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Abstract: In this paper, a modified Leslie–Gower predator-prey model with Beddington–DeAngelis
functional response and double Allee effect in the growth rate of a predator population is proposed.
In order to consider memory effect on the proposed model, we employ the Caputo fractional-order
derivative. We investigate the dynamic behaviors of the proposed model for both strong and weak
Allee effect cases. The existence, uniqueness, non-negativity, and boundedness of the solution are
discussed. Then, we determine the existing condition and local stability analysis of all possible
equilibrium points. Necessary conditions for the existence of the Hopf bifurcation driven by the order
of the fractional derivative are also determined analytically. Furthermore, by choosing a suitable
Lyapunov function, we derive the sufficient conditions to ensure the global asymptotic stability for
the predator extinction point for the strong Allee effect case as well as for the prey extinction point
and the interior point for the weak Allee effect case. Finally, numerical simulations are shown to
confirm the theoretical results and can explore more dynamical behaviors of the system, such as the
bi-stability and forward bifurcation.

Keywords: Leslie–Gower; double Allee effect; Hopf bifurcation; global stability; nonlocal operator

1. Introduction

Modeling interaction between prey and its predator has become a dominant topic
in mathematical biology due to its ubiquitous existence and fundamentality in many
biological systems. Study of the dynamics of the predator-prey model could provide
qualitative explanations of numerous phenomena that can occur in predator and prey
interaction. One of the crucial phenomenon in ecology that influences the per capita
growth rate either in the predator or prey population is the Allee effect, which describes a
condition where, at low population densities, the per capita growth rate of the population
has a positive dependence with its density. There are two kinds of Allee effects, namely the
strong Allee effect and the weak Allee effect. In the strong Allee effect, there is a population
threshold value named the Allee threshold, below which the per capita growth rate of
the population is negative [1,2]. In terms of conservation biology, if the Allee threshold
is larger, then it places a population at higher risk of extinction in a low-density population.
Meanwhile, in the weak Allee effect, the per capita growth rate of the population always
remains positive but is still reduced at low population densities [3–5]. If two or more
mechanisms that generate the Allee effect works simultaneously on a single population,
then it is known as the double (or multiple) Allee effect [6,7]. Biological evidence of such
phenomenon from both terrestrial and aquatic habitat is given in Table 2 of [7,8] and the
references cited therein.

From the mathematical point of view, some scholars have been investigating the
dynamics of predator-prey models with the Allee effect in the prey population [9–13] or
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predator population [14–16]. The main focus of all the mentioned research studies is to
investigate whether the Allee effect has a tremendous impact on the occurrence of various
dynamics in the predator-prey model. For the double Allee effect phenomenon, there
are some papers that study the double Allee effect in the prey, see for example [17,18].
However, most of the studies just focused on the double Allee effect in the growth of
prey population, although observations are showing that the double Allee effect could
be discovered in the growth of the predator population. A typical example comes from
the endangered species African wild dog (Lycaon pictus). Their social system requires a
high population density to survive and reproduce. Being a predator, the African wild dog
is a generalist species with the Thomson’s gazelle (Eudorcas thomsonii) as their common
prey but it also hunts other animals such as the impala (Aepyceros melampus), warthog
(Phacochoerus aethiopicus), hares, etc. They live in permanent packs of about 27 adults and
pups and have to share food after killing their prey. There is also interference among
predators in their hunting behavior. We refer the readers to [19] for details.

In the natural world, the presence of memory must exist in prey and predator inter-
action since the growth rates of prey and predator at any point depend on the history
of the variables at all previous times and not only on the current state which is local
to that point [20–24]. Recently, fractional calculus through the fractional derivatives has
been known to provide an excellent instrument for describing the memory and hereditary
properties of various materials and processes [25], such as in biology, finance, engineer-
ing, and physics (see, for example, [26–30] and the references therein). Some interesting
papers regarding the Allee effect in the fractional-order predator-prey models are pro-
vided in [31,32]. In [31], Suryanto et al. have studied the local stability of the modified
Leslie–Gower model with the Beddington–DeAngelis functional response and additive
Allee effect in the prey population. They construct the numerical scheme that preserves the
dynamics of its first-order system provided by [33]. Later, in [32], Baisad and Moonchai
considered the Gause predator-prey model that includes the Allee effect in the prey popu-
lation and Holling type-III functional response. They also studied the local stability and
sufficient conditions of a Hopf bifurcation at the positive equilibrium point. In both papers,
the dynamical behaviors are influenced by the order of the derivative.

