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Abstract: The core objective of this article is to generate novel exact traveling wave solutions of
two nonlinear conformable evolution equations, namely, the (2 + 1)-dimensional conformable time
integro-differential Sawada–Kotera (SK) equation and the (3 + 1)-dimensional conformable time
modified KdV–Zakharov–Kuznetsov (mKdV–ZK) equation using the (G′/G2)-expansion method.
These two equations associate with conformable partial derivatives with respect to time which the
former equation is firstly proposed in the form of the conformable integro-differential equation.
To the best of the authors’ knowledge, the two equations have not been solved by means of the
(G′/G2)-expansion method for their exact solutions. As a result, some exact solutions of the equations
expressed in terms of trigonometric, exponential, and rational function solutions are reported here for
the first time. Furthermore, graphical representations of some selected solutions, plotted using some
specific sets of the parameter values and the fractional orders, reveal certain physical features such as
a singular single-soliton solution and a doubly periodic wave solution. These kinds of the solutions
are usually discovered in natural phenomena. In particular, the soliton solution, which is a solitary
wave whose amplitude, velocity, and shape are conserved after a collision with another soliton
for a nondissipative system, arises ubiquitously in fluid mechanics, fiber optics, atomic physics,
water waves, and plasmas. The method, along with the help of symbolic software packages, can
be efficiently and simply used to solve the proposed problems for trustworthy and accurate exact
solutions. Consequently, the method could be employed to determine some new exact solutions for
other nonlinear conformable evolution equations.

Keywords: exact solutions; (G′/G2)-expansion method; (2 + 1)-dimensional conformable time
integro-differential Sawada–Kotera equation; (3 + 1)-dimensional conformable time modified KdV–
Zakharov–Kuznetsov equation; singular multiple-soliton solution

1. Introduction

Nonlinear evolution equations (NLEEs), which are interpreted as the differential law
of the development in time of a system and typically expressed in terms of nonlinear
partial differential equations (NPDEs), can be utilized to describe many interesting and
sophisticated phenomena in physics, mathematical physics, engineering, and other various
scientific fields such as fluid mechanics [1,2], plasma physics [3], quantum mechanics [4],
biology [5], nonlinear wave theory [6], and fiber optics [7]. Some applications of NLEEs
for natural events are as follows [8–10]: The nonlinear Schrödinger’s equation explains
the dynamics of propagation for solitons through optical fibers. The Korteweg de Vries
(KdV) equation can be used to model the shallow water wave dynamics near ocean shore
and beaches. The dynamics of an incompressible viscoelastic Kelvin–Voigt fluid can be
described by the Oskolkov equation. In addition, an epidemic model on a network such as
the present epidemic of COVID-19 comprising susceptible–infected–recovered equations at
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the nodes, coupled by diffusion using a graph Laplacian, can be analyzed using a system
of NLEEs.

To further elucidate some important behaviors of the phenomena modeled by NLEEs,
extracting their exact analytic solutions, in particular, solitary wave solutions, is of great
significance. The exploration of exact solutions for NLEEs has become quite promi-
nent due to the recent, considerable advances in computational methods and symbolic
software packages. Numerous kinds of exact solutions such as solitons, positons, com-
plexitons, dromions, cuspon, rational, kink, periodic, and quasiperiodic solutions have
been obtained via solving integrable NLEEs. In the past couple of decades, many ro-
bust, efficient, and powerful methods exist that have been developed for finding exact
solutions of NLEEs, including the (G′/G, 1/G)-expansion method [11], the enhanced
(G′/G)-expansion method [12], the exp-function method [13], the Jacobi elliptic equa-
tion method [14], the generalized Kudryashov’s method [15], the sine-Gordon expansion
method [16], the sub-equation method [17], the improved tan(φ/2)-expansion method [18],
and the extended direct algebraic method [19,20]. More recently, the (G′/G2)-expansion
method [4,21–29] has attracted a remarkable amount of attention of many researchers who
employed the method to construct exact solutions of certain NPDEs. In 2018, Arshed
and Sadia [23] used the (G′/G2)-expansion method to obtain some new traveling wave
solutions for the time-fractional Burgers equation, the fractional biological population
model, and the space-time fractional Whitham–Broer–Kaup equations. Sirisubtawee and
Koonprasert [24] utilized the method to solve the Benny–Luke equation, the equation of
nanoionic currents along microtubules, and the generalized Hirota–Satsuma coupled KdV
system for their exact solutions including trigonometric, exponential, and rational function
solutions. In 2020, the (G′/G2)-expansion approach was employed to construct some
novel exact traveling wave solutions of the (2 + 1)-dimensional Boiti–Leon–Pempinelli
system [28]. In 2021, Bilal et al. [29] proposed new exact solutions, which consist of shock,
singular, shock-singular, and singular periodic wave solutions obtained by the (G′/G2)-
expansion method, to unidirectional Dullin–Gottwald–Holm (DGH) system describing the
prorogation of waves in shallow water.

In this article, we will demonstrate the use of the
(
G′/G2)-expansion method to

construct explicit exact solutions for the following two interesting problems in mathemati-
cal physics:

1. The (2 + 1)-dimensional conformable time integro-differential Sawada–Kotera (SK)
equation can be expressed as

∂α
t u =

(
uxxxx + 5uuxx +

5
3

u3 + 5uxy

)
x
− 5∂−1

x (uyy) + 5uuy + 5ux∂−1
x (uy), (1)

where ∂α
t (·) = ∂α

∂tα (·) is the conformable partial derivative with respect to t of order α with
0 < α ≤ 1 and ∂−1

x (·) =
∫ x
−∞(·)dx. The dependent variable u in the equation is a multi-

variable function consisting of three independent variables x, y, and t, i.e., u = u(x, y, t).
If α = 1, then Equation (1) reduces into the (2 + 1)-dimensional integro-differential SK
equation [30–36], which was initially established by Konopelcheno and Dubrovsky [37],
using the inverse scattering transform method. The (2 + 1)-dimensional SK equation
has been investigated extensively and intensively in a number of studies in the literature
because of its significance and various applications in two-dimensional quantum gravity
field theory, conformal field theory, and conserved current of Liouville equation [38–40].

2. The (3 + 1)-dimensional conformable time modified KdV–Zakharov–Kuznetsov
(mKdV–ZK) equation reads

∂α
t u + δ1u2ux + δ2uxxx + δ3(uyy + uzz)x = 0, (2)

where ∂α
t (·) = ∂α

∂tα (·) represents the conformable partial derivative with respect to t of order
α with 0 < α ≤ 1, and where u is a function of independent variables x, y, z, and t. The
parameters δ1, δ2, δ3 in the equation are real constants. If α = 1 is inserted into Equation (2),



Fractal Fract. 2021, 5, 88 3 of 22

then the equation becomes the (3 + 1)-dimensional mKdV–ZK equation [41–43]. The
mKdV–ZK equation plays a significant role in explaining dynamics of many branches of
physics such as plasma physics, nonlinear optics, fluid dynamics, shallow water waves in
oceanography, quantum mechanics and mathematical physics so that fundamental proper-
ties of nonlinear propagation for such various physical phenomena are analyzed [41,43–45].
Particularly, the (3 + 1)-dimensional mKdV–ZK equation is utilized to control the behavior
of weakly nonlinear ion-acoustic waves in magnetized electron–positron plasma including
the same hot and cold components of each species [42].

A recent literature review for constructing explicit exact solutions of the integro-
differential SK equation using various methods such as the Hirota bilinear method, the
(G′/G, 1/G)-expansion method, and the generalized Kudryashov method (GKM) can be
found in [32–36,46,47]. Furthermore, some scientists have devoted substantial efforts to
finding exact solutions of the (3 + 1)-dimensional mKdV–ZK equation in the sense of the
classical partial, conformable, and Jumarie’s modified Riemann–Liouville derivatives using
different and reliable approaches. In the past few years, the investigation of exact traveling
wave solutions for such mKdV–ZK equations has been discussed in [41–43,48–51]. To the
best of the authors’ knowledge, there are no research scholars who have found explicit
exact solutions for Equations (1) and (2) using the

(
G′/G2)-expansion method.

The organization of this paper is as follows: We provide a brief description of the
conformable derivative and its crucial characteristics in Section 2. Section 3 is devoted
to compactly describing the key steps of the

(
G′/G2)-expansion method. In Section 4,

the extraction of exact solutions of Equations (1) and (2) using the proposed technique
is illustrated. Some graphical representations of the chosen solutions and their physical
explanations are presented in Section 5. The last section summarizes the results of the
current study.

2. Conformable Derivative and Its Properties

In this section, a definition of the conformable derivative, which was initially intro-
duced by Khalil et al. [52], and its essential characteristics are briefly presented. They will
be utilized for the remaining parts of the present article.

Definition 1. Let f be a function such that f : [0, ∞)→ R. Then, the conformable derivative of f
of order α, where 0 < α ≤ 1, is defined as [52–58]

Dα
t f (t) = lim

ε→0

f (t + εt1−α)− f (t)
ε

, (3)

for all t > 0. If the limit in Equation (3) exists, then we can state that f is α-conformable
differentiable at a point t > 0. In addition, if f is α-conformable differentiable in some (0, a), a > 0
and limt→0+ Dα

t f (t) exists, then we define Dα
t f (0) = limt→0+ Dα

t f (t).

Let α ∈ (0, 1], and f (t), g(t) be α-conformable differentiable functions at a point t > 0.
Then, the important properties of the conformable derivative are as follows [52,53,55–57,59]:

(1) Dα
t (λ) = 0, where λ = constant.

