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Abstract: The present work addresses some new controllability results for a class of fractional
integrodifferential dynamical systems with a delay in Banach spaces. Under the new definition of
controllability, first introduced by us, we obtain some sufficient conditions of controllability for the
considered dynamic systems. To conquer the difficulties arising from time delay, we also introduce a
suitable delay item in a special complete space. In this work, a nonlinear item is not assumed to have
Lipschitz continuity or other growth hypotheses compared with most existing articles. Our main
tools are resolvent operator theory and fixed point theory. At last, an example is presented to explain
our abstract conclusions.

Keywords: fractional integrodifferential dynamical systems; delay; controllability; resolvent operator;
fixed point theory

1. Introduction

The purpose of this work is to investigate the controllability of the following fractional
integrodifferential dynamical systems with a delay in Banach spaces:{ CDrz(t) = Az(t) + g(t, zt, Hz(t)) + Bx(t), t ∈ V := [0, T],

z(t) = ψ(t), t ∈ [−c, 0],
(1)

where the state variable z(·) takes values in Banach space E. CDr denotes the Caputo
derivative with order r ∈ (0, 1). A : D(A) ⊂ E→ E is a closed linear unbounded operator
on E. x is a control function defined in L2(V; U), where U is a Banach space. B : U → E
is a bounded linear operator. ψ(t) ∈ C([−c, 0]; E). g is a given nonlinear item satisfying
some appropriate hypotheses and

Hz(t) =
∫ t

0
h(t, s, zs)ds

with h : ∆ × L([−c, 0]; E) → E where ∆ = {(t, s) ∈ V × V : s ≤ t}. L([−c, 0]; E) is
the space of E-valued Bochner integrable functions on [−c, 0] with the norm ‖z‖L[−c,0] =∫ 0

−c
‖z(t)‖dt.

The theory of fractional calculus has a long-standing history, and has received con-
siderable attention due mainly to its potential and wide applications in various fields,
such as viscoelasticity, signal processing, pure mathematics, control, electromagnetics, etc.
(see [1–7]). In the modeling of many phenomena in various science and technology fields,
fractional differential equations, including both ordinary and partial ones, are considered
to be more powerful tools than their corresponding integer-order counterparts. Many
phenomena, such as electronics, fluid dynamics, biological models and chemical kinetics,
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cannot be described through classical differential equations; in these cases, integrodifferen-
tial equations play an important role in describing most of these natural phenomena. For
more details of fractional calculus theory, and the results of integrodifferential equations,
one can see [8–14], and the references therein.

Time delay occurs frequently and is inevitable in various practical systems of the real
world [15–19]. This is especially true for dynamical evolution processes which are closely
related to time. Hence, if we intend to accurately describe the evolution systems, we must
consider the effect of time delay. With the development of the applications for fractional
calculus, research into the controllability of fractional dynamical systems with delay is
increasingly extensive [20–25].

It is well known that control theory is an interdisciplinary subject involving economics,
engineering and mathematics, which investigates and analyses some dynamical behaviors
of various systems [26–32]. It is worth noting that controllability is of importance in
some research fields of networks such as logical control networks, and steady-state design
of large-dimensional Boolean networks. Logical control networks are widely used in
controllability, evolutionary games, stability and optimal control, and many fundamental
results have been established for them [33–35]. With the rapid development of control
theory, the problem of controllability for a special kind of logical control networks, Boolean
control networks, was also investigated by researchers. For more details of the recent
works in this regard, we refer readers to [36–38]. Controllability is one of the fundamental
concepts in mathematical control theory. On the one hand, in the study of controllability
for fractional dynamical systems, the hypothesis of noncompact semigroups is especially
important, as the compactness of the semigroups is only applicable in finite-dimensional
spaces, since the inverse of control operator cannot be ensured if the state space is infinite-
dimensional. Some technical errors caused by the compactness of semigroups have been
pointed out by Hernández et al. [39]. On the other hand, how to introduce the mild
solutions in infinite dimensional spaces is another particularly important step. For example,
Hernández et al. [40] also pointed out that the definition of mild solutions in some articles,
such as [23,41], was inappropriate because it was only a simple extension of the integer-
order mild solutions. We know that a fractional evolution dynamical system is usually
transformed into a form of Volterra integral equation to obtain its mild solutions. Therefore,
the theory of resolvent operators is a powerful tool to study such systems. Compared with
the mild solutions constructed by some probability density functions (El-Borai [42]), it is
found that in the investigation of evolution dynamical systems with unbounded operators
in infinite dimensional spaces, resolvent operators seem to be more appropriate since they
are direct generalizations of C0-semigroups and cosine families. This is why we adopted
the resolvent operator theory to define mild solutions and investigate the controllability of
the considered fractional dynamical systems in this paper.

Some excellent results concerning the controllability of various nonlinear fractional
dynamical systems were obtained. However, most of these controllability problems were in-
vestigated under the hypothesis that the nonlinear item f is Lipschitz continuous, compact
or satisfies some other growth conditions, see [20–23,43,44] for example. We point out that,
as a more stronger smooth condition than continuity, Lipschitz continuity, is only regarded
as an idealized supposition in many cases, which is difficult to apply to practical problems.
Furthermore, there are scarcely any results on the controllability of fractional integrodiffer-
ential dynamical systems with delay, except for [20,22–24]. However, in [20], the authors
still supposed the nonlocal item to be Lipschitz continuous, and that the nonlinear function
satisfied certain growth conditions. Notice that in [22–24], authors hobtained controllability
results for fractional delay differential and integrodifferential dynamical systems with the
nonlinear functions also being Lipschitz continuous. Therefore, a very natural question
is whether the considered fractional integrodifferential dynamical systems with delay are
controllable when the nonlinear item is only continuous, rather than Lipschitz continuous.
This is also the main motivation for the present work.
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Compared with the above-mentioned research, the main contributions of this work
are as below: (i) Under the new definition of controllability, we suppose that the nonlinear
function here only has continuity rather than Lipschitz continuity and other certain growth
assumptions. (ii) In order to overcome the obstacles caused by time delay, we utilize a
special complete space L([−c, 0]; E) in which to define the suitable time delay item zt.

The organization of the rest of this work is as follows. Some necessary preparations
are given in Section 2. In Section 3, sufficient conditions of the controllability for system (1)
are obtained. An example is provided in Section 4 to illustrate the effectiveness of the
abstract results.