Motivated by the above mentioned points, this paper aims to study the fractional-order
Leslie–Gower predator-prey model incorporating the Beddington–DeAngelis functional
response and double Allee effect. The proposed model includes the Caputo fractional-order
derivative to capture the effect of memory in the growth rates of both prey and predator.
From what we know, the dynamic of our proposed model that incorporates the double
Allee effect in the growth of predator and memory effect under the Caputo fractional-order
derivative has not been proposed and investigated by other scholars. This work may reveal
an interesting ecological point of view to the importance of the double Allee effect than the
single Allee effect towards the management of exploited or threatened predator population.

The remaining part of this paper is organized as follows. In Section 2, the model
formulation is given. The existence, uniqueness, non-negativity, and boundedness of
solutions of our model are discussed in Section 3. Then, we investigate the dynamic
behaviors of the model for both weak and strong Allee effects. In Section 4, the existence of
non-negative equilibrium points and the local stability of non-negative equilibrium points
along with Hopf bifurcation analysis are presented. Next, the sufficient conditions for the
global stability of the equilibrium points are carried out in Section 5. Numerical simulations
are shown in Section 6 to verify our analytical findings as well as to numerically explore the
impact of capturing rate, the Allee threshold, and the order of the fractional-order system
on the dynamics of our model. Finally, we draw conclusions in Section 7.

2. Model Formulation

One of the primary directions in modelling the interaction of prey-predator popula-
tions is based on the mass conservation principle, which says that the predators can grow
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only as a function of what they have consumed. Under this principle, the general model of
the predator-prey dynamics takes the following model [34]:

dx
dt

= f (x)x− g(x, y)y,

dy
dt

=kg(x, y)y− µy,
(1)

where x(t) and y(t) are, respectively, the prey and predator population densities at time
t, f (x) is the per capita growth rate of prey, g(x, y) is the functional response, k is the
predation efficiency, and µ is the predator per capita death rate. An alternative to the
conservative predator-prey model (1) is to abandon the mass conservation principle. This
type of model does not explicitly describe the relationship between predation rate and
the reproduction rate of predator. A foremost predator-prey model in this direction is
the Leslie–Gower model [35]. The Leslie–Gower model maintains the prey equation as in
system (1) but applies a logistic type of model for the predator equation. By considering that
the per capita growth rate of prey obeys the logistic growth and that predation follows the
Beddington–DeAngelis functional response, we have the following Leslie–Gower model.

dx
dt

=r̂x− β̂1x2 − b̂xy
1 + ĉx + q̂y

,

dy
dt

=ŝy− σ̂y2.

(2)

Notice that the logistic type forms in both prey and predator equations are written
in the form as suggested by [36]. This typical logistic form is for avoiding paradoxes in
the logistic equation [37,38]. All parameters r̂, β̂1, b̂, ĉ, q̂, ŝ, σ̂ in the system (2) are real and
positive. The ecological meaning of the parameters are as follows: r̂ and β̂1 are the intrinsic
growth rate of the prey and the prey intraspecific competition coefficient in the absence
of predation, respectively; ŝ and σ̂ are the intrinsic growth rate of the predator and the
predator intraspecific competition coefficient, respectively; b̂ and ĉ measure the effect of
capturing rate and handling time by the predator to the predation rate, respectively; q̂
is the strength of interference among predators. The coefficient of predator intraspecific

competition is assumed to depend on the prey density, i.e., σ̂ = β̂2
x , where β̂2 is the constant

