulated reasonably. Therefore, the CPE has been used instead of
ideal capacitors, which resulted in the FECM. The impedance of a CPE is given by:

Z(s) =
1

Csα
. (5)

The fractional-order RC circuit used here is shown in Figure 1, where Uoc stands
for the open circuit voltage, R0 is the ohmic internal resistance, and R1 and R2 are the
electrochemical polarization and concentration polarization resistances, respectively. The
CPE1 and CPE2 stand for the fractional capacitors, V0 represents the terminal voltage of the
battery, and I corresponds to the load current. If we denote by V1 and V2 the voltages on
the two parallel associations, respectively, then the dynamic equations can be expressed as:

DαV1(t) = −
V1(t)
R1C1

+
I(t)
C1

,

DβV2(t) = −
V2(t)
R2C2

+
I(t)
C2

.
(6)

where α, β ∈ (0, 1) are the fractional orders of CPE1 and CPE2, respectively. The variable
Qn is the nominal capacity of the lithium-ion battery and η is the Coulomb efficiency. The
SOC of the lithium battery can be written as:

dSOC(t)
dt

= − η

Qn
I(t). (7)

It follows from the Kirchhoff’s voltage law that the output equation is given by:

V0(t) = Uoc − I(t)R0 −V1(t)−V2(t), (8)

where OCV is a nonlinear function of the SOC. Equation (8) has been used to describe the
OCV-SOC relationship [35,36], which is usually expressed as:

f [θ(t)] = Uoc =
4

∑
i=0

aiSOC(t), (9)

where ai (i = 0, · · · , 4) are polynomial coefficients.
Further, the state space equation of the lithium-ion battery can be established as:{

Dη x(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(10)
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where η = [α, β, 1]T represents the incommensurate order vector, x(t) = [V1, V2, SOC]T is
the state vector, u(t) denotes the system input (battery current I(t)) and y(t) represents the
system output (battery terminal voltage V0). The matrices A, B, C and D are given as:

A =

 − 1
R1C1

0 0
0 − 1

R2C2
0

0 0 0

, B =


1

C1
1

C2
− η

Qn

, (11)

C = [−1 −1
f [θ(t)]

SOC(t)
], D = −R0. (12)

With Equation (4) in mind, model (10) can be written in discrete time:
xk+1 = A1xk + B1uk −

L+1

∑
j=2

(−1)jγ
η
j xk+1−j,

yk = f (θk)−V1k −V2k − R0 Ik.

(13)

The matrices of A1, B1 and γ
η
j are as follows:

A1 = diag((∆T)α, (∆T)β, (∆T))A + diag(α, β, 1), (14)

B1 = diag((∆T)α, (∆T)β, (∆T))B, (15)

γ
η
j = diag

((
α
j

)
,
(

β
j

)
,
(

1
j

))
. (16)

CPE2

V1 V2

R1 R2

R0   

V0

Uoc

CPE1

I

Figure 1. Equivalent circuit model of a lithium battery.

2.3. Model Parameter Identification and Validation

The main current and voltage data of the battery INR 18650-20R with a capacity
2000 mAH are provided by the CALCE Battery Research Group. The experimental platform
is composed by the test samples, a thermal chamber (Weiss-Voetsch, Germany), an Arbin
BT2000 battery test system (ARBIN, TX, USA), and a PC with Arbin software (V4.27,
Caltest Instruments Ltd, Petersfield, UK) to give orders to the test system and monitor data
information. All tests were performed for 0.8 and 0.5 battery level at 0 ◦C, 25 ◦C and 45 ◦C.
We use three typical current and voltage test data sets of the vehicle operating conditions:
Dynamic Stress Test (DST), Federal Urban Driving Schedule (FUDS) and Beijing Dynamic
Stress Test (BJDST). Through the analysis of the established fractional-order model, we
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need to identify twelve parameters, which are a0, a1, a2, a3, a4, R0, R1, C1, R2, C2, α and β.
Here, a PSO is used as the identification algorithm, but other methods are possible to
estimate the parameters, such as, for example, the observer method [37,38]. The PSO
originated in the study of the behavior of birds. The basic idea of the algorithm is to find
optimal solutions through collaboration and information sharing between individuals in
a group. The advantage of PSO is that it is simple and easy to implement with a limited
number of parameter adjustments. Here, we set the goal of minimizing the root mean
square error (RMSE) between the measured and the estimated voltages. Therefore, we
define the objective function E as:

minE =
n

∑
k=1

[Vo(k)− V̂o(k)]2, (17)

where Vo(k) and V̂o(k) are the measured and estimated voltages, respectively, and n is the
number of the sampling points.