(2) Dα
t (t

µ) = µtµ−α, for all µ ∈ R.
(3) Dα

t (a f (t) + bg(t)) = aDα
t f (t) + bDα

t g(t), for all a, b ∈ R.
(4) Dα

t ( f (t)g(t)) = f (t)Dα
t g(t) + g(t)Dα

t f (t).

(5) Dα
t

(
f (t)
g(t)

)
=

g(t)Dα
t f (t)− f (t)Dα

t g(t)
g(t)2 .

(6) If, in addition, f is differentiable, then Dα
t ( f (t)) = t1−α d f (t)

dt
.

Remark 1. Using the definition in (3) and the above properties, the conformable derivatives of
certain interesting functions are defined as follows [52,53,55–57]:

(1) Dα
t (e

at) = at1−αeat, a ∈ R.
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(2) Dα
t (sin bt) = bt1−α cos bt, b ∈ R.

(3) Dα
t (cos bt) = −bt1−α sin bt, b ∈ R.

(4) Dα
t (

1
α tα) = 1.

Theorem 1. [56,57,59–61] Suppose f , g : (0, ∞)→ R are differentiable and also α-conformable
differentiable. Further, assume that g is a function defined in the range of f . Then, we have

Dα
t ( f ◦ g)(t) = t1−α f ′(g(t))g′(t),

where the prime symbol (′) denotes the classical derivative.

The definition of the conformable derivative and its relevant properties when a frac-
tional order α ∈ (n, n + 1] for some positive integer n are described as follows:

Definition 2. Let α ∈ (n, n + 1], where n is a positive integer. Further, assume that f is n-times
differentiable at t > 0. Then, the conformable derivative of f of order α > 1 can be defined as [52,62]

Dα
t f (t) = lim

ε→0

f (dαe−1)(t + εtdαe−α)− f (dαe−1)(t)
ε

, (4)

where dαe is the smallest integer greater than or equal to α.

Remark 2. Using the definition in (4) and assuming that f is (n + 1)-times differentiable at t > 0,
we consequently have [52]

Dα
t f (t) = tdαe−α f (dαe)(t), (5)

where α ∈ (n, n + 1] for some positive integer n.

Remark 3. Suppose that f is a twice differentiable function at t > 0.

(1) If α ∈ (0, 1], then Dα
t (Dα

t f (t)) = Dα
t
(
t1−α f ′(t)

)
= t2−2α f ′′(t) + (1− α)t1−2α f ′(t).

(2) If α ∈ (0, 1
2 ], then D2α

t f (t) = t1−2α f ′(t).
(3) If α ∈ ( 1

2 , 1], then D2α
t f (t) = t2−2α f ′′(t).

(4) If α ∈ (0, 1], then D2α
t f (t) 6= Dα

t (Dα
t f (t)).

(5) For some positive integer n, further assume that f is (n + 1)-times differentiable at t > 0. In
general, if α ∈ (0, 1], then Dα

t (Dα
t (...(Dα

t f (t))))︸ ︷︷ ︸
n times

6= Dnα
t f (t).

Using the definition in (3), we can define, for example, the conformable partial deriva-
tive of a function u = u(x, t) with respect to t of order α ∈ (0, 1] as

∂α
t u(x, t) =

∂α

∂tα
u(x, t) = lim

ε→0

u(x, t + εt1−α)− u(x, t)
ε

, t > 0. (6)

Analogously, using the definition in (4) for α ∈ (n, n + 1], where n is a positive integer, if
u = u(x, t) is assumed to be (n + 1)-times partial differentiable with respect to t, then we
obtain for t > 0

∂α
t u(x, t) = tdαe−α ∂dαe

∂tdαe
u(x, t). (7)

Remark 4. The reason we do not replace some higher-order classical partial derivatives in Equa-
tions (1) and (2) with their corresponding conformable partial derivatives, for instance, replacing
the term uxx with ∂2α

x u(x, t), α ∈ (0, 1], is because the conformable derivative does not have the
sequential derivative property as specified in property (5) of Remark 3. Thus, a conversion of a
conformable partial differential equation using a traveling wave transformation to an ordinary
differential equation of a new variable may still have some independent variables of the original
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equation left. This is not what we desire to obtain in the process of seeking exact traveling wave
solutions of the conformable NPDEs.

For example, suppose that u = u(x, t) and we use the traveling wave transformation
ξ = cxα

α + ktα

α , where α ∈ ( 1
2 , 1] and c, k are constants. Introducing a new dependent vari-

able U such that u(x, t) = U(ξ), if the sequential derivative property for the conformable partial
derivative holds, then we would have ∂2α

t u(x, t) = ∂α
t (∂

α
t u(x, t)) = k2U′′(ξ). However, the actual

conversion of the term ∂2α
t u(x, t) is

∂2α
t u(x, t) = t2−2αutt(x, t) = k2U′′(ξ) + (α− 1)kt−αU′(ξ). (8)

3. Algorithm of the
(
G′/G2)-Expansion Method

In this section, we briefly describe the
(
G′/G2)-expansion method, which is discussed

in [21–27,29,63]. Consider the nonlinear conformable partial differential equation of the un-
known function u = u(x1, x2, ..., xn, t) consisting of the independent variables x1, x2, ..., xn,
and t as follows:

P
(

u, ∂α
t u, ∂

β1
x1 u, ..., ∂

βn
xn u, utt, ux1x1 , ..., uxnxn , ∂α

t

(
∂

β1
x1 u
)

, ...
)
= 0, 0 < α, β1, β2, ..., βn ≤ 1, (9)

where ∂
γ
v u = ∂γ

∂vγ u is a generic term for the conformable partial derivative of the dependent
variable u with respect to the independent variable v of order γ ∈ (0, 1], and where the
subscript symbols denote the classical partial derivatives, for instance, utt = ∂2

∂t2 u. The
function P in (9) is a polynomial of u and its various partial derivatives. The main steps
of the

(
G′/G2)-expansion method for constructing exact solutions for Equation (9) can be

given as follows:
Step 1: Convert nonlinear conformable partial differential Equation (9) into an ordi-

nary differential equation (ODE) via the fractional complex traveling wave transformation
in a variable ξ,

u(x1, x2, ..., xn, t) = U(ξ), ξ =
c1xβ1

1
β1

+
c2xβ2

2
β2

+ ... +
cnxβn

n
βn

+
ktα

α
, (10)

where c1, c2, ..., cn, k are nonzero constants that will be determined at a later step. Applying
transformation (10) to (9) and then integrating the resulting equation with respect to ξ as
many as possible, we obtain the following ODE in U = U(ξ):

Q(U, U′, U′′, U′′′, ...) = 0, (11)

where Q is a polynomial function of U(ξ), and its various integer-order derivatives. The
prime notation (′) denotes the ordinary derivative with respect to ξ.

Step 2: Suppose that the general solution of the above ODE can be expressed in terms
of
(
G′/G2) as

U(ξ) = a0 +
N

∑
j=1

[
aj

(
G′

G2

)j

+ bj

(
G′

G2

)−j
]

, (12)

where G = G(ξ) satisfies the simple Riccati equation:(
G′

G2

)′
= µ + λ

(
G′

G2

)2

, (13)

in which µ 6= 1 and λ 6= 0 are arbitrary integers. The unknown constants aN or bN
may be zero, but both of them cannot be zero simultaneously. The coefficients a0, aj, bj
(j = 1, 2, ..., N) are unknown constants to be determined in Step 3. The value of the positive
integer N can be computed using the homogeneous balance principle, in other words, by
balancing between the highest order derivatives and the nonlinear terms appearing in
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Equation (11). More precisely, if the degree of U(ξ) is Deg[U(ξ)] = N, then the degree of
the following terms can be calculated using the following formulas [57]:

Deg
[

dqU(ξ)

dξq

]
= N + q, Deg

[
(U(ξ))p

(
dqU(ξ)

dξq

)s]
= Np + s(N + q). (14)

Step 3: Substituting Equation (12), along with Equation (13), into Equation (11), we
have a polynomial in

(
G′/G2). Collecting all coefficients of the same power of

(
G′/G2)i

where i = 0,±1,±2, ...,±M where M is some positive integer and then setting all of the
obtained coefficients to zero, we obtain a system of nonlinear algebraic equations for the
unknown constants a0 , aj, bj (j = 1, 2, ..., N), c1, c2, ..., cn and k. Assume that the resulting
algebraic system can be possibly solved for the unknown constants using symbolic software
packages such as Maple.

Step 4: The general solutions of Equation (13) can be separated into the following
three cases depending on the values of µ and λ:

If µλ > 0, then (13) has the trigonometric function solution as

G′

G2 =

√
µ

λ

(
C cos

(√
µ λξ

)
+ D sin

(√
µ λξ

)
D cos

(√
µ λξ

)
− C sin

(√
µ λξ

)), (15)

where C, D are arbitrary nonzero constants.
If µλ < 0, then (13) has the exponential function solution as

G′

G2 =
1

2λ

(
2
√
|µλ| −

4C
√
|µλ|e2ξ

√
|µλ|

Ce2ξ
√
|µλ| − D

)
, (16)

which is equivalent to the hyperbolic function solution as

G′

G2 = −
√
|µ λ|
λ

C sinh
(

2
√
|µ λ|ξ

)
+ C cosh

(
2
√
|µ λ|ξ

)
+ D

C sinh
(

2
√
|µ λ|ξ

)
+ C cosh

(
2
√
|µ λ|ξ

)
− D

,

where C, D are arbitrary nonzero constants.
If µ = 0 and λ 6= 0, then (13) has the rational function solution as

G′

G2 = − C
λ (Cξ + D)

, (17)

where C, D are arbitrary nonzero constants.
The exact traveling wave solutions of Equation (9) can be obtained by inserting the

obtained values of a0 , aj, bj (j = 1, 2, ..., N), c1, c2, ..., cn, k and the solutions (15)–(17) into
Equation (12) with the transformation (10).