2. Preliminaries

Notation 1. Let R denote the set of real numbers, R+ the set of positive numbers. Γ is the gamma
function. I represents the identity operator. Suppose E to be a Banach space along with the norm ‖ · ‖.
B : U → E is a bounded linear operator where U is also a Banach space. A : D(A) ⊂ E → E
is a closed linear unbounded operator on E. Denoted by D, the dense domain of closed linear
unbounded operator A equipped with the graph norm ‖z‖D = ‖z‖+ ‖Az‖; C(V; E) stands for
the space of E-valued continuous functions on V with the norm ‖ · ‖C(V;E). C([−c, T]; E) denotes
the Banach space of continuous functions from [−c, T] to E with the usual supreme norm. Denote
the norm of the space C([−c, 0]; E) by ‖ · ‖c for brevity. Cr(V; E), r ∈ (0, 1), represents the space
formed of all the r-Hölder E-valued continuous functions from V into E equipped with the norm

‖z‖Cr(V;E) = ‖z‖C(V;E) + [|z|]Cr(V;E), where [|z|]Cr(V;E) = sup
t,s∈V,t 6=s

‖z(t)− z(s)‖
(t− s)r . Assume

that J ⊂ R, and 1 ≤ p ≤ ∞. For measurable function z : J → R, define the norm

‖z‖Lp(J) =


(∫

J
|z(t)|pdt

) 1
p
, 1 ≤ p < ∞,

inf
µ(J=0)

{ sup
t∈J−J

|z(t)|}, p = ∞,

where µ(J) is the Lebesgue measure on J. Let Lp(J, R) be the Banach space of all Lebesgue functions
z : J → R with ‖ · ‖Lp(J) < ∞. The space of bounded linear operators from E into Banach space F
is defined as L(E, F) provided with the operator norm ‖ · ‖L(E,F), and L(E, E) is written as L(E)
with norm ‖ · ‖L(E).

To deal with the inconveniences caused by delay during the investigation of controlla-
bility in the sequel, we utilize a special complete space L([−c, 0]; E). For z ∈ C(V; E) and
t ∈ V, define a function zt:

zt(θ) =

{
z(t + θ), t + θ ≥ 0,

ψ(t + θ), t + θ ≤ 0,
(2)

for any θ ∈ [−c, 0]. It is not difficult to deduce that zt ∈ L([−c, 0]; E).
The basic definitions of fractional calculus are presented as follows. For further details,

please see [11] and the references therein.
The Riemann–Liouville fractional integral of order r > 0 and the lower limit zero for a

continuous function u is given by

Ir
0+u(t) =

1
Γ(r)

∫ t

0
(t− s)r−1u(s)ds, t > 0,

if the right side integral is pointwise defined on (0,+∞).
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The Riemann–Liouville derivative and the lower limit zero for a continuous function
u : (0, ∞)→ R is defined as

LDr
0+u(t) =

1
Γ(n− r)

dn

dtn

∫ t

0

u(s)
(t− s)r−n+1 ds, t > 0, n− 1 < r < n, r > 0,

and the corresponding Caputo fractional derivative of order r > 0 with the lower limit
zero for a continuous function u : (0, ∞)→ R is given by

CDr
0+u(t) =L Dr

0+

(
u(t)−

n−1

∑
k=0

uk(0)
k!

tk

)
, t > 0, n− 1 < r < n, r > 0.

It is noted that if u(t) ∈ Cn[0, ∞), then one can obtain

CDr
0+u(t) =

1
Γ(n− r)

∫ t

0

u(n)(s)
(t− s)r−n+1 ds = In−ru(n)(t), t > 0, n− 1 < r < n, r > 0.

Throughout this paper, we suppose that the following integral equation

z(t) =
1

Γ(r)

∫ t

0

Az(s)
(t− s)1−r ds, t ≥ 0, (3)

has an associated resolvent operator {N (t)}t≥0 on E.

Definition 1 ([45]). Bounded linear operator {N (t)}t≥0 ⊂ L(E) is defined as a resolvent operator
for (3) if the following assumptions are satisfied:
(I) N (t) is strongly continuous on R+ and N (0) = I;
(II) N (t)D ⊂ D, AN (t)z = N (t)Az for all z ∈ D and every t ≥ 0;

(III) N (t)z = z +
1

Γ(r)

∫ t

0

Az(s)
(t− s)1−r ds, z ∈ D, t ≥ 0.

Definition 2 ([45]). A resolvent operator N (t) for (3) is called analytic, if the function N (·) :
R+ → L(E) admits an analytic extension to a sector ∑(0, θ0) = {λ ∈ C : |arg(λ)| < θ0} for
some 0 < θ0 ≤ π

2 .

Definition 3 ([45]). z ∈ C(V; E) is defined as a mild solution to the Volterra integral equation

z(t) = k(t) +
1

Γ(r)

∫ t

0

Az(s)
(t− s)1−r ds, t ∈ V, (4)

where k ∈ L1(V; E), if
∫ t

0

z(s)
(t− s)1−r ds ∈ D for all t ∈ V and

z(t) = k(t) +
1

Γ(r)
A
∫ t

0

z(s)
(t− s)1−r ds

holds for V.

Lemma 1 ([45]). Suppose N (t) is an analytic resolvent operator of (4) and k ∈ Cr(V; E), k(0) =
0. Then

z(t) = N (t)k(t) +
∫ t

0
Ṅ (t− s)[k(s)− k(t)]ds, t ∈ V,

is a mild solution of (4) and z ∈ Cr(V; E).

Lemma 2 (Mönch). Assume that D is a closed and convex subset of a Banach space E and
z0 ∈ D. Suppose that the continuous operator A : D → D satisfies: C ⊂ D countable, C ⊂
co({z0}

⋃A(C))→ C is relatively compact. Then, A has a fixed point in D.
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Lemma 3 (Hölder Inequality). Assume that p1, p2 ≥ 1, and 1
p1
+ 1

p2
= 1. If z1 ∈ Lp1(J, R), z2 ∈

Lp2(J, R), then, z1z2 ∈ L1(J, R) and ‖z1z2‖L1 J ≤ ‖z1‖Lp1 J‖z2‖Lp2 J .

The theory of Kuratowski’s measures of noncompactness is crucial to the following
proof work. For more details, see [46].

Lemma 4. Suppose E to be a Banach space and ζ(·) to be the Kuratowski’s measures of noncompactness.
(1) Let D1, D2 be bounded sets of E and λ ∈ R. Then

(i) ζ(D1) = 0 if, and only if, D1 is relatively compact;
(ii) ζ(D1) ≤ ζ(D2) if D1 ⊂ D2;
(iii) ζ(λD1) = |λ|ζ(D1);
(iv) ζ(D1 + D2) ≤ ζ(D1) + ζ(D2);
(v) ζ(x0 ∪ D1) = ζ(D1), x0 ∈ E;

(2) Let D ⊂ C(V; E) be bounded. Then, D(t) is bounded in E and ζ(D(t)) ≤ ζ(D).
(3) Let D ⊂ C(V; E) be bounded and equicontinuous. Then, ζ(D(t)) is continuous on V,
and ζ(D) = max

t∈V
ζ(D(t)).