Table 1 shows the results of the parameter identification of the fractional-order model.
For model validation, the DST is used. The current and voltage profiles of the DST at a
temperature of 25 ◦C are shown in Figure 2. We verify that the DST condition is composed
of many small cycles, each with a duration of 350 s [39]. Here, to reduce the complexity,
a cycle is selected for parameter identification. Figure 3 presents the current and voltage
profiles of a cycle. Figures 4 and 5 show the accuracy of the fractional-order model, which
is also compared with an integer-order model. From Figure 5, we observe that the error
of the fractional-order model can be kept within 40 mV. However, the maximum error
of the integer-order model is 80 mV. The RMSE of the two models is 0.0125 and 0.0573,
respectively. Therefore, from Figures 3–5, one can see that the fractional-order model can
perform better than the integer-order one in modeling the change of terminal voltage, and
that the fractional-order model is more accurate.

Table 1. The results of the fractional-model parameter identification.

a0 a1 a2 a3 a4 R0

2.4877 1.8243 0.6608 1.1131 −3.2348 0.0687

R1 C1 R2 C2 α β

0.5975 264.25 1.2679 448.54 0.4325 0.4380
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Figure 2. Current and voltage profiles of the operation conditions: DST.
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Figure 3. Current and voltage data of a DST cycle.
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Figure 4. Accuracy verification of the model.
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Figure 5. Output terminal voltage error curve.

3. Fuzzy Controller

The selection of the membership functions is very significant for the performance of
a fuzzy controller. There is no ready-made rule for the establishment of the membership
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functions, and most of the methods are still based on experience and experimentation. The
membership functions used here are shown in the Figure 6.

Fuzzy control is an effective method to solve the influence of measurement noise on
the accuracy of SOC estimation in a complex environment. The fuzzy controller includes
three main parts, as illustrated in Figure 7. First, we start the fuzzy processing on the
input value Gk, based on the input membership function, to obtain the corresponding
fuzzy index, where Gk is the difference between the theoretical and actual covariances
Mk and Nk. Second, we establish the fuzzy rules as shown in Table 2. Large observation
noise leads to changes in the actual covariance Nk, while the theoretical covariance Mk
is affected by changes in the observation noise variance Vk. To maintain the consistency
regarding changes between Mk and Nk, when the observation noise is large (small), we
adjust the output value µk to expand (reduce) Vk so that Gk is close to 0. Finally, we perform
the inverse fuzzy processing, according to the output membership function, to obtain µk.
Therefore, we can get a new noise variance V̂k to perform the update of the observation
noise variance adaptively.
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Figure 6. Input and output membership functions.

Fuzzy

quantization

Fuzzy

rule

Fuzzy

inference

Inverse

fuzzification
Object

G(k)G(k) gg uu U(k)U(k)M(k)
N(k)

Figure 7. Fuzzy controller diagram.

Table 2. Fuzzy rules.

Input fuzziness NB NS Z PS PB

Output fuzziness NB NS Z PS PB

4. SOC Estimation

Firstly, the observability of the battery model is analyzed. A method to determine the
observability of continuous time multi-order fractional-order systems was proposed in [40].
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The fractional-order system is observable if its observability matrix is full rank. According
to the Equations (10)–(12), we can get that the observability matrix O of the system is:

O =

 1 1 − Uoc
SOC

− 1
R1C1

0 0
0 − 1

R2C2
0

. (18)

It is easy to see that this matrix is full rank. Therefore, the second-order FECM is
observable. Compared to the FUKF, the FFUKF reveals higher accuracy and efficiency for
SOC estimation. In this section, we discuss in detail the main steps of the FFUKF algorithm.
The fractional-order system is given by:

Dη xk+1 = f (xk, uk) + ωk,

xk+1 = Dη xk+1 −
L+1

∑
j=1

(−1)jγjxk+1−j,

yk = h(xk) + Vk,

(19)

where xk represents the system state variable, uk and yk denote the system input and
output, respectively, f (xk, uk) stands for the system process model, and h(xk) is the system
measurement model. The symbol ωk represents a Gaussian process noise and Vk corre-
sponds to measurement noise. The variables Q and R represent the covariance matrices of
ωk and Vk, respectively.