4. Applications of the
(
G′/G2)-Expansion Method

In this section, we will implement the
(
G′/G2)-expansion method to solve

Equations (1) and (2) for their exact solutions.

4.1. The (2 + 1)-Dimensional Conformable Time Integro-Differential Sawada–Kotera Equation

In this subsection, the
(
G′/G2)-expansion method will be utilized to extract exact

traveling wave solutions of the (2 + 1)-dimensional conformable time integro-differential
SK Equation (1). Using the transformation u(x, y, t) = vx(x, y, t) to convert (1) to a new
nonlinear PDE, we obtain

∂α
t (vx) = vxxxxxx + 5(vxvxxx)x +

5
3

(
v3

x

)
x
+ 5vxxxy − 5vyy + 5vxvxy + 5vxxvy. (18)
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Applying the traveling wave transformation

v(x, y, t) = V(ξ), ξ = x + y− ktα

α
, (19)

where k is a constant to the resulting PDE with the use of Theorem 1, Equation (18) is
transformed to the following ODE:

−kV′′ = V(6) + 5
(
V′V′′′

)′
+

5
3

((
V′
)3
)′

+ 5V(4) − 5V′′ + 10V′V′′, (20)

where the prime notation (′) denotes the ordinary derivative with respect to ξ. Integrat-
ing (20) with respect to ξ, we obtain

V(5) + 5V′V′′′ +
5
3
(
V′
)3

+ 5V′′′ + (k− 5)V′ + 5
(
V′
)2

+ c = 0, (21)

where c is a constant of integration. Taking the transformation W = V′, we obtain

W(4) + 5WW ′′ +
5
3

W3 + 5W ′′ + (k− 5)W + 5W2 + c = 0. (22)

On the basis of Equation (12), we assume that the general solution of (22) takes
the form

W(ξ) = a0 +
N

∑
j=1

[
aj

(
G′

G2

)j

+ bj

(
G′

G2

)−j
]

, (23)

for which Deg[W(ξ)] = N, and the function G satisfies (13). Balancing the highest order
derivative W(4) in (22) with the nonlinear term W3 via the formulas (14), we obtain the
balancing number N = 2. In consequence, the solution form of ODE (22) can be written as

W(ξ) = a0 + a1

(
G′

G2

)
+ b1

(
G′

G2

)−1

+ a2

(
G′

G2

)2

+ b2

(
G′

G2

)−2

, (24)

where a0, a1, a2, b1, and b2 are unknown constants that will be found at a later step.
Substituting Equation (24) into Equation (22), along with Equation (13), and then collecting
all the coefficients of the same power of

(
G′/G2)i, (i = 0,±1,±2, ...), and finally setting

these resulting coefficients to zero, we obtain the following system of algebraic equations
in a0, a1, a2, b1, b2, k:(

G′

G2

)−6
:

5b3
2

3
+ 30b2

2µ2 + 120b2µ4 = 0,(
G′

G2

)−5
: 24µ4b1 + 40µ2b1b2 + 5b1b2

2 = 0,(
G′

G2

)−4
: 240λµ3b2 + 40λµb2

2 + 30µ2a0b2 + 10µ2b2
1 + 30µ2b2 + 5a0b2

2 + 5b2
1b2 + 5b2

2 = 0,(
G′

G2

)−3
:

5b3
1

3
+ 10b1µ2 + 10b1b2 + 5a1b2

2 + 50b1b2µλ + 10a0b1µ2 + 30a1b2µ2 + 10a0b1b2

+ 40b1µ3λ = 0,

(25)
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(
G′

G2

)−2
: 136λ2µ2b2 + 10λ2b2

2 + 40λ µ a0b2 + 10λµb2
1 + 10µ2a1b1 + 40µ2a2b2 + 40 λµb2

+ 5a2
0b2 + 5a0b2

1 + 10a1b1b2 + 5a2b2
2 + kb2 + 10a0b2 + 5b2

1 − 5b2 = 0,(
G′

G2

)−1
: 16λ2µ2b1 + 10λ2b1b2 + 10λµa0b1 + 50λµa1b2 + 20µ2a2b1 + 10λµb1 + 5a2

0b1

+ 10a0a1b2 + 5a1b2
1 + 10a2b1b2 + kb1 + 10a0b1 + 10a1b2 − 5b1 = 0,(

G′

G2

)0
: 10b2λ2 + 16a2µ3λ + 10a1b1 + 10a2b2 + 5a2

1b2 + 5b2
1a2 +

5a3
0

3
+ c + 5a2

0 + ka0

+ 10a0a2b2 + 10a0a1b1 + 10a0a2µ2 + 10a0b2λ2 + 16b2µλ3 + 10a2µ2 − 5a0

+ 80a2b2µλ + 20a1b1µλ = 0,(
G′

G2

)
: 16λ2µ2a1 + 20λ2a1b2 + 10λ µ a0a1 + 50λ µ a2b1 + 10 µ2a1a2 + 10λµa1 + 5a2

0a1

+ 10a0a2b1 + 5a2
1b1 + 10a1a2b2 + ka1 + 10a0a1 + 10a2b1 − 5a1 = 0,(

G′

G2

)2
: 136λ2µ2a2 + 10λ2a1b1 + 40λ2a2b2 + 40λµa0a2 + 10λµa2

1 + 10µ2a2
2 + 40λµa2

+ 5a2
0a2 + 5a0a2

1 + 10a1a2b1 + 5a2
2b2 + ka2 + 10a0a2 + 5a2

1 − 5a2 = 0,(
G′

G2

)3
:

5a3
1

3
+ 5b1a2

2 + 10a1λ2 + 10a1a2 + 50a1a2µλ + 10a0a1λ2 + 30b1a2λ2 + 10a0a1a2

+ 40a1λ3µ = 0,(
G′

G2

)4
: 240λ3µa2 + 30λ2a0a2 + 10λ2a2

1 + 40λµa2
2 + 30λ2a2 + 5a0a2

2 + 5a2
1a2 + 5a2

2 = 0,(
G′

G2

)5
: 24λ4a1 + 40λ2a1a2 + 5a1a2

2 = 0,(
G′

G2

)6
:

5a3
2

3
+ 30a2

2λ2 + 120a2λ4 = 0.

Solving the algebraic system in (25) with the assistance of the Maple package program,
we have the following three results:

Result 1:

a0 = −1
2
− 4µλ +

(ω(c, µ, λ))1/3

10
+

(
24λ2µ2 + 5

2

)
(ω(c, µ, λ))1/3 , a1 = 0, a2 = 0, b1 = 0, b2 = −6µ2,

k =
25
4
− 20λ2µ2 − (ω(c, µ, λ))1/3

2
− (ω(c, µ, λ))2/3

20
−

(
25
2 + 120λ2µ2

)
(ω(c, µ, λ))1/3

−

(
2880λ4µ4 + 600λ2µ2 + 125

4

)
(ω(c, µ, λ))2/3 ,

(26)

where

ω(c, µ, λ) = 3200(µλ)3 + 1200(µλ)2 + 150c− 125
+ 10

(
−35, 840(µλ)6 + 76, 800(µλ)5 − 28, 800(µλ)4 + (9600c− 8000)(µλ)3

+(3600c− 7500)(µλ)2 + 225c2 − 375c
) 1

2 ,
(27)

where c is an arbitrary constant and µ, λ are arbitrary integers. Substituting (26) into
solution form (24), along with the ratio

(
G′/G2) in (15)–(17), depending on the values of µ

and λ, we obtain the solution W(ξ). Using the relation v(x, y, t) = V(ξ), ξ = x + y− ktα

α ,
the transformation u(x, y, t) = vx(x, y, t) and W = V′, we consequently have u(x, y, t) =
V′(ξ) · ξx = V′(ξ) = W(ξ), where ξ = x + y− ktα

α .
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If µλ > 0, then the trigonometric function solution of (22) can be written as

W1
1 (ξ) =−

1
2
− 4µλ +

(ω(c, µ, λ))1/3

10
+

(
24λ2µ2 + 5

2
)

(ω(c, µ, λ))1/3

−
6µλ

(
D cos

(√
µλξ

)
− C sin

(√
µλξ

))2(
C cos

(√
µλξ

)
+ D sin

(√
µλξ

))2 . (28)

Using the fact that u(x, y, t) = W(ξ), where ξ = x + y− ktα

α ; thus, the exact solution
of (1), written in terms of trigonometric functions, is

u1
1(x, y, t) = W1

1 (ξ), (29)

where ξ = x + y− ktα

α and k is defined in (26).
If µλ < 0, then the exponential function solution of (22) can be expressed as

W1
2 (ξ) = −

1
2
− 4µλ +

(ω(c, µ, λ))1/3

10
+

(
24λ2µ2 + 5

2

)
(ω(c, µ, λ))1/3 +−

6λ2µ2
(

Ce2ξ
√
|µ λ| − D

)2

|µλ|
(

Ce2ξ
√
|µ λ| + D

)2 . (30)

Utilizing the fact that u(x, y, t) = W(ξ), where ξ = x + y − ktα

α ; hence, the exact
solution of (1), written in terms of exponential functions, is

u1
2(x, y, t) = W1

2 (ξ), (31)

where ξ = x + y− ktα

α and k is given in (26).
If µ = 0, λ 6= 0, then the rational function solution of (22) can be exhibited as

W1
3 (ξ) =

1

2(τ(c))1/3

(
(τ(c))

5

2/3
− (τ(c))1/3 + 5

)
, (32)

where

τ(c) = ω(c, 0, λ) = −125 + 150 c + 50
√

9 c2 − 15 c. (33)

Using the fact that u(x, y, t) = W(ξ), where ξ = x + y− ktα

α ; thus, the exact solution
of (1) for this case is

u1
3(x, y, t) = W1

3 (ξ), (34)

which is a constant, as shown in (32).