(4) Let D = {un} ⊂ C(V; E) be countable. If there exists Φ ∈ L1(W) such that ‖un(t)‖ ≤
Φ(t) a.e.t ∈W, n = 1, 2, · · ·, then ζ(D(t)) is integrable on V, and

ζ

({∫
V

un(t)dt : n ∈ N
})
≤ 2

∫
V

ζ(D(t))dt.

On the premise of no confusion, Kuratowski’s measures of noncompactness of a
bounded subset in spaces E, C(V; E) and L([−c, 0]; E) are all denoted by ζ(·).

Finally, we introduce some important results:

Lemma 5. If zn converges to z0 in C(V; E) as n → +∞, then one has that (zn)t converges to
(z0)t in L([−c, 0]; E) for each t ∈ V as n→ +∞.

Proof. By means of (2), we have

‖(zn)t − (z0)t‖L[−c,0] =


∫ t

0
‖zn(s)− z0(s)‖ds, t ≤ c,∫ t

t−c
‖zn(s)− z0(s)‖ds, t ≥ c.

This indicates that ‖(zn)t − (z0)t‖L[−c,0] ≤ c‖zn − z0‖C(V;E). This completes the proof.

On the basis of the definition of Kuratowski’s measures of noncompactness and
Lemma 5, it is not difficult to obtain:

Lemma 6. Assume that {zn}∞
n=1 is a bounded countable sequence in C(V; E). Then one can obtain

ζ({(zn)t}) ≤ cζ({zn}), ∀t ∈ V.

3. Main Results

On the basis of the Riemann–Liouville fractional integral, together with Definition 3,
the mild solution to system (1) can be obtained as follows:
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Definition 4. For each x ∈ L2(V; U), a function z ∈ C(W; E) is said to be a mild solution of

fractional dynamical system (1) on W, if
∫ t

0

z(s)
(t− s)1−r ds ∈ D for all t ∈ [0, T0] and z satisfies the

following integral equation

z(t) =

 ψ(0) + 1
Γ(r)A

∫ t
0

z(s)
(t−s)1−r ds + 1

Γ(r)

∫ t
0

g(s,zs ,Hz(s))
(t−s)1−r ds + 1

Γ(r)

∫ t
0
Bx(s)

(t−s)1−r ds, t ∈ [0, T0],

ψ(t), t ∈ [−c, 0],

where W = [−c, T0], T0 ∈ (0, T].

Definition 5. The system (1) is said to be controllable on V = [0, T], if, for every ψ(t) ∈
C([−c, 0]; E) and z1 ∈ E, there exists a control x ∈ L2(V, U) and a constant T0 ∈ (0, T], such
that a mild solution z of system (1) on W = [−c, T0] satisfies z(T0) = z1.

Remark 1. Compared with the existing definitions in [20,21,43,44,47], etc., in which z1 is obtained
at the right endpoint T, the present definition, which we introduced with z1 arriving at T0 ∈ (0, T],
is weaker.

Next, we impose the main hypotheses on the components of the systems:

Hypothesis 1 (H1). g : V × L([−c, 0]; E)× E → E is continuous and takes bounded sets in
V × L([−c, 0]; E)× E into bounded sets in E.

Hypothesis 2 (H2). h : ∆ × L([−c, 0]; E) → E is continuous where ∆ = {(t, s) ∈ V × V :
s ≤ t}.

Hypothesis 3 (H3). (i) The linear operator B : L2(V; U) → L1(V; E) is bounded, and there
exists a constant Q1 > 0 such that ‖B‖L(U,E) ≤ Q1;
(ii) The linear operator Λ(t) defined by

Λ(t)x = N (t)Bx(t) +
∫ t

0
Ṅ (t− s)(Bx(s)−Bx(t))ds

where Bx(t) =
1

Γ(r)

∫ t

0

Bx(s)
(t− s)1−r ds, has an invertible operator Λ−1(t) takeing values in

L2(V; U)/kerΛ(t) for each t ∈ V, and there exists a constant Q2 > 0 such that
sup ‖Λ−1(·)‖L(E;L2(V;U)/kerΛ(·)) ≤ Q2.

Hypothesis 4 (H4). (i) There exist constants ri ∈ (0, r) and real-valued functions ki ∈ L
1
ri (V; R+),

i = 1, 2, such that for any bounded subsets D1 ⊂ L([−c, 0]; E), D2 ⊂ E,

ζ(g(t, D1, D2)) ≤ k1(t)ζ(D1) + k2(t)ζ(D2), t ∈ V.

(ii) There exists a function l ∈ L1(V; R+) such that, for any bounded subset D ⊂ L([−c, 0]; E),

ζ(h(t, s, D)) ≤ l(s)ζ(D), (t, s) ∈ ∆.

(iii) There exists a constant l0 > 0 such that

ζ(Λ−1(·)(D)(t)) ≤ l0ζ(D), t ∈ V,

for any bounded set D ⊂ E.

We point out that resolvent operator {N (t)}t≥0 is supposed to be analytic in the rest
of this work. In light of [45], we can assume that N1, N2 are positive numbers, such that
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‖Ṅ (t)‖L(E) ≤ N1t−1, ‖N̈ (t)‖L(E) ≤ N2t−2 for all t ∈ (0, T]; N0 is a positive constant, such
that ‖N (t)‖L(E) ≤ N0 for all t ∈ V.

For simplicity, take

Gz(t) =
1

Γ(r)

∫ t

0

g(s, zs, Hz(s))
(t− s)1−r ds,

and let
θi =

1− ri
r− ri

, ϑi =
r− 1
1− ri

, i = 1, 2;

K1 = 2cθ1−r1
1 ‖k1‖

L
1
r1
+ 4cθ1−r2

2 ‖k2‖
L

1
r2
‖l‖L1 ;

K2 = 2cθ1‖k1‖
L

1
r1
+ 4cθ2‖k2‖

L
1
r2
‖l‖L1 ;

and
Q = N0K1 + 4N1(K1 + K2).

In addition, for the purpose of simplifying our next work, we provide the next two
necessary conclusions:

Lemma 7. (i) Assume that g(·, z·, Hz(·)) : V × L([−c, 0]; E)× E → E is continuous. Then,

Gz ∈ Cr(V; E) and [|Gz|]Cr ≤ 2
Γ(r + 1)

‖g(·, z·, Hz(·))‖C(V;E).

(ii) Assume that x(·) ∈ L2(V; U). Then, Bx ∈ Cr(V; E) and [|Bx|]Cr ≤ 2
Γ(r + 1)

‖B‖L(U,E)

‖x(·)‖L2 .