of predator intraspecific competition. Such assumption makes sense because when the prey
is available in abundant (x → ∞), then there will no intraspecific competition (σ̂→ 0) and
the predator can attain its maximum per capita growth rate ŝ. On the contrary, if the prey
is rare (x → 0), then the intraspecific competition becomes maximum (σ̂→ ∞) and, hence,
the predator will become extinct as the per capita growth rate of predator becomes −∞.
When a severe scarcity of prey occurs, the predator can switch to alternative populations,
which causes the reduction in intraspecific competition for hunting the favourite food x.
To account for such phenomenon, Aziz-Alaoui and Okiye [39] proposed a modified Leslie–
Gower model by introducing an inhibition coefficient (l̂) in the intraspecific competition
due to the availability of alternative food for the predator. The intraspecific competition

coefficient now becomes σ̂ = β̂2
l̂+x

. The modified Leslie–Gower model with the Beddington–
DeAngelis functional response has been studied in [40,41]. Today, the Leslie–Gower type
model still attracts many scholars (see [42–44] and the references therein).

In this paper, we reconsider the modified Leslie–Gower predator-prey model (2) but
we assume that the intrinsic growth rate of the predator population is affected by the
double Allee effect. Then the predator-prey model (2) takes the following form:

dx
dt

=r̂x− β̂1x2 − b̂xy
1 + ĉx + q̂y

,

dy
dt

=ŝ
(

y− m̂
y + n̂

)
y− β̂2

l̂ + x
y2,

(3)
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where m̂ is the Allee threshold, n̂ is the auxiliary Allee effect constant with n̂ > 0 and
n̂ > −m̂. In the second equation of model (3), the intrinsic growth rate of the predator ŝ
is affected by double Allee effects. Without the intraspecific competition for the predator,
the per capita growth rate of the predator is reduced from ŝ to ŝ

(
y−m̂
y+n̂

)
due to the Allee

effect [45]. Therefore, the Allee effect is strong if m̂ > 0 and weak if −n̂ < m̂ ≤ 0 [9,18].
In order to seize the entire time population growth condition, we consider a fractional-

order derivative to the left-hand side of the classical derivative system (3) as follows:

Dα
∗x =r̂x− β̂1x2 − b̂xy

1 + ĉx + q̂y
,

Dα
∗y =ŝ

(
y− m̂
y + n̂

)
y− β̂2

l̂ + x
y2,

(4)

with initial conditions x(0) > 0 and y(0) > 0. Dα
∗ represents the Caputo fractional-order

derivative of a real valued function f , which is defined by the following:

Dα
∗ f (t) =

1
Γ(n− α)

∫ t

0

f n(τ)

(t− τ)n−α−1 dτ,

where Γ(·) is the Gamma function and α ∈ (n− 1, n], n ∈ Z+ [25].
In order to overcome the inconsistency of time dimension between the left-hand side

of system (4) with its right-hand side, we follow [46–48] to modify all of the biological
parameters in the right-hand side that have time dimension (time−1). Thus, we have a
new system.

Dα
∗x =r̂αx− β̂α

1x2 − b̂αxy
1 + ĉx + q̂y

,

Dα
∗y =ŝα

(
y− m̂
y + n̂

)
y−

β̂α
2

l̂ + x
y2.

(5)

For simplification, we replace system (5) with the redefined parameters as follows:

Dα
∗x =rx− β1x2 − bxy

1 + cx + qy
,

Dα
∗y =s

(
y−m
y + n

)
y− β2

l + x
y2,

(6)

where

r̂α = r, β̂α
1 = β1, b̂α = b, ĉ = c, q̂ = q, ŝα = s, m̂ = m, n̂ = n, β̂α

2 = β2, l̂ = l.

Notice that, the authors [49] have studied the local stability and have shown numer-
ically a Hopf bifurcation circumstance around the interior point for the case of m = 0.
In this paper, we focus on the local and global dynamics of system (6) for both m > 0 and
m < 0 cases.

3. Preliminaries Results

In this section, we bring out the fact that system (6) is biologically well-behaved by
showing that the solution of system (6) exists and is unique as well being non-negative
and bounded.

3.1. Existence and Uniqueness

The existence and uniqueness of the solution of system (6) are examined in the region
Ω× [0, T], where Ω = {(x, y) ∈ R2 : max{|x|, |y|} ≤ M} and T < +∞. Let a mapping
F(Z) = (F1(Z), F2(Z)) with the following.