Result 2:

a0 = −1
2
− 4µλ +

(ω(c, µ, λ))1/3

10
+

(
24λ2µ2 + 5

2

)
(ω(c, µ, λ))1/3 , a1 = 0, a2 = −6λ2, b1 = 0, b2 = 0,

k =
25
4
− 20λ2µ2 − (ω(c, µ, λ))1/3

2
− (ω(c, µ, λ))2/3

20
−

(
25
2 + 120λ2µ2

)
(ω(c, µ, λ))1/3

−

(
2880λ4µ4 + 600λ2µ2 + 125

4

)
(ω(c, µ, λ))2/3 ,

(35)
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where ω(c, µ, λ) is defined in (27), c is an arbitrary constant and µ, λ are arbitrary integers.
Substituting (35) into solution (24), along with the ratio

(
G′/G2), in (15)–(17), depending

on the values of µ and λ, we obtain the solution W(ξ).
If µλ > 0, then the trigonometric function solution of (22) can be written as

W2
1 (ξ) =−

1
2
− 4µλ +

(ω(c, µ, λ))1/3

10
+

(
24λ2µ2 + 5

2
)

(ω(c, µ, λ))1/3

−
6µλ

(
C cos

(√
µλξ

)
+ D sin

(√
µλξ

))2(
D cos

(√
µλξ

)
− C sin

(√
µλξ

))2 . (36)

Using the fact that u(x, y, t) = W(ξ), where ξ = x + y − ktα

α , so the exact solution
of (1), written in terms of trigonometric functions, is

u2
1(x, y, t) = W2

1 (ξ), (37)

where ξ = x + y− ktα

α and k is defined in (35).
If µλ < 0, then the exponential function solution of (22) can be expressed as

W2
2 (ξ) = −

1
2
− 4µλ +

(ω(c, µ, λ))1/3

10
+

(
24λ2µ2 + 5

2
)

(ω(c, µ, λ))1/3 −
6|µλ|

(
Ce2ξ
√
|µλ| + D

)2

(
Ce2 ξ

√
|µλ| − D

)2 . (38)

Utilizing the fact that u(x, y, t) = W(ξ), where ξ = x + y − ktα

α , hence the exact
solution of (1), written in terms of exponential functions, takes the form

u2
2(x, y, t) = W2

2 (ξ), (39)

where ξ = x + y− ktα

α and k is given in (35).
If µ = 0, λ 6= 0, then the rational function solution of (22) can be expressed as

W2
3 (ξ) =

(
−5C2ξ2 − 10CDξ − 60C2 − 5D2)(τ(c))1/3 +

(
(τ(c))2/3 + 25

)
(Cξ + D)2

10(τ(c))1/3(Cξ + D)2 , (40)

where τ(c) is shown in (33). Using the fact that u(x, y, t) = W(ξ), where ξ = x + y− ktα

α ,
thus the rational function solution of (1) is

u2
3(x, y, t) = W2

3 (ξ), (41)

where ξ = x + y− ktα

α in which k is reduced as

k =
−1

20(τ(c))2/3

(
(τ(c))4/3 + 10τ(c)− 125(τ(c))2/3 + 250(τ(c))1/3 + 625

)
. (42)

Result 3:

a0 = −1
2
− 4µλ +

(θ(c, µ, λ))1/3

10
+

(
384λ2µ2 + 5

2

)
(θ(c, µ, λ))1/3 , a1 = 0, a2 = −6λ2, b1 = 0, b2 = −6µ2,

k =
25
4
− 320λ2µ2 − (θ(c, µ, λ))1/3

2
− (θ(c, µ, λ))2/3

20
−

(
1920λ2µ2 + 25

2

)
(θ(c, µ, λ))1/3

−

(
737, 280λ4µ4 + 9600λ2µ2 + 125

4

)
(θ(c, µ, λ))2/3 ,

(43)
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where

θ(c, µ, λ) = 204, 800 (µλ)3 + 19, 200(µλ)2 + 150c− 125
+10

(
−146, 800, 640(µλ)6 + 78, 643, 200 (µλ)5 − 7, 372, 800(µλ)4 + 614, 400

(
c− 5

6
)
(µλ)3

+57, 600
(
c− 25

12
)
(µλ)2 + 225c2 − 375c

) 1
2 ,

(44)

where c is an arbitrary constant and µ, λ are arbitrary integers. Substituting (43) into
solution form (24), along with the ratio

(
G′/G2), in (15)–(17), depending on the values of

µ and λ, we obtain the solution W(ξ).
If µλ > 0, then the trigonometric function solution of (22) is written as

W3
1 (ξ) =−

1
2
− 4µλ +

(θ(c, µ, λ))1/3

10
+

(
384λ2µ2 + 5

2
)

(θ(c, µ, λ))1/3

−
6µλ

(
C cos

(√
µλξ

)
+ D sin

(√
µλξ

))2(
D cos

(√
µλξ

)
− C sin

(√
µλξ

))2 . (45)

Using the fact that u(x, y, t) = W(ξ), where ξ = x + y− ktα

α ; thus, the exact solution
of (1), expressed in terms of trigonometric functions, is

u3
1(x, y, t) = W3

1 (ξ), (46)

where ξ = x + y− ktα

α and k is defined in (43).
If µλ < 0, then the exponential function solution of (22) is

W3
2 (ξ) = −

1
2
+ 2µλ +

(θ(c, µ, λ))1/3

10
+

(
768λ2µ2 + 5

)
2(θ(c, µ, λ))1/3 −

6|µ λ|
(

Ce2ξ
√
|µ λ| + D

)2

(
Ce2ξ
√
|µ λ| − D

)2 . (47)

Utilizing the fact that u(x, y, t) = W(ξ), where ξ = x + y − ktα

α ; hence, the exact
solution of (1), written in terms of exponential functions, takes the form

u3
2(x, y, t) = W3

2 (ξ), (48)

where ξ = x + y− ktα

α and k is given in (43).
If µ = 0, λ 6= 0, then the rational function solution of (22) can be expressed as

W3
3 (ξ) =

1

2(τ(c))1/3(Cξ + D)2

×
(
(Cξ + D)2(τ(c))2/3

5
−
((

ξ2 + 12
)

C2 + 2CDξ + D2
)
(τ(c))1/3 + 5(Cξ + D)2

)
. (49)

where τ(c) = θ(c, 0, λ)(= ω(c, 0, λ)) is expressed in (33). Utilizing the fact that
u(x, y, t) = W(ξ), where ξ = x + y− ktα

α ; thus, the rational function solution of (1) is

u3
3(x, y, t) = W3

3 (ξ), (50)

where ξ = x + y− ktα

α in which k is simplified, as shown in (42).
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4.2. The (3 + 1)-Dimensional Conformable Time Modified KdV–Zakharov–Kuznetsov Equation

Before constructing exact traveling wave solutions of the (3 + 1)-dimensional space-
time fractional modified KdV–Zakharov–Kuznetsov Equation (2) by means of the

(
G′/G2)-

expansion method, we must convert the equation to an ordinary differential equation via
the fractional complex transformation:

u(x, y, z, t) = U(ξ), ξ = εx + βy + σz− ktα

α
, (51)

where ε, β, σ, and k are constants. After performing algebraic manipulations, Equation (2)
is transformed into the ODE in the variable U = U(ξ) as

− kU′ + εδ1U2U′ + ε
(

ε2δ2 +
(

β2 + σ2
)

δ3

)
U′′′ = 0, (52)

where the prime notation (′) represents the ordinary derivative with respect to ξ. Integrat-
ing (52) with respect to ξ, we have the following ODE:

− kU +
εδ1

3
U3 + ε

(
ε2δ2 +

(
β2 + σ2

)
δ3

)
U′′ + c = 0, (53)

where c is a constant of integration. Using the solution form (12) of the technique, the
general solution U(ξ) of (53) has the degree N. After balancing the highest order deriva-
tive U′′ in (53) with the nonlinear term of the highest order, i.e., U3, we obtain N = 1.
Consequently, the solution of Equation (53) has the following form:

U(ξ) = a0 + a1

(
G′

G2

)
+ b1

(
G′

G2

)−1

, (54)

where a0, a1, and b1 are unknown constants that will be determined. Replacing Equation (54)
into Equation (53), along with Equation (13), and then collecting all the coefficients of similar
power of

(
G′/G2)i, (i = 0,±1,±2, ...), and ultimately setting these resulting coefficients to

zero, we have the following system of algebraic equations in a0, a1, b1, ε, β, σ, k :(
G′

G2

)−3

: 2µ2ε3b1 +
δεb3

1
3

+ 2β2µ2εb1 + 2µ2σ2ε b1 = 0,(
G′

G2

)−2

: δε a0b1
2 = 0,(

G′

G2

)−1

: 2β2λµεb1 + 2µλσ2εb1 + 2µλε3b1 + δεa2
0b1 + δεa1b2

1 − kb1 = 0,(
G′

G2

)0

:
δεa3

0
3
− ka0 + c + 2δεa0a1b1 = 0,(

G′

G2

)
: 2β2λµεa1 + 2λµσ2εa1 + 2λµε3a1 + δεa2

0a1 + δεa2
1b1 − ka1 = 0,(

G′

G2

)2

: δεa0a2
1 = 0,(

G′

G2

)3

: 2 λ2ε3a1 +
δ εa3

1
3

+ 2 β2λ2ε a1 + 2λ2σ2εa1 = 0.