The flow chart of the FFUKF is illustrated in Figure 8. The detailed FFUKF steps are
presented as follows:

Calculate Sigma points

Update the prior states

estimation

Estimate mean and

covariance of y(k)

Calculate Sigma points

Update the observation

noise variance

Update the posterior

states estimation

Parameter initialization

                                        

Time update

                  Observation update

SOC value

Figure 8. Flow chart of the FFUKF.

1 Initialization

(1) Give the initial state xo, Q, R and state error covariance P.

2 Time updating

(1) Calculate sigma points using the singular value decomposition:
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Pk−1|k−1 = Uk−1Sk−1VT
k−1,

x0,k−1|k−1 = x̂k−1|k−1,

xi,k−1|k−1 = x̂k−1|k−1 + ρUi
√

si,

i = 1, 2, · · · , n

xi,k−1|k−1 = x̂k−1|k−1 − ρUi
√

si,

i = n + 1, n + 2, · · · , 2n,

(20)

where ρ is a scale coefficient that we can set equal to 1. The symbols si and Ui
are the ith eigenvalue and eigenvector of Sk−1 and U(k−1). The weight of sigma
points can be calculated by the formula:

ω0
m =

λ

n + λ
,

ω0
c =

λ

n + λ
+ (1− α2 + β),

ωi
m = ωi

c =
1

2(n + λ)
, i = 1, 2, · · · , 2n,

(21)

where λ denotes α2(n + k)− n, α and k represent scaling and tuning parameters,
respectively, n is the dimension of the state vector x, and β is a parameter related
to the noise type.

(2) Transform the sigma sampling points using the nonlinear function f (·):
φi,k−1|k−1 = f (xi,k−1|k−1, uk−1), i = 0, 1, ...2n,

Dη x̂k|k−1 =
2n

∑
i=0

ωi
mφi,k−1|k−1.

(22)

(3) Update the prior states estimation. The mean and covariance of Dη xk and xk can
be calculated by: 

P∆∆
k|k−1 = Cov[Dη xk|yk−1

],

=
2n

∑
i=0

ω
j
c(φi,k−1|k−1 − Dη x̂k|k−1),

× (φi,k−1|k−1 − Dη x̂k|k−1)
T + Q,

P∆∆
k|k−1 = Cov[xk−1, Dη xk|yk−1

],

=
2n

∑
i=0

ω
j
c(φi,k−1|k−1 − Dη x̂k|k−1),

× (φi,k−1|k−1 − Dη x̂k|k−1)
T ,

(23)



x̂k|k−1 = Dη x̂k|k−1 −
k

∑
j=1,

(−1)jγj x̂k−j|k−j,

Pk|k−1 = P∆∆
k|k−1 + γ1Px∆

k|k−1

+ P∆x
k|k−1γ1 +

k

∑
j=1

γjPk−j|k−jγj.

(24)
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3 Observation updating

(1) Calculate sigma points using the singular value decomposition. The weight of
the sigma points is obtained using (20):

Pk|k−1 = Uk−1Sk−1VT
k−1,

x0,k−1|k−1 = x̂k−1|k−1,

xi,k−1|k−1 = x̂k−1|k−1 + ρUi
√

si,

i = 1, 2, · · · , n

xi,k−1|k−1 = x̂k−1|k−1 + ρUi
√

si,

i = n + 1, n + 2, · · · , 2n.

(25)

(2) Transform the sigma sampling points using the nonlinear function h(·):
θi,k|k−1 = h(xi,k|k−1), i = 0, 1, · · · , 2n,

ŷk|k−1 =
2n

∑
i=0

ωi
mθi,k|k−1.

(26)

(3) Estimate the observation-error covariance matrix:

Pyy
k|k−1 = Cov[yk|yk−1],

=
2n

∑
i=0

ω
j
c(θi,k|k−1 − ŷk|k−1),

× (θi,k|k−1 − ŷk|k−1)
T + R,

Pxy
k|k−1 = Cov[xk, yk|yk−1],

=
2n

∑
i=0

ω
j
c(θi,k|k−1 − ŷk|k−1),

× (θi,k|k−1 − ŷk|k−1)
T .