Proof. For t ∈ [0, T) and ι > 0 such that t + ι ∈ V, we have

‖Gz(t + ι)− Gz(t)‖ ≤
1

Γ(r)

∫ t

0

[
1

(t− s)1−r −
1

(t + ι− s)1−r

]
‖g(s, zs, Hz(s))‖ds

+
1

Γ(r)

∫ t+ι

t

‖g(s, zs, Hz(s))‖
(t + ι− s)1−r ds

≤ 1
Γ(r)
‖g(·, z·, Hz(·))‖C(V;E)

(
(t + ι)r − tr + ιr

r
+

ιr

r

)
≤ 2

Γ(r + 1)
‖g(·, z·, Hz(·))‖C(V;E)ι

r,

which implies that [|Gz|]Cr ≤ 2
Γ(r + 1)

‖g(·, z·, Hz(·))‖C(V;E) and Gz ∈ Cr(V; E).

Repeating a similar process, we can obtain [|Bx|]Cr ≤ 2
Γ(r + 1)

‖B‖L(U,E)‖x(·)‖L2 and

Bx ∈ Cr(V; E). This completes the proof.

Lemma 8. Assume that (H1), (H2) and (H4) (i), (ii) hold. Then, operators Ki : C(V; E) →
C(V; E) (i = 1, 2), defined by

(K1z)(t) =
∫ t

0

[
(t− s)r−1 − (t1 − s)r−1

]
g(s, zs, Hz(s))ds, t ∈ V, t < t1,

(K2z)(t) =
∫ t1

t
(t1 − s)r−1g(s, zs, Hz(s))ds, t, t1 ∈ V, t < t1,

satisfy ζ((Ki D)(t)) ≤ Ki(t1 − t)rζ(D) (i = 1, 2) for any countable bounded set D ⊂ C(V; E).
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Proof. Obviously, we can check that Ki (i = 1, 2) takes bounded sets in C(V; E) into
bounded sets in C(V; E). Generally, a bounded countable set is chosen D = {zn}∞

n=1. From
Lemma 6, we have

ζ({(zn)s}) ≤ cζ({zn}).

By means of Lemma 3, Lemma 4 (4) and the well-known inequality

t$ − s$ ≥ (t− s)$, $ ∈ [1,+∞), 0 < s ≤ t,

one has

ζ((K1D)(t)) = ζ({(K1zn)(t)})

= ζ

({∫ t

0

[
(t− s)r−1 − (t1 − s)r−1

]
g(s, (zn)s, Hzn(s))ds

})
≤ 2

∫ t

0

[
(t− s)r−1 − (t1 − s)r−1

]
ζ({g(s, (zn)s, Hzn(s))})ds

≤ 2
∫ t

0

[
(t− s)r−1 − (t1 − s)r−1

]
k1(s)ζ({(zn)s})ds

+4‖l‖L1

∫ t

0

[
(t− s)r−1 − (t1 − s)r−1

]
k2(s)ζ({(zn)s})ds

≤ 2
(∫ t

0

[
(t− s)r−1 − (t1 − s)r−1

] 1
1−r1 ds

)1−r1

‖k1‖
L

1
r1

cζ({zn})

+4‖l‖L1

(∫ t

0

[
(t− s)r−1 − (t1 − s)r−1

] 1
1−r2 ds

)1−r2

‖k2‖
L

1
r2

cζ({zn})

≤ 2
(∫ t

0

[
(t− s)ϑ1 − (t1 − s)ϑ1

]
ds
)1−r1

‖k1‖
L

1
r1

cζ({zn})

+4‖l‖L1

(∫ t

0

[
(t− s)ϑ2 − (t1 − s)ϑ2

]
ds
)1−r2

‖k2‖
L

1
r2

cζ({zn})

≤
2‖k1‖

L
1
r1

(1 + ϑ1)1−r1

[
t1+ϑ1 − t1+ϑ1

1 + (t1 − t)1+ϑ1
]1−r1

cζ({zn})

+
4‖k2‖

L
1
r2
‖l‖L1

(1 + ϑ2)1−r2

[
t1+ϑ2 − t1+ϑ2

1 + (t1 − t)1+ϑ2
]1−r2

cζ({zn})

≤
(

2θ1−r1
1 ‖k1‖

L
1
r1
(t1 − t)(1+ϑ1)(1−r1) + 4θ1−r2

2 ‖k2‖
L

1
r2
‖l‖L1(t1 − t)(1+ϑ2)(1−r2)

)
cζ({zn})

≤
(

2θ1−r1
1 ‖k1‖

L
1
r1
(t1 − t)r−r1 + 4θ1−r2

2 ‖k2‖
L

1
r2
‖l‖L1(t1 − t)r−r2

)
cζ({zn})

≤
(

2cθ1−r1
1 ‖k1‖

L
1
r1
+ 4cθ1−r2

2 ‖k2‖
L

1
r2
‖l‖L1

)
(t1 − t)rζ({zn})

= K1(t1 − t)rζ(D).

In the same way, one can obtain
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ζ((K2D)(t)) = ζ({(K2zn)(t)})

= ζ

({∫ t1

t
(t1 − s)r−1g(s, (zn)s, Hzn(s))ds

})
≤ 2

∫ t1

t
(t1 − s)r−1ζ({g(s, (zn)s, Hzn(s))})ds

≤ 2
∫ t1

t
(t1 − s)r−1k1(s)ζ({(zn)s})ds

+4‖l‖L1

∫ t1

t
(t1 − s)r−1k2(s)ζ({(zn)s})ds

≤ 2
(∫ t1

t
(t1 − s)

r−1
1−r1 ds

)1−r1

‖k1‖
L

1
r1

cζ({zn})

+4‖l‖L1

(∫ t1

t
(t1 − s)

r−1
1−r2 ds

)1−r2

‖k2‖
L

1
r2

cζ({zn})

≤
(

2θ1(t1 − t)
1

θ1 ‖k1‖
L

1
r1
+ 4θ2(t1 − t)

1
θ2 ‖k2‖

L
1
r2
‖l‖L1

)
cζ({zn})

≤
(

2cθ1‖k1‖
L

1
r1
+ 4cθ2‖k2‖

L
1
r2
‖l‖L1

)
(t1 − t)rζ({zn})

= K2(t1 − t)rζ(D).

The conclusion follows.

Theorem 1. If assumptions (H1)–(H4) hold, then the dynamical system (1) is controllable on V.

Proof. We let constant

K = sup
{
‖g(t, zt, Hz(t))‖ : ‖zt‖L[−c,0] ≤ c(‖ψ‖c + R0), ‖Hz(t)‖ ≤ K0, t ∈ V

}
,

where R0 = N0‖ψ(0)‖+
N0r + 2N1

r2 , and

K0 = sup
{
‖
∫ t

0
h(t, s, zs)ds‖ : (t, s) ∈ ∆, ‖zs‖L[−c,0] ≤ c(‖ψ‖c + R0)

}
.