(55)

Solving the algebraic system in (55) with the help of Maple, we have the following
three results for the exact solutions of (2):
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Result 1:

a0 = 0, a1 = 0, b1 = ±

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1
µ, k = 2λµε

(
β2δ3 + σ2δ3 + δ2ε2

)
, c = 0, (56)

where δ1, δ2, δ3, ε, β, σ are arbitrary constants and µ, λ are arbitrary integers. Substitut-
ing (56) into solution (54), along with the ratio

(
G′/G2), in (15)–(17), the exact solutions

of (2) with ξ = εx + βy + σz− ktα

α , where k is expressed in (56), are described depending
on the values of µ, λ as follows:

If µλ > 0, then the trigonometric function solution of (2), which is formulated using
the ratio (15), can be written as

u1
1(x, y, z, t) = ±

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1

(√
µ λ
(

D cos
(√

µ λξ
)
− C sin

(√
µ λξ

))
C cos

(√
µ λξ

)
+ D sin

(√
µ λξ

) )
, (57)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0 and C, D are arbitrary nonzero constants.
If µλ < 0, then the exponential function solution of (2), which is formulated using the

ratio (16), can be expressed as

u1
2(x, y, z, t) = ∓

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1

 λ µ
(

Ce2 ξ
√
|λ µ| − D

)
√
|λ µ|

(
Ce2 ξ

√
|λ µ| + D

)
, (58)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0 and C, D are arbitrary nonzero constants.
If µ = 0, λ 6= 0, then the rational function solution of (2), which is constructed using

the ratio (17), can be consequently shown as

u1
3(x, y, z, t) = 0. (59)

Result 2:

a0 = 0, a1 = ±

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1
λ, b1 = 0, k = 2λµε

(
β2δ3 + σ2δ3 + δ2ε2

)
, c = 0, (60)

where δ1, δ2, δ3, ε, β, σ are arbitrary constants and µ, λ are arbitrary integers. Substitut-
ing (60) into solution (54), along with the ratio

(
G′/G2), in (15)–(17), the explicit exact

solutions of (2) with ξ = εx + βy + σz− ktα

α , where k is expressed in (60), are exhibited
depending on the values of µ, λ as follows:

If µλ > 0, then the trigonometric function solution of (2), which is formulated using
the ratio (15), can be expressed as

u2
1(x, y, z, t) = ±

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1

(√
µ λC cos

(√
µ λξ

)
+ D sin

(√
µ λξ

)
D cos

(√
µ λξ

)
− C sin

(√
µ λξ

) )
, (61)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0 and C, D are arbitrary nonzero constants.
If µλ < 0, then the exponential function solution of (2), which is constructed using the

ratio (16), can be demonstrated as

u2
2(x, y, z, t) = ∓

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1

√|λ µ|
(

Ce2 ξ
√
|λ µ| + D

)
Ce2 ξ

√
|λ µ| − D

, (62)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0 and C, D are arbitrary nonzero constants.
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If µ = 0, λ 6= 0, then the rational function solution of (2), which is formulated using
the ratio (17), can be expressed as

u2
3(x, y, z, t) = ∓

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1

(
C

Cξ + D

)
, (63)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0, ξ = εx + βy + σz and C, D are arbitrary nonzero constants.

Result 3: The set of the parameter values for this result is separated as two sub-categories,
namely, Result 3.1 and Result 3.2. In order to prevent confusion from selecting the sign
in front of each exact solution formulated using the parameter values in this result, then
Table 1 shows the correct signs of u(x, y, z, t) selected from ± or ∓ in front of u(x, y, z, t) in
each case.

Table 1. Sign of u(x, y, z, t) selected from ± or ∓ in front of u(x, y, z, t).

Result Sign of a1 Sign of b1
Sign Selected from± or∓ in Front of u(x, y, z, t)

µλ > 0 µλ < 0 µ = 0, λ 6= 0

3.1
+ + − − −
− − + + +

3.2
+ − + + −
− + − − +

Result 3.1:

a0 = 0, a1 = ±

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1
λ, b1 = ±µa1

λ
,

k = −4 ε λ µ
(

δ2ε2 + δ3

(
β2 + σ2

))
, c = 0,

(64)

where δ1, δ2, δ3, ε, β, σ are arbitrary constants and µ, λ are arbitrary integers. Substitut-
ing (64), along with the ratio

(
G′/G2), in (15)–(17), depending upon the values of µ, λ into

the solution form (54), the exact traveling wave solutions of (2) with ξ = εx + βy + σz− ktα

α ,
where k is defined in (64), are exhibited as follows:

When µλ > 0, the trigonometric function solution of (2), which is formulated using
the ratio (15), can be expressed as

u3,1
1 (x, y, z, t) = ∓

√
− 6(β2δ3+σ2δ3+ε2δ2)

δ1

√
µλ(C2 + D2)

sin
(√

µλξ
)
(C2 − D2) cos

(√
µλξ

)
− 2CD

(
cos
(√

µλξ
))2

+ CD
, (65)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0 and C, D are arbitrary nonzero constants.
When µλ < 0, the exponential function solution of (2), which is constructed using the

ratio (16), can be demonstrated as

u3,1
2 (x, y, z, t) =∓

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1

×

µ λ
(

Ce2
√
|λ µ|ξ − D

)2
+
(

Ce2
√
|λ µ|ξ + D

)2
|λ µ|√

|λ µ|
(

Ce2
√
|λ µ|ξ − D

)(
Ce2
√
|λ µ|ξ + D

)
, (66)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0 and C, D are arbitrary nonzero constants.
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When µ = 0, λ 6= 0, the rational function solution of (2), which is obtained using the
ratio (17), can be written as

u3,1
3 (x, y, z, t) = ∓

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1

(
C

Cξ + D

)
, (67)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0, ξ = ε x + β y + σ z and C, D are arbitrary nonzero constants.

Result 3.2:

a0 = 0, a1 = ±

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1
λ, b1 = ±µa1

λ
,

k = 8 ε λ µ
(

δ2ε2 + δ3

(
β2 + σ2

))
, c = 0,

(68)

where δ1, δ2, δ3, ε, β, σ are arbitrary constants and µ, λ are arbitrary integers. Substitut-
ing (68), along with the ratio

(
G′/G2), in (15)–(17), depending upon the values of µ, λ into

the solution form (54), the exact traveling wave solutions of (2) with ξ = εx + βy + σz− ktα

α ,
where k is defined in (68), are described as follows:

When µλ > 0, the trigonometric function solution of (2), which is formulated using
the ratio (15), can be expressed as

u3,2
1 (x, y, z, t) =±

√
µλ

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1

×
(

2
(
C2 − D2)(cos

(√
µλξ

))2 − 4CD cos
(√

µλξ
)

sin
(√

µλξ
)
− C2 + D2

sin
(√

µλξ
)
(C2 − D2) cos

(√
µλξ

)
+ 2CD

(
cos
(√

µλξ
))2 − CD

)
, (69)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0 and C, D are arbitrary nonzero constants.
When µλ < 0, the exponential function solution of (2), which is constructed using the

ratio (16), can be shown as

u3,2
2 (x, y, z, t) =±

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1

×

µλ
(

Ce2
√
|λµ|ξ − D

)2
−
(

Ce2
√
|λµ|ξ + D

)2
|λµ|√

|λµ|
(

Ce2
√
|λµ|ξ − D

)(
Ce2
√
|λµ|ξ + D

)
, (70)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0 and C, D are arbitrary nonzero constants.
When µ = 0, λ 6= 0, the rational function solution of (2), which is formulated using

the ratio (17), can be written as

u3,2
3 (x, y, z, t) = ∓

√
−6(β2δ3 + σ2δ3 + ε2δ2)

δ1

(
C

Cξ + D

)
, (71)

where (β2δ3+σ2δ3+ε2δ2)
δ1

< 0, ξ = ε x + β y + σ z and C, D are arbitrary nonzero constants.

5. Graphical Representations of the Selected Solutions

In this portion, we will manifest interesting graphical representations of the se-
lected exact solutions of the (2 + 1)-dimensional conformable time integro-differential
Sawada–Kotera Equation (1) and of the (3 + 1)-dimensional conformable time modified
KdV–Zakharov–Kuznetsov (mKdV–ZK) Equation (2) obtained using the algorithm of the
(G′/G2)-expansion method. The time-fractional order α for the equations is changed in
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order to study graphical behaviors of the exact solutions chosen from the previous section.
Particularly, the values of the time-fractional order used for the following simulations
are α = 1, 0.7 and 0.3. Solutions (41) and (46) of Equation (1) and solution (65) of Equa-
tion (2) are selected to present in terms of 3D, 2D, and contour plots according to the
values of α. All of the 3D solution graphs of (1) and (2) are portrayed on the domain
{(x, y, t) : 0 ≤ x, t ≤ 10, y = 1} and {(x, y, z, t) : 0 ≤ x, t ≤ 10, y = z = 1}, respectively.
The 2D solution graphs, demonstrating a relation between u(x) and x, of (1) and (2) are de-
picted on {(x, y, t) : 0 ≤ x ≤ 10, y = t = 1} and {(x, y, z, t) : 0 ≤ x ≤ 10, y = z = t = 1},
respectively. Moreover, the contour plots, showing a 3D surface by plotting constant u
slices on a 2D plane, are drawn to connect the (x, t) coordinates when the values of u are
given and y = 1 for (1) but y = z = 1 for (2). In addition, physical descriptions of the
displayed graphs will be mentioned in this section.