(27)

(4) Calculate the theoretical and actual covariances:

Mk =
2n

∑
i=0

ω
j
c(θi,k|k−1 − ŷk|k−1),

× (θi,k|k−1 − ŷk|k−1)
T + R,

Nk =
1
n

k

∑
i
[yi − yi|i−1][yi − yi|i−1]

T .

i = k− n + 1.

(28)

(5) Update the observation noise variance:{
Gk = Mk − Nk,

V̂k = µkVk,
(29)

where Gk is the input value of the fuzzy controller and µk is the output value as
an adjusted factor through the fuzzy inference system. We can then obtain the
new Pyy

k|k−1.
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(6) Update the posterior states estimation:
Kk = Pxy

k|k−1(Pyy
k|k−1)

−1,

x̂k|k = x̂k|k−1 + K(yk − ŷk|k−1),

Pk|k = Pk|k−1 − KkPyy
k|k−1KT

k ,

(30)

where Kk is the Kalman filter gain. With the update of Vk, we can get the updated
Kalman filter gain Kk and the state error covariance matrix Pk|k.

5. Numerical Verification and Discussion

The current and voltage data under FUDS and BJDST conditions are used to verify
the accuracy of the SOC estimation algorithm. The corresponding current and voltage
profiles at the temperature of 25 ◦C are shown in Figure 9. Due to limited space, we omit
the current and voltage data at 0 ◦C and 45 ◦C, available at the CALCE Battery Research
Group. To verify the validity and feasibility of the proposed method, we also compare the
FFUKF with the EKF and FUKF algorithms.
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Figure 9. Current and voltage profiles of the operation conditions: FUDS and BJDST.

5.1. Experimental Results at 25 ◦C

Figures 10 and 11 show the SOC estimation results and estimation error, respectively.
The blue line corresponds to the FFUKF. The red and magenta lines stand for FUKF
and EKF, respectively. Also, the three algorithms are compared with the reference value
represented by a black line. The closer to the reference, the higher the estimation accuracy
of the algorithm. In order to see the differences between each algorithm more clearly,
Figure 10 is partially magnified. We verify that the estimation results of the FFUKF are
closer to the reference value. Under the two operating conditions, one can note that the
FECM-based (FFUKF and FUKF) algorithm has higher accuracy than the ECM-based (EKF).
Also, the FFUKF is more accurate than the FUKF. From Figure 11, the absolute estimation
error of SOC of the FFUKF is no more than 0.005 under the two operating conditions,
but the error of the other two algorithms is above 0.005 during the whole cycle. Even if
disturbed by the noise environment, the FFUKF can still maintain high accuracy without
large fluctuation, which shows that the proposed algorithm is stable to a certain extent.
Additionally, it is clear that the error of the FFUKF is smoother than the one of the EKF,
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which confirms the superiority of the FFUKF in noisy environment. Table 3 summarizes
the RMSE of the EKF, FUKF and FFUKF at 25 ◦C. Under the two operation conditions, the
RMSE of the proposed algorithm is bellow 0.20%. However, the RMSE of the other two
algorithms are 0.68% and 1.95%, respectively. This more clearly shows that our proposed
algorithm has high accuracy over traditional methods.
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Figure 10. The SOC estimation curves under BJDST and FUDS at 25 ◦C.
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Figure 11. The SOC estimation error curves under BJDST and FUDS at 25 ◦C.
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Table 3. The RMSE under BJDST and FUDS at 25 ◦C.

RMSE EKF FUKF FFUKF

FUDS 0.87% 0.67% 0.20%

BJDST 1.95% 0.68% 0.13%

Because SOC estimation of lithium-ion batteries is affected by temperature, preserving
the SOC estimation accuracy at different temperatures is crucial. As such, we carried out
two sets of experiments at 0 ◦C and 45 ◦C to demonstrate the robustness of the proposed
method at different temperatures.