Fractal Fract. 2021, 5, 84 5 of 24

F1(Z) =rx− β1x2 − bxy
1 + cx + qy

,

F2(Z) =
sy2

y + n
− msy

y + n
− β2y2

l + x
.

(7)

For any Z = (x, y), Z̄ = (x̄, ȳ), Z, Z̄ ∈ Ω, it follows from (7) that the following is
the case:

||F(Z)− F(Z̄)|| = |F1(Z)− F1(Z̄)|+ |F2(Z)− F2(Z̄)|

=

∣∣∣∣r(x− x̄)− β1(x2 − x̄2)− b
(

xy
1 + cx + qy

− x̄ȳ
1 + cx̄ + qȳ

)∣∣∣∣+∣∣∣∣s( y2

y + n
− ȳ2

ȳ + n

)
−ms

(
y

y + n
− ȳ

ȳ + n

)
− β2

(
y2

l + x
− ȳ2

l + x̄

)∣∣∣∣
≤ r|x− x̄|+ β1|x2 − x̄2|+ b

∣∣∣∣ xy(1 + cx̄ + qȳ)− x̄ȳ(1 + cx + qy)
(1 + cx + qy)(1 + cx̄ + qȳ)

∣∣∣∣
+ s
∣∣∣∣y2(ȳ + n)− ȳ2(y + n)

(y + n)(ȳ + n)

∣∣∣∣+ |m|s∣∣∣∣y(ȳ + n)− ȳ(y + n)
(y + n)(ȳ + n)

∣∣∣∣
+ β2

∣∣∣∣y2(l + x̄)− ȳ2(l + x)
(l + x)(l + x̄)

∣∣∣∣
= r|x− x̄|+ β1|x + x̄||x− x̄|

+ b
∣∣∣∣ (x + cxx̄)(y− ȳ) + (ȳ + qyȳ)(x− x̄)

(1 + cx + qy)(1 + cx̄ + qȳ)

∣∣∣∣
+ s
∣∣∣∣ (yȳ + n(y + ȳ))(y− ȳ)

(y + n)(ȳ + n)

∣∣∣∣+ |m|s∣∣∣∣ n(y− ȳ)
(y + n)(ȳ + n)

∣∣∣∣
+ β2

∣∣∣∣ (l + x)(y + ȳ)(y− ȳ)− y2(x− x̄)
(l + x)(l + x̄)

∣∣∣∣
≤ r|x− x̄|+ β1|x + x̄||x− x̄|+ b|(x + cxx̄)(y− ȳ)|

+ b|(ȳ + qyȳ)(x− x̄)|+ s
n2 |(yȳ + n(y + ȳ))(y− ȳ)|

+
|m|s

n
|y− ȳ|+ β2

l2 |(l + x)(y + ȳ)(y− ȳ)− y2(x− x̄)|

≤ r|x− x̄|+ 2β1M|x− x̄|+ (bM + bcM2)|y− ȳ|

+ (bM + bqM2)|x− x̄|+
(

sM2

n2 +
2sM

n

)
|y− ȳ|+ |m|s

n
|y− ȳ|

+

(
2β2M

l
+

2β2M2

l2

)
|y− ȳ|+ β2M2

l2 |x− x̄|

= L1|x− x̄|+ L2|y− ȳ|
≤ L||Z− Z̄||

where

L1 = r + (2β1 + b)M +

(
bq +

β2

l2

)
M2,

L2 =
|m|s

n
+

(
b +

2s
n

+
2β2

l

)
M +

(
bc +

s
n2 +

2β2

l2

)
M2,

L = max{L1, L2}.
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Since F(Z) satisfies the Lipschitz condition with respect to Z, it follows from Theo-
rem 3.7 in [50] that there exists a unique solution Z(t) of system (6) with initial condition
Z(0) = (x(0), y(0)). Consequently, we have the following theorem.

Theorem 1. For each Z(0) = (x(0), y(0)) ∈ Ω, then initial value problem of system (6) has a
unique solution Z(t) ∈ Ω which is defined for all t ≥ 0.