From (H3), for an arbitrary function z(·) ∈ C(V; E) and any z1 ∈ E, define a
feedback control

xz(t) := Λ−1(T0)

(
z1 −N (T0)(ψ(0) + Gz(T0))−

∫ T0

0
Ṅ (T0 − s)(Gz(s)− Gz(T0))ds

)
(t), t ∈ V,

where

T0 = min

T,
(

1
K + Q1N3

) 1
r

,
(

rΓ3(r + 1)
1 + Q + 2l0Q1Q2QTr(N0 + 8N1Tr)

) 1
r

, (5)

and N3 = Q2

(
‖z1‖+ N0(‖ψ(0)‖+

KTr

r
) +

2KN1Tr

r2

)
. Take W = [−c, T0]. By considering

Lemmas 1 and 7, in what follows, it suffices to show that, when using this control, the operator
P : C(W; E)→ C(W; E) defined by

(Pz)(t) =


N (t)(ψ(0) + Gz(t) + Bxz (t))

+
∫ t

0
Ṅ (t− s)(Gz(s)− Gz(t))ds +

∫ t

0
Ṅ (t− s)(Bxz (s)−Bxz (t))ds, t ∈ [0, T0],

ψ(t), t ∈ [−c, 0],

(6)

has a fixed point, from which it follows that this fixed point is a mild solution to the system (1) on W.
Clearly, (Pz)(T0) = z1, which means that the control xz steers the system (1) from the initial function
ψ to z1 in finite time T0. Denote

Ω =

{
z ∈ C(W; E) | sup

t∈[0,T0]

‖zt‖L[−c,0] ≤ c(‖ψ‖c + R0); z(t) = ψ(t), t ∈ [−c, 0]

}
,
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then Ω is obviously a closed convex set in C(W; E). Subsequently, we will use Mönch fixed point
theorem. To this end, we proceed the following four steps.

Step I. P(Ω) ⊆ Ω. From (H3), we have

‖xz(t)‖ ≤ Q2

(
‖z1‖+ N0‖ψ(0)‖+ N0

KTr

r +
∫ T0

0

N1
T0 − s

‖Gz(T0)− Gz(s)‖ds
)

≤ Q2

(
‖z1‖+ N0‖ψ(0)‖+ N0

KTr

r + 2N1K
r

∫ T0

0

1
T0 − s

(T0 − s)rds
)

≤ Q2

(
‖z1‖+ N0(‖ψ(0)‖+ KTr

r ) + 2KN1Tr

r2

)
= N3, t ∈ V.

From (H3) and (6), for any z ∈ Ω and t ∈ [0, T0], it follows that

‖(Pz)(t)‖ ≤ N0

(
‖ψ(0)‖+

KTr
0

r
+

Q1N3Tr
0

r

)
+
∫ t

0

N1
t− s

2K(t− s)r

r
ds +

∫ t

0

N1
t− s

2Q1N3
r

(t− s)rds

≤ N0

(
‖ψ(0)‖+

KTr
0

r
+

Q1N3Tr
0

r

)
+

2N1KTr
0

r2 +
2Q1N1N3Tr

0
r2

≤ N0‖ψ(0)‖+
(N0r + 2N1)(K + Q1N3)

r2 Tr
0

≤ N0‖ψ(0)‖+
N0r + 2N1

r2 = R0.

On the other hand,

‖(Pz)t‖L[−c,0] =
∫ 0

−c
(Pz)t(θ)dθ =


∫ 0

t−c
ψ(s)ds +

∫ t

0
(Pz)(s)ds, t ≤ c,

∫ t

t−c
(Pz)(s)ds, t ≥ c,

which implies ‖(Pz)t‖L[−c,0] ≤ c‖ψ‖c + c‖Pz‖C([0,t];E). Then, one can obtain

sup
t∈[0,T0]

‖(Pz)t‖L[−c,0] ≤ c(‖ψ‖c + R0).

It is clear that (Pz)(t) = ψ(t) for any z ∈ Ω, t ∈ [−c, 0]. Then, we conclude that P(Ω) ⊆ Ω.

Step II. P : Ω→ Ω is equicontinuous.

For any z ∈ Ω and t1, t2 ∈W = [−c, T0] with t1 < t2, we have the following discussion.
(i) 0 ≤ t1 < t2 ≤ T0. Note that

(Pz)(t2)− (Pz)(t1)
= (N (t2)−N (t1))ψ(0)

+N (t2)Gz(t2)−N (t1)Gz(t1) +N (t2)Bxz (t2)−N (t1)Bxz (t1)

+
∫ t2

0
Ṅ (t2 − s)(Gz(s)− Gz(t2))ds−

∫ t1

0
Ṅ (t1 − s)(Gz(s)− Gz(t1))ds

+
∫ t2

0
Ṅ (t2 − s)(Bxz (s)−Bxz (t2))ds−

∫ t1

0
Ṅ (t1 − s)(Bxz (s)−Bxz (t1))ds.

Clearly,
‖(Pz)(t2)− (Pz)(t1)‖ ≤ ‖O1‖+ ‖O2‖+ ‖O3‖+ ‖O4‖,

where
O1 = (N (t2)−N (t1))ψ(0),
O2 = (N (t2)Gz(t2)−N (t1)Gz(t1)) + (N (t2)Bxz (t2)−N (t1)Bxz (t1)),

O3 =
∫ t2

0
Ṅ (t2 − s)(Gz(s)− Gz(t2))ds−

∫ t1

0
Ṅ (t1 − s)(Gz(s)− Gz(t1))ds,

O4 =
∫ t2

0
Ṅ (t2 − s)(Bxz (s)−Bxz (t2))ds−

∫ t1

0
Ṅ (t1 − s)(Bxz (s)−Bxz (t1))ds.
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The strong continuity of N (·) indicates that ‖O1‖ → 0, as |t1 − t2| → 0. By Lemma 7, one
can obtain

‖O2‖ ≤ ‖N (t2)‖L(E)‖Gz(t2)− Gz(t1)‖+ ‖(N (t2)−N (t1))Gz(t1)‖
+‖N (t2)‖L(E)‖Bxz (t2)−Bxz (t1)‖+ ‖(N (t2)−N (t1))Bxz (t1)‖

≤ N0[|Gz|]Cr (t2 − t1)
r +

∫ t2

t1

‖Ṅ (s)Gz(t1)‖ds

+N0Q1N3
t2

r − t1
r + (t2 − t1)

r

r
+ N0

∫ t2

t1

‖Bxz(s)‖
(t2 − s)1−r ds

+‖(N (t2)−N (t1))‖L(E)
Q1N3Tr

0
r

≤ N0[|Gz|]Cr (t2 − t1)
r + N1[|Gz|]Cr

∫ t2

t1

sr

s
ds

+N0Q1N3
t2

r − t1
r + (t2 − t1)

r

r
+ N0Q1N3

(t2 − t1)
r

r
+‖(N (t2)−N (t1))‖L(E)

Q1N3Tr
0

r
≤ N0

2K
Γ(r + 1)

(t2 − t1)
r + N1

2K
Γ(r + 1)

(t2 − t1)
r

r
+ N0Q1N3

t2
r − t1

r + (t2 − t1)
r

r

+N0Q1N3
(t2 − t1)

r

r
+ ‖(N (t2)−N (t1))‖L(E)

Q1N3Tr
0

r
→ 0, as |t1 − t2| → 0.