Figures 1 and 2 show the solution graphs of the exact solutions u2
3(x, y, t) in (41) and

u3
1(x, y, t) in (46) for problem (1), respectively. They are unfolded in different aspects, i.e.,

the 3D, 2D, and contour plots. Varying the values of α = 1, 0.7, 0.3, the solutions (41)
and (46) are evaluated using the parameter sets {c = 2, µ = 0, λ = 1, C = 0.5, D = −10}
and {c = 1300, µ = 2, λ = 1, C = 1, D = 1}, respectively, to plot their graphs on the
domains. Particularly, Figure 1a–c shows the 3D, 2D, and contour plots for solution (41),
respectively, when α = 1. Figure 1d–f and Figure 1g–i are plotted in the same manner
as before except using α = 0.7 and α = 0.3, respectively. By classifying the shapes of the
3D and 2D graphs in Figure 1, it can be identified that solution (41) is a singular single-
soliton solution that is a solitary wave with discontinuous derivatives occurring at some
domain regions, as observed in the contour plots of Figure 1. In addition, Figure 2a–c
shows the 3D, 2D, and contour plots for solution (46), respectively, when α = 1. Figure
2d–f and Figure 2g–i are drawn in a similar manner to the above plots except using α = 0.7
and α = 0.3, respectively. As noticed in the 3D and 2D graph structures in Figure 2,
their physical behavior is considered as a singular periodic wave solution (or, a singular
wavetrain), which is spatiotemporal oscillations with discontinuous derivatives. It can
be roughly observed from the 3D graphs that the number of oscillations of the singular
periodic wave solutions gradually increases as the fractionality α ∈ (0, 1) decreases.

(a) (b) (c)

(d) (e) (f)

Figure 1. Cont.
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(g) (h) (i)

Figure 1. Associated plots of the solution u2
3(x, y, t) in Equation (41) obtained using the (G′/G2)-

expansion method: (a–c) 3D plot, 2D plot, and contour plot when α = 1; (d–f) 3D plot, 2D plot, and
contour plot when α = 0.7; (g–i) 3D plot, 2D plot, and contour plot when α = 0.3.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Associated plots of the solution u3
1(x, y, t) in Equation (46) obtained using the (G′/G2)-

expansion method: (a–c) 3D plot, 2D plot, and contour plot when α = 1; (d–f) 3D plot, 2D plot, and
contour plot when α = 0.7; (g–i) 3D plot, 2D plot, and contour plot when α = 0.3.

The solution graphs of the exact solution u3,1
1 (x, y, z, t) in (65) for problem (2) are

presented in Figure 3. To be clear, exact solution (65), in which the top sign of ∓ is
chosen, is computed utilizing the parameter set {δ1 = δ2 = −1, δ3 = 1, ε = β = σ = 1,
µ = 2, λ = 1, C = 0.5, D = −1} to plot its 3D, 2D, and contour graphs on the domains
according to the used values of α. Specifically, Figure 3a–c shows the 3D, 2D, and contour
graphs of the solution (65) when α = 1 is used. However, the 3D, 2D, and contour plots of
the solution (65) when α = 0.7 and α = 0.3 are exhibited in Figure 3d–f and Figure 3g–i,
respectively. The physical behavior of these graphs is characterized as a singularly double
periodic wave solution. The significant part of the doubly periodic wave solution represents
a traveling wave whose envelope of emerging oscillations is bounded by a pattern periodic
in both time and space. In addition, the number of oscillations of this solution type is
inversely proportional to the value of α.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Associated plots of the solution u3,1
1 (x, y, z, t) in Equation (65) obtained using the (G′/G2)-

expansion method: (a–c) 3D plot, 2D plot, and contour plot when α = 1; (d–f) 3D plot, 2D plot, and
contour plot when α = 0.7; (g–i) 3D plot, 2D plot, and contour plot when α = 0.3.

6. Conclusions and Future Work

In our study, we have determined closed-form traveling wave solutions for the two
nonlinear conformable evolution equations, which are the (2+ 1)-dimensional conformable
time integro-differential SK Equation (1) and the (3 + 1)-dimensional conformable time
mKdV–ZK Equation (2) by means of the (G′/G2)-expansion method. After eliminating the
trivial and disqualified solutions, Equations (1) and (2) have three main results; each result
provides the following three types of solutions: trigonometric, exponential (or, equivalently,
hyperbolic), and rational function solutions. All of the exact solutions obtained in this
paper were substituted back into their corresponding equations with the help of the Maple
package program and their satisfactions confirm the validity of the solutions expressed
in the current article. After visualizing the graphs of some solutions, they present some
physical behaviors such as the singular single-soliton solution, the singular periodic wave
solution and the singularly double periodic wave solution. These characteristics of the
solutions are favorable for investigating certain nonlinear phenomena arising in physics,
applied mathematics, and engineering. In particular, the soliton is a self-reinforcing wave
packet maintaining its shape while propagating at a constant velocity. In other words,
solitons are unscathed in shape and speed by a collision with other solitons and are often
studied in quantum mechanics, nuclear physics, and waves along a weakly anharmonic
mass-spring chain. Moreover, periodic traveling waves play a fundamental role in several
mathematical physics including self-oscillatory systems, reaction–diffusion–advection sys-
tems, and excitable chemical reactions. Specifically, the family of doubly periodic wave
solutions is of great importance in several physical phenomena such as modulation insta-
bility applied to the classical nonlinear Schrödinger equation (NLSE) and applications both
in optics and deep water waves [64]. Since Equation (1), involving the time conformable



Fractal Fract. 2021, 5, 88 19 of 22

partial derivative, is first proposed, then its obtained solutions are new and informed here
for the first time. Equation (2) is an extension of the (3 + 1)-dimensional conformable
time mKdV–ZK equation in Equation (48) of [65] for which the coefficients δ2 and δ3 are
added. It is worth comparing our outcomes for (2) and the exact solutions of Equation (48)
of [65] as follows: In [65], the first integral method and the functional variable method
were used to solve the equation for which the trigonometric and hyperbolic function so-
lutions were established. The mathematical structures of their results agree with those
of our solutions for (2) except the (G′/G2)-expansion method additionally provides the
rational function solutions for the equation. In conclusion, the performance of the method
is direct, concise, reliable, and effective, and the method gives some interestingly particular
types of solutions. Therefore, we deduce that the proposed methods can be extensively
employed to solve many conformable NPDEs arising in the theory of solitons or other
physics and engineering fields. Lastly, future studies could fruitfully explore the use of
the (G′/G2)-expansion method further by applying it to the proposed problems with an
extension of the spatiotemporal conformable partial derivatives or to NLEEs involving
with sequential conformable partial derivatives.

Author Contributions: Conceptualization, S.S. (Sekson Sirisubtawee), S.K. (Sanoe Koonprasert),
and S.S. (Surattana Sungnul); methodology, S.K. (Supaporn Kaewta) and S.S. (Sekson Sirisubtawee);
software, S.K. (Supaporn Kaewta) and S.S. (Sekson Sirisubtawee); validation, S.K. (Supaporn Kaewta),
S.S. (Sekson Sirisubtawee), S.K. (Sanoe Koonprasert), and S.S. (Surattana Sungnul); formal analysis,
S.K. (Supaporn Kaewta) and S.S. (Sekson Sirisubtawee); investigation, S.K. (Supaporn Kaewta), S.S.
(Sekson Sirisubtawee), S.K. (Sanoe Koonprasert), and S.S. (Surattana Sungnul); resources, S.S. (Sekson
Sirisubtawee) and S.S. (Surattana Sungnul); data curation, S.K. (Supaporn Kaewta); writing—original
draft preparation, S.K. (Supaporn Kaewta) and S.S. (Sekson Sirisubtawee); writing—review and
editing, S.K. (Supaporn Kaewta), S.S. (Sekson Sirisubtawee), S.K. (Sanoe Koonprasert), and S.S.
(Surattana Sungnul); visualization, S.K. (Supaporn Kaewta), S.S. (Sekson Sirisubtawee), and S.S.
(Surattana Sungnul); supervision, S.S. (Sekson Sirisubtawee), S.K. (Sanoe Koonprasert), and S.S.
(Surattana Sungnul); project administration, S.S. (Sekson Sirisubtawee) and S.S. (Surattana Sungnul);
funding acquisition, S.K. (Supaporn Kaewta) and S.S. (Sekson Sirisubtawee). All authors have read
and agreed to the published version of the manuscript.

Funding: The first author was funded by King Mongkut’s University of Technology North Bangkok
under Contract No. KMUTNB-61-PHD-014. The second author was financially supported by King
Mongkut’s University of Technology North Bangkok under Contract No. KMUTNB-62-KNOW-31.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to anonymous referees for the valuable comments,
which have significantly improved this article. In addition, the first author would like to acknowl-
edge the partial support from the Graduate College, King Mongkut’s University of Technology
North Bangkok.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lü, X. Madelung fluid description on a generalized mixed nonlinear Schrödinger equation. Nonlinear Dyn. 2015, 81, 239–247.

[CrossRef]
2. Lü, X.; Ma, W.X.; Yu, J.; Lin, F.; Khalique, C.M. Envelope bright-and dark-soliton solutions for the Gerdjikov–Ivanov model.