3.2. Non-Negativity and Boundedness

In order to prove that all solutions of system (6) are non-negative and bounded, let
R2
+ = {W = (x, y)T ∈ R2|x(t) ≥ 0, y(t) ≥ 0} be the non-negative quadrant on the xy−

plane. In the case of the biological significance, we must ensure that when the initial
condition starts in R2

+, then the solution of system (6) remains in R2
+ for all t ≥ t0.

Theorem 2. If x(t0) ≥ 0 and y(t0) ≥ 0, then all solutions of the system (6) are non-negative and
uniformly bounded.

Proof. Let W(t0) =

(
x(t0)
y(t0)

)
∈ R2

+ and assume that W(t) =
(

x(t)
y(t)

)
for t ≥ t0 be the

solutions of system (6).
Suppose that assumption is false, then there exists t∗ > t0 such that W(t) > 0 for

t0 ≤ t < t∗, W(t∗) = 0, and W(t∗+) < 0 for t∗+ > t∗. From system (6), one has the following.

Dα
∗W(t)|t=t∗ = 0. (8)

Based on Lemma 1 in [51], we have W(t∗+) = 0, which contradicts with W(t∗+) < 0 for
t∗+ > t∗. Therefore, we conclude W(t) ≥ 0 for all t ≥ 0.

Next, we prove the boundedness of all solutions of system (6). From the first equation
of system (6), we have the following.

Dα
∗x(t) + x(t) = rx− β1x2 − bxy

1 + cx + qy
+ x

= − β1x2 + (1 + r)x− bxy
1 + cx + qy

= − β1

(
x− (1 + r)

2β1

)2

+
(1 + r)2

4β1
− bxy

1 + cx + qy

≤ (1 + r)2

4β1
.

By Lemma 3 in [51], we have the following:

x(t) ≤
(

x(t0)−
(1 + r)2

4β1

)
Eα[−(t− t0)

α] +
(1 + r)2

4β1
→ (1 + r)2

4β1
, t→ ∞, (9)

where Eα is the Mittag–Leffler function. Therefore, x(t) with initial condition x(t0) are
confined to the region Ω1 where the following is the case.

Ω1 =

{
x(t) ≤ (1 + r)2

4β1
+ ε1 = γ1, ε1 > 0

}
. (10)

From the second equation of system (6), we have the following.

Dα
∗y(t) + sy(t) =

sy2

y + n
− msy

y + n
− β2y2

l + x
+ sy.
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We also have x(t) ≤ γ1 from (10), then the following obtains.

Dα
∗y(t) + sy(t) ≤ sy2

y + n
− msy

y + n
− β2y2

l + γ1
+ sy

≤ sy2

y
− msy

y + n
− β2y2

l + γ1
+ sy

= − β2y2

l + γ1
+ 2sy− msy

y + n

= − β2

l + γ1

(
y− (l + γ1)s

β2

)2

+
(l + γ1)s2

β2
− msy

y + n

≤ (l + γ1)s2

β2

Again by using Lemma 3 in [51], for the strong Allee effect (m > 0), we have the
following.

y(t) ≤
(

y(t0)−
(l + γ1)s

β2

)
Eα[−s(t− t0)

α] +
(l + γ1)s

β2
→ (l + γ1)s

β2
, t→ ∞. (11)

However, for the weak Allee effect (m < 0), we have the following.

y(t) ≤
(

y(t0)−
(
(l + γ1)s

β2
−m

))
Eα[−s(t− t0)

α]

+

(
(l + γ1)s

β2
−m

)
→
(
(l + γ1)s

β2
−m

)
, t→ ∞. (12)

Therefore, the solution of y(t) with initial condition y(t0) are confined to region
Ω2 where

Ω2 = {y(t) ≤ γ2}, (13)

and where the following is the case.

γ2 =


(l+γ1)s

β2
+ ε2, ε2 > 0, m > 0(

(l+γ1)s
β2
−m

)
+ ε2, ε2 > 0, m < 0

4. Equilibrium Points and Their Local Stability

In this section, the equilibrium points and existence conditions are obtained and their
local stability is analyzed by using the Matignon condition [25] for the weak (m < 0) and
the strong (m > 0) Allee effect, respectively.