By means of Lemma 7, we can obtain

‖O3‖ ≤
∫ t1

0
‖Ṅ ((t2 − t1) + s)− Ṅ (s)‖L(E)‖Gz(t1 − s)− Gz(t1)‖ds

+

∥∥∥∥∫ t1

0
Ṅ ((t2 − t1) + s)(Gz(t1)− Gz(t2))ds

∥∥∥∥
+
∫ t2

t1

‖Ṅ (t2 − s)‖L(E)‖Gz(s)− Gz(t2)‖ds

≤
∫ t1

0

∫ s+(t2−t1)

s
‖N̈ (ξ)‖L(E)[|Gz|]Cr srdξds

+‖N (t2)−N ((t2 − t1))‖L(E)‖Gz(t1)− Gz(t2)‖+ N1[|Gz|]Cr

∫ t2

t1

(t2 − s)r−1ds

≤ [|Gz|]Cr N2

∫ t1

0

∫ s+(t2−t1)

s
ξr−2dξds + 2N0[|Gz|]Cr (t2 − t1)

r + N1[|Gz|]Cr
(t2 − t1)

r

r

≤ 2(t2 − t1)
r

r(1− r)
[|Gz|]Cr N2 + 2N0[|Gz|]Cr (t2 − t1)

r +
N1[|Gz|]Cr (t2 − t1)

r

r

≤ 4N2K(t2 − t1)
r

r(1− r)Γ(r + 1)
+

4N0K(t2 − t1)
r

Γ(r + 1)
+

2N1K(t2 − t1)
r

rΓ(r + 1)
→ 0, as |t1 − t2| → 0.

Similarly,

‖O4‖ ≤ 2(t2 − t1)
r

r(1− r)
[|Bxz |]Cr N2 + 2N0[|Bxz |]Cr (t2 − t1)

r + N1[|Bxz |]Cr
(t2 − t1)

r

r

≤ 4Q1N2N3(t2 − t1)
r

r(1− r)Γ(r + 1)
+

4Q1N0N3(t2 − t1)
r

Γ(r + 1)
+

2Q1N1N3(t2 − t1)
r

rΓ(r + 1)
→ 0, as |t1 − t2| → 0.

(ii) −c ≤ t1 < t2 ≤ 0. From the continuity of ψ(·), we have

‖(Pz)(t2)− (Pz)(t1)‖ = ‖ψ(t2)− ψ(t1)‖ → 0, as |t1 − t2| → 0.

(iii) −c ≤ t1 < 0 < t2 ≤ T0. Then,
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‖(Pz)(t2)− (Pz)(t1)‖ ≤ ‖(Pz)(t2)− (Pz)(0)‖+ ‖(Pz)(0)− (Pz)(t1)‖
≤ ‖(N (t2)− I)ψ(0)‖+ ‖N (t2)Gz(t2)‖+ ‖N (t2)Bxz (t2)‖

+‖
∫ t2

0
Ṅ (t2 − s)(Gz(s)− Gz(t2))ds‖

+‖
∫ t2

0
Ṅ (t2 − s)(Bxz (s)−Bxz (t2))ds‖+ ‖ψ(0)− ψ(t1)‖

≤ ‖(N (t2)− I)ψ(0)‖+ N0(K + Q1N3)

r
tr
2

+
2N1(K + Q1N3)

r

∫ t2

0

1
t2 − s

(t2 − s)rds + ‖ψ(0)− ψ(t1)‖

≤ ‖(N (t2)− I)ψ(0)‖+ N0(K + Q1N3)

r
tr
2

+
2N1(K + Q1N3)

r2 tr
2 + ‖ψ(0)− ψ(t1)‖ → 0, as |t1 − t2| → 0.

Thus, ‖(Pz)(t2) − (Pz)(t1)‖ → 0, as |t1 − t2| → 0, for every z ∈ Ω. This deduces that
P : Ω→ Ω is equicontinuous.

Step III. P is continuous on Ω.

Let yn be a sequence, such that yn → y in Ω as n → ∞. We only consider the case t ∈ [0, T0]
since the continuity of operator P is obvious under the case t ∈ [−c, 0].

For each t ∈ [0, T0], one has

‖(Pyn)(t)− (Py)(t)‖ ≤ N0‖Gyn (t)− Gy(t)‖+ N0‖Bxyn
(t)−Bxy (t)‖

+
∫ t

0
‖Ṅ (t− s)[(Gyn (s)− Gyn (t))− (Gy(s)− Gy(t))]‖ds

+
∫ t

0
‖Ṅ (t− s)[(Bxyn

(s)−Bxyn
(t))− (Bxy (s)−Bxy (t))]‖ds

≤ N0

∫ t

0
(t− s)r−1‖g(s, (yn)s, Hyn (s))− g(s, ys, Hy(s))‖ds

+
N0Q1
Γ(r)

∫ t

0
(t− s)r−1‖xyn (s)− xy(s)‖ds

+
∫ t

0
‖Ṅ (t− s)[(Gyn (s)− Gyn (t))− (Gy(s)− Gy(t))]‖ds

+
∫ t

0
‖Ṅ (t− s)[(Bxyn

(s)−Bxyn
(t))− (Bxy (s)−Bxy (t))]‖ds

It is easy to check that the following inequalities hold:

(· − s)r−1‖g(s, (yn)s, Hyn (s))− g(s, ys, Hy(s))‖ ≤ 2K(· − s)r−1 ∈ L1([0, T0], R+),

(· − s)r−1‖xyn (s)− xy(s)‖ ≤ 2N3(· − s)r−1 ∈ L1([0, T0], R+),

‖Ṅ (· − s)[(Gyn (s)− Gyn (·))− (Gy(s)− Gy(·))]‖ ≤ N1
(· − s)

2K(· − s)r

r

≤ 2N1K
r

(· − s)r−1 ∈ L1([0, T0], R+),

‖Ṅ (· − s)[(Bxyn
(s)−Bxyn

(·))− (Bxy (s)−Bxy (·))]‖ ≤ N1
(· − s)

2Q1N3(· − s)r

r

≤ 2Q1N1N3
r

(· − s)r−1 ∈ L1([0, T0], R+).

Moreover, one has

‖xyn (s)− xy(s)‖

≤ Q2

(
N0‖Gyn (T0)− Gy(T0)‖+

∫ T0

0
‖Ṅ (T0 − s)[(Gyn (s)− Gyn (t))− (Gy(s)− Gy(t))]‖ds

)
,

and

‖Ṅ (T0 − s)[(Gyn (s)− Gyn (·))− (Gy(s)− Gy(·))]‖ ≤ N1
(T0 − s)

2K(· − s)r

r

≤ 2N1K
r

(· − s)r−1 ∈ L1([0, T0], R+).