Nonlinear Dyn. 2015, 82, 1211–1220. [CrossRef]
3. Seadawy, A.R. Stability analysis solutions for nonlinear three-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov

equation in a magnetized electron–positron plasma. Phys. A Stat. Mech. Appl. 2016, 455, 44–51. [CrossRef]
4. Hayward, R.; Biancalana, F. Constructing new nonlinear evolution equations with supersymmetry. J. Phys. A Math. Theor. 2018,

51, 275202. [CrossRef]
5. Ahmad, I.; Siraj-ul-Islam. Local meshless method for PDEs arising from models of wound healing. Appl. Math. Model. 2017,

48, 688–710.

http://dx.doi.org/10.1007/s11071-015-1985-5
http://dx.doi.org/10.1007/s11071-015-2227-6
http://dx.doi.org/10.1016/j.physa.2016.02.061
http://dx.doi.org/10.1088/1751-8121/aac5ff


Fractal Fract. 2021, 5, 88 20 of 22

6. Vakhnenko, V.; Parkes, E. Approach in theory of nonlinear evolution equations: The Vakhnenko-Parkes equation. Adv. Math.
Phys. 2016, 2016, 2916582. [CrossRef]

7. Manafian, J. Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan (Φ (ξ)/2)-expansion method.
Optik 2016, 127, 4222–4245. [CrossRef]

8. Bhrawy, A.; Alhuthali, M.S.; Abdelkawy, M. New solutions for (1 + 1)-dimensional and (2 + 1)-dimensional Ito equations. Math.
Probl. Eng. 2012, 2012, 537930. [CrossRef]

9. Roshid, M.M.; Roshid, H.O. Exact and explicit traveling wave solutions to two nonlinear evolution equations which describe
incompressible viscoelastic Kelvin-Voigt fluid. Heliyon 2018, 4, e00756. [CrossRef]

10. Bustamante-Castañeda, F.; Caputo, J.G.; Cruz-Pacheco, G.; Knippel, A.; Mouatamide, F. Epidemic model on a network: Analysis
and applications to COVID-19. Phys. A Stat. Mech. Appl. 2021, 564, 125520. [CrossRef]

11. Ghafoor, A.; Firdous, S.; Zubair, T.; Iftikhar, A.; Zainab, S.; Mohyud-Din, S.T. (G′/G, 1/G)–Expansion method for generalized
ZK, Sharma–Tasso–Olver (STO) and modified ZK equations. QSci. Connect 2013, 2013, 24. [CrossRef]

12. Hossain, A.K.S.; Akbar, M.A. Traveling wave solutions of Benny Luke equation via the enhanced (G’/G)-expansion method. Ain
Shams Eng. J. 2021. [CrossRef]

13. He, J.H. Exp-function method for fractional differential equations. Int. J. Nonlinear Sci. Numer. Simul. 2013, 14, 363–366. [CrossRef]
14. Zheng, B.; Feng, Q. The Jacobi elliptic equation method for solving fractional partial differential equations. In Abstract and Applied

Analysis; Hindawi: London, UK, 2014; Volume 2014.
15. Biswas, A.; Sonmezoglu, A.; Ekici, M.; Mirzazadeh, M.; Zhou, Q.; Moshokoa, S.P.; Belic, M. Optical soliton perturbation with

fractional temporal evolution by generalized Kudryashov’s method. Optik 2018, 164, 303–310. [CrossRef]
16. Baskonus, H.M.; Sulaiman, T.A.; Bulut, H. Novel complex and hyperbolic forms to the strain wave equation in microstructured

solids. Opt. Quantum Electron. 2018, 50, 14. [CrossRef]
17. Mohyud-Din, S.T.; Nawaz, T.; Azhar, E.; Akbar, M.A. Fractional sub-equation method to space–time fractional Calogero-

Degasperis and potential Kadomtsev-Petviashvili equations. J. Taibah Univ. Sci. 2017, 11, 258–263. [CrossRef]
18. Manafian, J.; Foroutan, M. Application of tan(φ(ξ)/2)-expansion method for the time-fractional Kuramoto–Sivashinsky equation.

Opt. Quantum Electron. 2017, 49, 272. [CrossRef]
19. Seadawy, A.R. Three-dimensional nonlinear modified Zakharov–Kuznetsov equation of ion-acoustic waves in a magnetized

plasma. Comput. Math. Appl. 2016, 71, 201–212. [CrossRef]
20. Seadawy, A.R. Solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili dynamic equation in dust-acoustic

plasmas. Pramana 2017, 89, 49. [CrossRef]
21. Zhouzheng, K.

(
G′/G2)-expansion Solutions to MBBM and OBBM Equations. J. Part. Differ. Equ. 2015, 28, 158–166. [CrossRef]

22. Mohyud-Din, S.T.; Bibi, S. Exact solutions for nonlinear fractional differential equations using
(
G′/G2)-expansion method. Alex.

Eng. J. 2018, 57, 1003–1008. [CrossRef]
23. Arshed, S.; Sadia, M. (G′/G2)-Expansion method: New traveling wave solutions for some nonlinear fractional partial differential

equations. Opt. Quantum Electron. 2018, 50, 123. [CrossRef]
24. Sirisubtawee, S.; Koonprasert, S. Exact traveling wave solutions of certain nonlinear partial differential equations using the

(G′/G2)-expansion method. Adv. Math. Phys. 2018, 2018, 7628651. [CrossRef]
25. Meng, Y. Expanded

(
G′/G2)-expansion method to solve separated variables for the (2 + 1)-dimensional NNV equation. Adv.

Math. Phys. 2018, 2018, 9248174. [CrossRef]
26. Ali, M.N.; Osman, M.; Husnine, S.M. On the analytical solutions of conformable time-fractional extended Zakharov–Kuznetsov

equation through
(
G′/G2)-expansion method and the modified Kudryashov method. SeMA J. 2019, 76, 15–25. [CrossRef]

27. Kaewta, S.; Sirisubtawee, S.; Khansai, N. Explicit exact solutions of the (2 + 1)-dimensional integro-differential Jaulent–Miodek
evolution equation using the reliable methods. Int. J. Math. Math. Sci. 2020, 2020. [CrossRef]

28. Devi, P.; Singh, K. Exact traveling wave solutions of the (2 + 1)-dimensional Boiti-Leon-Pempinelli system using
(
G′/G2)-

expansion method. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2020; Volume 2214, p. 020030.
29. Bilal, M.; Seadawy, A.R.; Younis, M.; Rizvi, S.; Zahed, H. Dispersive of propagation wave solutions to unidirectional shallow

water wave Dullin–Gottwald–Holm system and modulation instability analysis. Math. Methods Appl. Sci. 2021, 44, 4094–4104.
[CrossRef]

30. Shi, Y.; Li, D. New exact solutions for the (2 + 1)-dimensional Sawada–Kotera equation. Comput. Fluids 2012, 68, 88–93. [CrossRef]
31. Zhao, Z.; Zhang, Y.; Xia, T. Double periodic wave solutions of the (2 + 1)-dimensional Sawada-Kotera equation. Abstr. Appl. Anal.

2014, 2014, 534017. [CrossRef]
32. Li, X.; Wang, Y.; Chen, M.; Li, B. Lump solutions and resonance stripe solitons to the (2 + 1)-dimensional Sawada-Kotera equation.

Adv. Math. Phys. 2017, 2017, 1743789. [CrossRef]
33. Zhang, H.Q.; Ma, W.X. Lump solutions to the (2 + 1)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 2017, 87, 2305–2310.

[CrossRef]
34. Hu, R. Diversity of interaction solutions to the (2 + 1)-dimensional Sawada-Kotera equation. J. Appl. Math. Phys. 2018, 6, 1692.

[CrossRef]
35. An, H.; Feng, D.; Zhu, H. General M-lump, high-order breather and localized interaction solutions to the (2 + 1)-dimensional

Sawada–Kotera equation. Nonlinear Dyn. 2019, 98, 1275–1286. [CrossRef]

http://dx.doi.org/10.1155/2016/2916582
http://dx.doi.org/10.1016/j.ijleo.2016.01.078
http://dx.doi.org/10.1155/2012/537930
http://dx.doi.org/10.1016/j.heliyon.2018.e00756
http://dx.doi.org/10.1016/j.physa.2020.125520
http://dx.doi.org/10.5339/connect.2013.24
http://dx.doi.org/10.1016/j.asej.2017.03.018
http://dx.doi.org/10.1515/ijnsns-2011-0132
http://dx.doi.org/10.1016/j.ijleo.2018.03.032
http://dx.doi.org/10.1007/s11082-017-1279-x
http://dx.doi.org/10.1016/j.jtusci.2014.11.010
http://dx.doi.org/10.1007/s11082-017-1107-3
http://dx.doi.org/10.1016/j.camwa.2015.11.006
http://dx.doi.org/10.1007/s12043-017-1446-4
http://dx.doi.org/10.4208/jpde.v28.n2.5
http://dx.doi.org/10.1016/j.aej.2017.01.035
http://dx.doi.org/10.1007/s11082-018-1391-6
http://dx.doi.org/10.1155/2018/7628651
http://dx.doi.org/10.1155/2018/9248174
http://dx.doi.org/10.1007/s40324-018-0152-6
http://dx.doi.org/10.1155/2020/2916395
http://dx.doi.org/10.1002/mma.7013
http://dx.doi.org/10.1016/j.compfluid.2012.08.005
http://dx.doi.org/10.1155/2014/534017
http://dx.doi.org/10.1155/2017/1743789
http://dx.doi.org/10.1007/s11071-016-3190-6
http://dx.doi.org/10.4236/jamp.2018.68145
http://dx.doi.org/10.1007/s11071-019-05261-6


Fractal Fract. 2021, 5, 88 21 of 22

36. Ghanbari, B.; Kuo, C.K. A variety of solitary wave solutions to the (2 + 1)-dimensional bidirectional SK and variable-coefficient
SK equations. Results Phys. 2020, 18, 103266. [CrossRef]