(1) The equilibrium points of system (6) for the weak Allee effect (m < 0) are as follows:

(a) Both prey and predator extinction point W0 = (0, 0), which always exists;
(b) The predator extinction point W1 = ( r

β1
, 0), which always exists;

(c) The prey extinction point W2 = (0, ȳw) where we have the following.

ȳw =

ls
β2
− n

2
+

√
( ls

β2
− n)2 − 4 mls

β2

2

Denote W2 as always existing.
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(d) The interior point Ŵ = (x̂w, ŷw) where x̂w =
β2ŷw(ŷw + n)

s(ŷw −m)
− l and ŷw are all

positive roots of the quartic equation (14):

a1y4 + a2y3 + a3y2 + a4y + a5 = 0, (14)

where

a1 = β1β2qs + cβ1β2
2,

a2 = (b− qr− lqβ1)s2 + (β1β2(1 + nq−mq− 2cl)− crβ2)s + 2cβ1β2
2n,

a3 = (cβ1l2 + 2lmqβ1 + lcr + 2mqr− 2bm− lβ1 − r)s2

+ (β1β2(2clm− 2cln− nmq−m + n) + crβ2(m− n))s + cβ1β2
2n2,

a4 = (−2cl2mβ1 − lm2qβ1 − 2clmr−m2qr + bm2 + 2lmβ1 + 2mr)s2

+ (2clmnβ1β2 + cmnrβ2 −mnβ1β2)s,

a5 = m2(cl − 1)(lβ1 + r)s2.

(2) The equilibrium points of system (6) for the strong Allee effect (m > 0) are as follows:

(a) Both prey and predator extinction point S0 = (0, 0), which always exists;
(b) The predator extinction point S1 = ( r

β1
, 0), which always exists;

(c) The prey extinction point S2,3 = (0, ȳs) where ȳs is the positive solution of

the quadratic equation y2 −
(

ls
β2
− n

)
y + mls

β2
= 0. The existence of S2,3 is

described as follows:

(i) If
(

ls
β2
− n

)2
< 4

mls
β2

, then the prey extinction point does not exist.

(ii) If
(

ls
β2
− n

)2
= 4

mls
β2

and n <
ls
β2

, then there exists a unique prey

extinction point, S2 = S3 =

(
0,

1
2

(
ls
β2
− n)

))
.

(iii) If
(

ls
β2
− n

)2
> 4

mls
β2

, then there exist two prey extinction points, i.e.,

the following is the case.

S2,3 =

0,
ls
β2
− n

2
±

√
( ls

β2
− n)2 − 4 mls

β2

2


(d) The interior point Ŝ = (x̂s, ŷs) exists if ŷs > m where x̂s =

β2ŷs(ŷs + n)
s(ŷs −m)

− l

and ŷs are also all positive roots of the quartic Equation (14).

In order to study the local stability of system (6) around an equilibrium point (x∗, y∗),
we consider the following Jacobian matrix J of system (6), which is given by the following.

J(x∗, y∗) =

 J1,1 J1,2

J2,1 J2,2

 (15)

J1,1 = r− 2β1x∗ − by∗

1 + cx∗ + qy∗
+

bcx∗y∗

(1 + cx∗ + qy∗)2

J1,2 = − bx∗

1 + cx∗ + qy∗
+

bqx∗y∗

(1 + cx∗ + qy∗)2
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J2,1 =
β2y∗2

(l + x∗)2

J2,2 =
s(y∗ −m)

y∗ + n
+ sy∗

(
1

y∗ + n
− y∗ −m

(y∗ + n)2

)
− 2β2y∗

l + x∗
.

Theorem 3. The stability properties of trivial and axial equilibrium points of system (6) for the
weak Allee effect (m < 0) are as follows:

(a) W0 = (0, 0) is always unstable.
(b) W1 = ( r

β1
, 0) is always a saddle point.

(c) W2 = (0, ȳw) is locally asymptotically stable if r <
bȳw

1 + qȳw
and m + n <

β2

ls
(ȳw + n)2.