Then, Lebesgue’s domination convergence theorem implies that ‖(Pyn)(t)− (Py)(t)‖ → 0,
as n→ +∞. From Ascoli-Arzelà theorem, it follows that ‖Pyn −Py‖C(W;E) → 0, as n→ +∞. The
proof is completed.
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Step IV. Mönch’s condition holds.

Suppose B = coP(Ω). From Step I and II, it is not difficult to check that P(B) ⊆ B and B
is equicontinuous.

For any z ∈ B, we take

(Pz)(t) =

{
(P1z)(t) + (P2z)(t) + (P3z)(t) + (P4z)(t), t ∈ [0, T0],

ψ(t), t ∈ [−c, 0],

where
(P1z)(t) = N (t)ψ(0) +N (t)Gz(t),

(P2z)(t) =
∫ t

0
Ṅ (t− s)(Gz(s)− Gz(t))ds,

(P3z)(t) = N (t)Bxz (t),

(P4z)(t) =
∫ t

0
Ṅ (t− s)(Bxz (s)−Bxz (t))ds.

Suppose bounded set D0 ⊂ B is countable and D0 ⊂ co({z0}
⋃P(D0)), we shall show that

ζ(D0) = 0. Without loss of generality, we may suppose that D0 = {zn}∞
n=1.

From Lemmas 4 (4) and 6 and Hypothesis (H4) (i), (ii), for any s ∈ V, we have

ζ({g(s, (zn)s, Hzn (s))}) ≤ k1(s)ζ({(zn)s}) + k2(s)ζ
({∫ s

0
h(s, η, (zn)η)dη

})
≤ k1(s)ζ({(zn)s}) + 2k2(s)

∫ s

0
ζ
({

h(s, η, (zn)η)
})

dη

≤ k1(s)ζ({(zn)s}) + 2k2(s)
∫ s

0
l(η)ζ

({
(zn)η

})
dη

≤ (k1(s) + 2k2(s)‖l‖L1 )cζ({zn}).

Then, for any t ∈ [0, T0], by Lemmas 3 and 6, one has

2
∫ t

0
(t− s)r−1ζ({g(s, (zn)s, Hzn (s))})ds

≤ 2
∫ t

0
(t− s)r−1k1(s)ds · cζ({zn}) + 4‖l‖L1

∫ t

0
(t− s)r−1k2(s)ds · cζ({zn})

≤ 2
(∫ t

0
[(t− s)r−1]

1
1−r1 ds

)1−r1

‖k1‖
L

1
r1
· cζ({zn})

+4‖l‖L1

(∫ t

0
[(t− s)r−1]

1
1−r2 ds

)1−r2

‖k2‖
L

1
r2
· cζ({zn})

≤
(

2
(

1− r1
r− r1

)1−r1

tr−r1‖k1‖
L

1
r1
+ 4‖l‖L1

(
1− r2
r− r2

)1−r2

tr−r2‖k2‖
L

1
r2

)
cζ({zn})

≤
(

2cθ1−r1
1 ‖k1‖

L
1
r1
+ 4cθ1−r2

2 ‖k2‖
L

1
r2
‖l‖L1

)
trζ({zn})

≤ K1Tr
0ζ({zn}).

Therefore,

ζ((P1D0)(t)) = ζ

({
N (t)ψ(0) +N (t)

1
Γ(r)

∫ t

0

g(s, (zn)s, Hzn (s))
(t− s)1−r ds

})
≤ 2N0

Γ(r)

∫ t

0
(t− s)r−1ζ({g(s, (zn)s, Hzn (s))})ds

≤ N0K1
Γ(r)

Tr
0ζ({zn})

=
N0K1
Γ(r)

Tr
0ζ(D0), t ∈ [0, T0].

(7)

For t ∈ [0, T0], in view of Lemmas 4 (4) and 8, we get
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ζ((P2D0)(t)) = ζ

({∫ t

0
Ṅ (t− s)

1
Γ(r)

(∫ s

0

g(y, (zn)y, Hzn (y))
(s− y)1−r dy−

∫ t

0

g(y, (zn)y, Hzn (y))
(t− y)1−r dy

)
ds
})

≤ 4N1
Γ(r)

∫ t

0

1
t− s

(∫ s

0
((s− y)r−1 − (t− y)r−1)ζ({g(y, (zn)y, Hzn (y))dy

)
ds

+
4N1
Γ(r)

∫ t

0

1
t− s

(∫ t

s
(t− y)r−1ζ({g(y, (zn)y, Hzn (y))})dy

)
ds

≤ 4N1
Γ(r)

∫ t

0

1
t− s

[K1(t− s)rζ({zn})]ds

+
4N1
Γ(r)

∫ t

0

1
t− s

[K2(t− s)rζ({zn})]ds

≤ 4N1K1
Γ(r + 1)

trζ({zn}) +
4N1K2

Γ(r + 1)
trζ({zn})

≤ 4N1(K1 + K2)

Γ(r + 1)
trζ({zn})

≤ 4N1(K1 + K2)

Γ(r + 1)
Tr

0ζ(D0).

(8)

From (7) and (8), it follows that

ζ
(
{Bxzn

(t)}
)
≤ 2l0Q1Q2

Γ(r)

∫ t

0
(t− s)r−1ζ({z1 −N (T0)ψ0 −N (T0)Gzn (T0)})ds

+
2l0Q1Q2

Γ(r)

∫ t

0
(t− s)r−1ζ

({∫ T0

0
Ṅ (T0 − s)(Gzn (s)− Gzn (T0))ds

})
ds

≤ 2l0Q1Q2
Γ(r)

∫ t

0
(t− s)r−1[ζ({(P1D0)(T0)}) + ζ({(P2D0)(T0)})]ds

≤ 2l0Q1Q2Tr

Γ(r + 1)

(
N0K1
Γ(r)

+
4N1(K1 + K2)

Γ(r + 1)

)
Tr

0ζ(D0)

≤ 2l0Q1Q2Tr(N0K1 + 4N1(K1 + K2))

Γ2(r + 1)
Tr

0ζ(D0)

=
2l0Q1Q2QTr

Γ2(r + 1)
Tr

0ζ(D0), t ∈ [0, T0],

(9)

and this indicates

ζ((P3D0)(t)) ≤ 2l0N0Q1Q2QTr

Γ2(r + 1)
Tr

0ζ(D0), t ∈ [0, T0]. (10)

By means of Lemma 4 (4), Hypothesis (H3) and (9), for t ∈ [0, T0], one derives

ζ((P4D0)(t)) = ζ

({∫ t

0
Ṅ (t− s)

1
Γ(r)