37. Konopelchenko, B.; Dubrovsky, V. Some new integrable nonlinear evolution equations in (2 + 1)-dimensions. Phys. Lett. A 1984,
102, 15–17. [CrossRef]

38. Sawada, K.; Kotera, T. A method for finding N-soliton solutions of the KdV equation and KdV-like equation. Prog. Theor. Phys.
1974, 51, 1355–1367. [CrossRef]

39. Lou, S.Y. Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations. J. Math. Phys. 1994,
35, 2390–2396. [CrossRef]

40. Xu, Z.; Chen, H.; Chen, W. The multisoliton solutions for the (2 + 1)-dimensional Sawada-Kotera equation. Abstr. Appl. Anal.
2013, 2013, 767254. [CrossRef]

41. Lu, D.; Seadawy, A.; Arshad, M.; Wang, J. New solitary wave solutions of (3 + 1)-dimensional nonlinear extended Zakharov-
Kuznetsov and modified KdV-Zakharov-Kuznetsov equations and their applications. Results Phys. 2017, 7, 899–909. [CrossRef]

42. Lu, D.; Seadawy, A.; Yaro, D. Analytical wave solutions for the nonlinear three-dimensional modified Korteweg-de Vries-
Zakharov-Kuznetsov and two-dimensional Kadomtsev-Petviashvili-Burgers equations. Results Phys. 2019, 12, 2164–2168.
[CrossRef]

43. Tariq, K.U.H.; Seadawy, A. Soliton solutions of (3 + 1)–dimensional Korteweg-de Vries Benjamin–Bona–Mahony, Kadomtsev–
Petviashvili Benjamin–Bona–Mahony and modified Korteweg de Vries–Zakharov–Kuznetsov equations and their applications in
water waves. J. King Saud Univ.-Sci. 2019, 31, 8–13. [CrossRef]

44. Naher, H.; Abdullah, F.A.; Akbar, M.A. Generalized and improved (G′/G)-expansion method for (3 + 1)-dimensional modified
KdV-Zakharov-Kuznetsev equation. PLoS ONE 2013, 8, e64618. [CrossRef] [PubMed]

45. Islam, M.H.; Khan, K.; Akbar, M.A.; Salam, M.A. Exact traveling wave solutions of modified KdV–Zakharov–Kuznetsov equation
and viscous Burgers equation. SpringerPlus 2014, 3, 105. [CrossRef]

46. Miah, M.M.; Ali, H.S.; Akbar, M.A.; Seadawy, A.R. New applications of the two variable (G’/G, 1/G)-expansion method for
closed form traveling wave solutions of integro-differential equations. J. Ocean Eng. Sci. 2019, 4, 132–143. [CrossRef]

47. Gepreel, K.A.; Nofal, T.A.; Alasmari, A.A. Exact solutions for nonlinear integro-partial differential equations using the generalized
Kudryashov method. J. Egypt. Math. Soc. 2017, 25, 438–444. [CrossRef]

48. Guner, O.; Aksoy, E.; Bekir, A.; Cevikel, A.C. Different methods for (3 + 1)-dimensional space–time fractional modified
KdV–Zakharov–Kuznetsov equation. Comput. Math. Appl. 2016, 71, 1259–1269. [CrossRef]

49. Islam, M.T.; Akbar, M.A.; Azad, M.A.K. Traveling wave solutions in closed form for some nonlinear fractional evolution equations
related to conformable fractional derivative. AIMS Math. 2018, 3, 625–646. [CrossRef]

50. Guner, O. New exact solutions to the space–time fractional nonlinear wave equation obtained by the ansatz and functional
variable methods. Opt. Quantum Electron. 2018, 50, 38. [CrossRef]

51. Al-Ghafri, K.; Rezazadeh, H. Solitons and other solutions of (3 + 1)-dimensional space–time fractional modified KdV–Zakharov–
Kuznetsov equation. Appl. Math. Nonlinear Sci. 2019, 4, 289–304. [CrossRef]

52. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014,
264, 65–70. [CrossRef]

53. Chung, W.S. Fractional Newton mechanics with conformable fractional derivative. J. Comput. Appl. Math. 2015, 290, 150–158.
[CrossRef]

54. Çenesiz, Y.; Baleanu, D.; Kurt, A.; Tasbozan, O. New exact solutions of Burgers’ type equations with conformable derivative.
Waves Random Complex Media 2017, 27, 103–116. [CrossRef]

55. Sirisubtawee, S.; Koonprasert, S.; Sungnul, S. Some applications of the (G′/G, 1/G)-expansion method for finding exact traveling
wave solutions of nonlinear fractional evolution equations. Symmetry 2019, 11, 952. [CrossRef]

56. Sirisubtawee, S.; Koonprasert, S.; Sungnul, S.; Leekparn, T. Exact traveling wave solutions of the space–time fractional complex
Ginzburg–Landau equation and the space-time fractional Phi-4 equation using reliable methods. Adv. Differ. Equ. 2019, 2019, 219.
[CrossRef]

57. Sirisubtawee, S.; Koonprasert, S.; Sungnul, S. New exact solutions of the conformable space-time Sharma–Tasso–Olver equation
using two reliable methods. Symmetry 2020, 12, 644. [CrossRef]

58. Al-Ghafri, K.S. Soliton behaviours for the conformable space–time fractional complex Ginzburg–Landau equation in optical
fibers. Symmetry 2020, 12, 219. [CrossRef]

59. Hosseini, K.; Manafian, J.; Samadani, F.; Foroutan, M.; Mirzazadeh, M.; Zhou, Q. Resonant optical solitons with perturbation
terms and fractional temporal evolution using improved tan (φ (η)/2)-expansion method and exp function approach. Optik 2018,
158, 933–939. [CrossRef]

60. Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [CrossRef]
61. Kumar, D.; Darvishi, M.; Joardar, A. Modified Kudryashov method and its application to the fractional version of the variety of

Boussinesq-like equations in shallow water. Opt. Quantum Electron. 2018, 50, 128. [CrossRef]
62. El-Ajou, A.; Al-Zhour, Z.; Oqielat, M.; Momani, S.; Hayat, T. Series solutions of nonlinear conformable fractional KdV-Burgers

equation with some applications. Eur. Phys. J. Plus 2019, 134, 402. [CrossRef]
63. Chen, J.; Chen, H. The

(
G′/G2)-expansion method and its application to coupled nonlinear Klein-Gordon equation. J. South

China Norm. Univ. (Nat. Sci. Ed.) 2012, 44, 13.

http://dx.doi.org/10.1016/j.rinp.2020.103266
http://dx.doi.org/10.1016/0375-9601(84)90442-0
http://dx.doi.org/10.1143/PTP.51.1355
http://dx.doi.org/10.1063/1.530509
http://dx.doi.org/10.1155/2013/767254
http://dx.doi.org/10.1016/j.rinp.2017.02.002
http://dx.doi.org/10.1016/j.rinp.2019.02.049
http://dx.doi.org/10.1016/j.jksus.2017.02.004
http://dx.doi.org/10.1371/journal.pone.0064618
http://www.ncbi.nlm.nih.gov/pubmed/23741355
http://dx.doi.org/10.1186/2193-1801-3-105
http://dx.doi.org/10.1016/j.joes.2019.03.001
http://dx.doi.org/10.1016/j.joems.2017.09.001
http://dx.doi.org/10.1016/j.camwa.2016.02.004
http://dx.doi.org/10.3934/Math.2018.4.625
http://dx.doi.org/10.1007/s11082-017-1311-1
http://dx.doi.org/10.2478/AMNS.2019.2.00026
http://dx.doi.org/10.1016/j.cam.2014.01.002
http://dx.doi.org/10.1016/j.cam.2015.04.049
http://dx.doi.org/10.1080/17455030.2016.1205237
http://dx.doi.org/10.3390/sym11080952
http://dx.doi.org/10.1186/s13662-019-2154-9
http://dx.doi.org/10.3390/sym12040644
http://dx.doi.org/10.3390/sym12020219
http://dx.doi.org/10.1016/j.ijleo.2017.12.139
http://dx.doi.org/10.1016/j.cam.2014.10.016
http://dx.doi.org/10.1007/s11082-018-1399-y
http://dx.doi.org/10.1140/epjp/i2019-12731-x


Fractal Fract. 2021, 5, 88 22 of 22

64. Conforti, M.; Mussot, A.; Kudlinski, A.; Trillo, S.; Akhmediev, N. Doubly periodic solutions of the focusing nonlinear Schrödinger
equation: Recurrence, period doubling, and amplification outside the conventional modulation-instability band. Phys. Rev. A
2020, 101, 023843. [CrossRef]

65. Eslami, M.; Rezazadeh, H.; Rezazadeh, M.; Mosavi, S.S. Exact solutions to the space–time fractional Schrödinger–Hirota equation
and the space–time modified KDV–Zakharov–Kuznetsov equation. Opt. Quantum Electron. 2017, 49, 279. [CrossRef]

http://dx.doi.org/10.1103/PhysRevA.101.023843
http://dx.doi.org/10.1007/s11082-017-1112-6

	Introduction
	Conformable Derivative and Its Properties
	Algorithm of the ( G'/G2)-Expansion Method
	Applications of the ( G'/G2)-Expansion Method
	The (2 + 1)-Dimensional Conformable Time Integro-Differential Sawada–Kotera Equation
	The (3 + 1)-Dimensional Conformable Time Modified KdV–Zakharov–Kuznetsov Equation

	Graphical Representations of the Selected Solutions
	Conclusions and Future Work
	References