Proof.

(a) By substituting W0 to (15), we obtain the Jacobian matrix.

J(W0) =

[
r 0

0 −ms
n

]
. (16)

Therefore, the eigenvalues of (16) are λ1 = r > 0 and λ2 = −ms
n

> 0, since | arg(λ1)| =
| arg(λ2)| = 0 < απ

2 , E0 is always unstable by the Matignon condition [25].
(b) By substituting W1 to (15), we obtain the Jacobian matrix.

J(W1) =

 −r − br
cr + β1

0 −ms
n

. (17)

The Jacobian matrix (17) has eigenvalues λ1 = −r < 0 and λ2 = −ms
n

> 0, show-

ing that | arg(λ1)| = π > απ
2 and | arg(λ2)| = 0 < απ

2 . Hence, W1 is always a
saddle point.

(c) By evaluating (15) at W2, we obtain the following.

J(W2) =


r− bȳw

1 + qȳw
0

β2ȳ2
w

l2

(
s(m + n)
(ȳw + n)2 −

β2

l

)
ȳw

. (18)

The eigenvalues of (18) are as follows.

λ1 = r− bȳw

1 + qȳw
and λ2 =

(
s(m + n)
(ȳw + n)2 −

β2

l

)
ȳw.

Thus, | arg(λ1)| = π >
απ

2
and | arg(λ2)| = π >

απ

2
, whenever r <

bȳw

1 + qȳw
and

m + n <
β2

ls
(ȳw + n)2.

Theorem 4. Suppose that m < 0 (weak Allee effect) and the following is the case.

χ1w = −
(

β1 x̂w +
β2ŷw

l + x̂w

)
+

(
bcx̂wŷw

(1 + cx̂w + qŷw)2 +
s(m + n)ŷw

(ŷw + n)2

)
χ2w = β1 x̂wŷw

(
β2

l + x̂w
− s(m + n)

(ŷw + n)2

)
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+
bsx̂w

(1 + cx̂w + qŷw)2

(
β2c(m + n)ŷ2

w + s(1 + cx̂w)(ŷw −m)2

β2(ŷw + n)2 − β2cŷ2
w

s(l + x̂w)

)
α∗ =

2
π

∣∣∣∣∣tan−1
√

4χ2w − (χ1w)2

χ1w

∣∣∣∣∣.
The interior point Ŵ = (x̂w, ŷw) is locally asymptotically stable if the following is the case:

(i) χ2
1w ≥ 4χ2w, χ1w < 0, and χ2w > 0.

(ii) χ2
1w < 4χ2w, and if χ1w < 0, or χ1w > 0 and α < α∗.

Proof. By evaluating (15) at the interior equilibrium point Ŵ = (x̂w, ŷw), we obtain the
following.

J(Ŵ) =


−β1 x̂w +

bcx̂wŷw

(1 + cx̂w + qŷw)2 − bx̂w(1 + cx̂w)

(1 + cx̂w + qŷw)2

s2(ŷw −m)2

β2(ŷw + n)2
s(m + n)ŷw

(ŷw + n)2 −
β2ŷw

l + x̂w

 (19)

The Jacobian matrix (19) has polynomial characteristic λ2 − χ1wλ + χ2w = 0. By uti-
lizing the Routh–Hurwitz criterion for Caputo fractional-order [52], it follows that Ŵ is
locally asymptotically stable if condition (i) or (ii) is satisfied.

Theorem 5. The stability properties of trivial and axial equilibrium points of system (6) for strong
Allee effect (m > 0) are as follows:

(a) S0 = (0, 0) is a saddle point.
(b) S1 = ( r

β1
, 0) is always locally asymptotically stable.

(c) S2,3 = (0, ȳs) is locally asymptotically stable if r <
bȳs

1 + qȳs
and m + n <

β2

ls
(ȳs + n)2.

Proof.

(a) By substituting S0 to (15), we obtain the following.