(∫ s

0

Bxzn (y)
(s− y)1−r dy−

∫ t

0

Bxzn (y)
(t− y)1−r dy

)
ds
})

≤ 4N1
Γ(r)

∫ t

0

1
t− s

(∫ s

0
((s− y)r−1 − (t− y)r−1)ζ({Bxzn (y)})dy

)
ds

+
4N1
Γ(r)

∫ t

0

1
t− s

(∫ t

s
(t− y)r−1ζ({Bxzn (t)})dy

)
ds

≤ 4N1ζ({Bxzn (t)})
Γ(r)

∫ t

0

1
t− s

(
sr

r
− tr − (t− s)r

r
+

(t− s)r

r

)
ds

≤ 4N1ζ({Bxzn (t)})
Γ(r + 1)

∫ t

0

1
t− s

(sr − tr + 2(t− s)r)ds

≤ 4N1ζ({Bxzn (t)})
Γ(r + 1)

∫ t

0

1
t− s

· 2(t− s)rds

≤ 8N1ζ({Bxzn (t)})
Γ(r + 1)

∫ t

0
(t− s)r−1ds

≤ 16l0Q1Q2QN1T2r

rΓ3(r + 1)
Tr

0ζ(D0).

(11)
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Thus, (7), (8), (10) and (11) imply that

ζ((PD0)(t)) ≤ ζ((P1D0)(t)) + ζ((P2D0)(t)) + ζ((P3D0)(t)) + ζ((P4D0)(t))

≤ N0K1
Γ(r)

Tr
0ζ(D0) +

4N1(K1 + K2)

Γ(r + 1)
Tr

0ζ(D0)

+
2l0N0Q1Q2QTr

Γ2(r + 1)
Tr

0ζ(D0) +
16l0Q1Q2QN1T2r

rΓ3(r + 1)
Tr

0ζ(D0)

≤ Q + 2l0Q1Q2QTr(N0 + 8N1Tr)

rΓ3(r + 1)
Tr

0ζ(D0).

(12)

On the other hand, we have from the equicontinuity and boundedness of P(D0)

ζ(P(D0)) = max
t∈W

ζ((PD0)(t)). (13)

Then, by the definition of T0 and (12), (13), one can derive

ζ(D0) ≤ ζ(co({z0}
⋃P(D0))) ≤ ζ(P(D0)) < ζ(D0),

that is, ζ(D0) = 0, which shows that D0 is relatively compact. By Lemma 2, we know that P has
at least one fixed point z ∈ B, which is a mild solution to system (1) on W, satisfying (Pz)(T0) =
z(T0) = z1. The proof is now completed.

Remark 2. (I) Compactness of the resolvent operators associated with the system (1) is unnecessary.
(II) By introducing the complete space L([−c, 0]; E) and function zt, the difficulties in the estimate
of noncompactness measures caused by delay are effectively solved (Lemmas 5 and 6). Therefore, we
generalize some related control results such as [20,21,43,44], etc.

4. An Example

To illustrate our theory, we consider the fractional integrodifferential dynamical
system with delay of the form

∂
3
5

∂t
3
5

z(t, y) =
∂

∂y
z(t, y)

+
1
3

(
z(t + θ, y) +

∫ t

0

(t− s)4|z(s + θ, y)|
2 + |z(s + θ, y)| ds

)
+ vµ(t, y), t ∈ V, y ∈ (0, 1),

z(t, 0) = z(t, 1) = 0, t ∈ V,
z(t, y) = ψ(t, y), t ∈ [−c, 0], y ∈ (0, 1),

(14)

where ψ is continuous and satisfies certain smoothness conditions, v > 0, µ : V × [0, 1]→
[0, 1] is continuous, and V = [0, T], θ ∈ [−c, 0].

Let E = U := C([0, 1]) and let A : D ⊂ E → E given by Aν = ν
′

with domain
D = {ν ∈ E : ν

′ ∈ E, ν(0) = ν(1) = 0}. So, A generates a semigroup {T (t) : t ≥ 0} on X,
which is defined as T (t)ν(s) = ν(t + s) for ν ∈ E, and T (t) is not a compact semigroup
on E.

Furthermore, from the Corollary 2.4 in [45], it follows that the integral equation

z(t) =
1

Γ(r)

∫ t

0

Az(s)
(t− s)1−r ds, t ≥ 0,

admits an analytic resolvent operator N (t) on E.
Define
z(t)(y) = z(t, y),

CDrz(t)(y) =
∂

3
5

∂t
3
5

z(t, y),

g(t, zt, Hz(t))(y) =
1
3

(
z(t + θ, y) +

∫ t

0

(t− s)4|z(s + θ, y)|
2 + |z(s + θ, y)| ds

)
,
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h(t, s, zs) =
(t− s)4|z(s + θ, y)|

2 + |z(s + θ, y)| , (t, s) ∈ ∆ = {(t, s) ∈ V ×V : s ≤ t},

x(t)(y) = µ(t, y).
It is easy to see that (H1) and (H2) hold. For y ∈ (0, 1), suppose that the linear operator

Λ(t) defined as

(Λ(t)u)(y) =
vN (t)
Γ( 3

5 )

∫ t

0
(t− s)−

2
5 µ(s, y)ds

+
v

Γ( 3
5 )

∫ t

0
Ṅ (t− s)

(∫ s

0
(s− η)−

2
5 µ(η, y)dη −

∫ t

0
(t− η)−

2
5 µ(η, y)dη

)
ds,

satisfies the assumption (H3). In addition, simple verification can imply that (H4) holds with

k1(t) = k2(t) =
1
3

, t ∈ V and l(s) = T4, s ∈ V. Consequently, if all the requirements of Theorem 1

are satisfied, then system (14) is controllable on V.

5. Conclusions and Future Work
Some new controllability results for a class of fractional integrodifferential dynamical systems

with a delay in Banach spaces are derived in this paper by using resolvent operator theory and
fixed-point theory. A new definition of controllability is introduced, and the nonlinearity is not
supposed to be Lipschitz continuous compared, with most of the existing literature. A suitable delay
item in a special complete space is also introduced to solve the difficulties caused by time delay.
An explicit example is given to demonstrate the effectiveness of our results.

Drawing on the ideas of this paper, the controllability for a class of fractional integrodifferential
dynamical inclusions with time delay and nonlocal conditions will be further studied in the future:{

Drz(t) ∈ Az(t) + g(t, zt, Hz(t)) + Bx(t), a.e. t ∈ V := [0, T],
z(t) + h(z) = ψ(t), t ∈ [−c, 0],

where h : C([−c, T], E) → E is a given function. In common applications, the nonlocal conditions

are usually described as h(z) =
m
∑

i=1
kiz(τi), where ki (i = 1, 2, · · ·, m) are given constants and

0 < τ1 < τ2 < · · · < τn ≤ T.
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