5.2. Experimental Results at 0 ◦C

Figures 12 and 13 show the SOC estimation results and the estimation error under two
cases at 0 ◦C, respectively. The ECM-based algorithm is obviously much worse than the
FECM-based one in terms of accuracy. Figure 12 is partially magnified in order to highlight
the differences. According to Figure 12, one can see that the blue line, representing the
FFUKF, is closer to the reference value, which also shows that the estimation accuracy of
the FFUKF is higher. From Figure 13, it is easy to see that the FFUKF can also maintain
high accuracy at low temperatures. Most of the time, the estimation error of the FFUKF is
kept within 0.005. The estimation errors of the other two algorithms are more than 0.01
in most of the time. In addition, the estimation error of the EKF fluctuates greatly, which
shows that the EKF is very unstable in low temperature environment. The FFUKF has small
fluctuation, which shows that it can maintain good estimation accuracy and has a certain
stability even at low temperature. Table 4 gives a more intuitive explanation through the
RMSE. Under FUDS, the RMSE of the FFUKF is 0.20%. However, the RMSE of the other
two methods are more than 0.85%. Meanwhile, the RMSE of the FFUKF is lower than that
presented by traditional algorithm. This proves once again that our method is superior
to the traditional methods in low temperature environment. Under the two conditions,
although the result is worse than that under the temperature of 25 ◦C, the maximum error
of the FFUKF is still less than 0.32%.
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Figure 12. The SOC estimation curves under BJDST and FUDS at 0 ◦C.
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Figure 13. The SOC estimation error curves under BJDST and FUDS at 0 ◦C.

Table 4. The RMSE under BJDST and FUDS at 0 ◦C.

RMSE EKF FUKF FFUKF

FUDS 0.88% 0.85% 0.20%

BJDST 1.49% 1.04% 0.32%

5.3. Experimental Results at 45 ◦C

Figures 14 and 15 show the SOC estimation results and the estimation error under
FUDS and BJDST at 45 ◦C, respectively. Figure 14 is also partially magnified so that we can
more clearly observe which line is closer to the reference value represented by the black line.
Undoubtedly, compared with the other two traditional algorithms, the FFUKF represented
by the blue line is closer to the reference and has very high accuracy. Also, It follows from
Figure 14, that the ECM-based algorithm (EKF) is much worse than the FECM-based (FUKF
and FFUKF) one in terms of accuracy. At a higher temperature (45 ◦C), the FECM-based
algorithm still reveals smaller error. From Figure 15, under the two working conditions,
the SOC estimation error of our algorithm does not exceed 0.01 in most of the time, but
the estimation error of the other two algorithms are much more than 0.01. Especially, in
the case of FUDS, the error of the EKF varies quickly. The fluctuation of the FFUKF is
smaller than that of the EKF. This further verifies that our algorithm based on the FFUKF
has a certain stability at high temperature. The FFUKF still yields higher accuracy at a
higher temperature. Table 5 gives a more intuitive explanation through RMSE. In both
cases, the RMSE of the EKF and FUKF exceeds 1%, but the RMSE of the FFUKF does not
exceed 0.58%. This not only shows that the FFUKF is superior to the other two traditional
algorithms, but also maintains a certain accuracy under the condition of high temperature
and noise. However, compared with low temperature 0 ◦C and normal temperature 25 ◦C,
the accuracy is not good enough, which may be because the battery model we established
is vulnerable to high temperature.

From the above three sets of experiments, one can conclude that the accuracy of the
FFUKF is always better than the one obtained with the other two methods in all operating
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conditions (FUDS and BJDST). Moreover, although the operating conditions are poor, the
RMSE can almost be kept within 0.58%. It can maintain a certain stability even under
the conditions of ambient temperature and noise. More important, the FFUKF solves the
problem of low estimation accuracy caused by noise in practical operation. Obviously, the
estimation accuracy of the algorithm is relatively higher at the same temperature.
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Figure 14. The SOC estimation curves under BJDST and FUDS at 45 ◦C.
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Figure 15. The SOC estimation error curves under BJDST and FUDS at 45 ◦C.
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Table 5. The RMSE under BJDST and FUDS at 45 ◦C.

RMSE EKF FUKF FFUKF

FUDS 1.49% 1.08% 0.51%

BJDST 2.18% 1.20% 0.58%

6. Conclusions

In this paper a new SOC estimation algorithm named fuzzy fractional-order unscented
Kalman filter was proposed to estimate the SOC of lithium-ion batteries accurately. The
method can infer the measurement noise in real time, so as to improve the influence of the
measurement noise on the estimation results as the working conditions change. Compared
with the EKF and FUKF algorithms, the experimental results indicated that the proposed
method has better performance during the working conditions of BJDST and FUDS. It was
also verified that the accuracy of the proposed algorithm is better than the EKF and FUKF
at different temperatures.
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