J(S0) =

[
r 0

0 −ms
n

]
. (20)

It is clear that the eigenvalues of (20) are λ1 = r > 0 and λ2 = −ms
n

< 0, and

| arg(λ1)| = 0 < απ
2 and | arg(λ2)| = π > απ

2 . Thus, S0 is a saddle point.
(b) The Jacobian matrix (15) evaluated at S1 is the following:

J(S1) =

 −r − br
cr + β1

0 −ms
n

, (21)

where its eigenvalues are λ1 = −r < 0 and λ2 = −ms
n

< 0, since | arg(λ1,2)| = π >
απ
2 , S1 is always locally asymptotically stable.

(c) By evaluating (15) at S2,3, we acquire the following.

J(S2,3) =


r− bȳs

1 + qȳs
0

β2ȳ2
s

l2

(
s(m + n)
(ȳs + n)2 −

β2

l

)
ȳs

. (22)
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The eigenvalues of (22) are as follows.

λ1 = r− bȳs

1 + qȳs
and λ2 =

(
s(m + n)
(ȳs + n)2 −

β2

l

)
ȳs. (23)

Therefore S2,3 is locally asymptotically stable if r <
bȳs

1 + qȳs
and m + n <

β2

ls
(ȳw + n)2

because in this case | arg(λ1)| = | arg(λ2)| = π >
απ

2
.

Theorem 6. For the case of strong Allee effect (m > 0), the interior point Ŝ = (x̂s, ŷs) is locally
asymptotically stable if the following is the case:

(i) χ2
1s ≥ 4χ2s, χ1s < 0, and χ2s > 0.

(ii) χ2
1s < 4χ2s, and if χ1s < 0, or χ1s > 0 and α < α∗;

where the following is the case.

χ1s = −
(

β1 x̂s +
β2ŷs

l + x̂s

)
+

(
bcx̂sŷs

(1 + cx̂s + qŷs)2 +
s(m + n)ŷs

(ŷs + n)2

)
χ2s = β1 x̂sŷs

(
β2

l + x̂s
− s(m + n)

(ŷs + n)2

)
+

bsx̂s

(1 + cx̂s + qŷs)2

(
β2c(m + n)ŷ2

s + s(1 + cx̂s)(ŷs −m)2

β2(ŷs + n)2 − β2cŷ2
s

s(l + x̂s)

)
α∗ =

2
π

∣∣∣∣∣tan−1
√

4χ2s − (χ1s)2

χ1s

∣∣∣∣∣.
Proof. The Jacobian matrix (15) at interior equilibrium point Ŝ = (x̂s, ŷs) is given by the
following.

J(Ŝ) =


−β1 x̂s +

bcx̂sŷs

(1 + cx̂s + qŷs)2 − bx̂s(1 + cx̂s)

(1 + cx̂s + qŷs)2

s2(ŷs −m)2

β2(ŷs + n)2
s(m + n)ŷs

(ŷs + n)2 −
β2ŷs

l + x̂s

. (24)

The Jacobian matrix (24) has polynomial characteristic λ2 − χ1sλ + χ2s = 0. By using
the Routh–Hurwitz criterion for Caputo fractional-order [52], the stability condition is
completely proven.

Hopf bifurcation on a fractional-order system occurs when the Jacobian matrix eval-
uated at an equilibrium point has two complex conjugate eigenvalues and there is a
limit-cycle when the stability of that system changes. Here, we use the conditions for the ex-
istence of a Hopf bifurcation which was introduced by [53]. According to Theorems 4 and 6,
the stability of the interior equilibrium point for both weak and strong Allee effects is influ-
enced by the order of the fractional derivative (α). Thus, we can establish the condition
for the existence of a Hopf bifurcation at the interior point as α passes through the critical
value α∗ in the following theorem.

Theorem 7 (Existence of Hopf bifurcation [53]). Let χ2
1w < 4χ2w (or χ2

1s < 4χ2s) and
χ1w > 0 (or χ1s > 0). System (6) undergoes a Hopf bifurcation around the interior point Ŵ (or Ŝ)
when α crosses α∗.

Proof. Based on Theorem 6, when χ2
1s < 4χ2s and χ1s > 0, the eigenvalues of system (6) at

Ŝ are a pair of complex conjugate numbers with the real parts are positive. We also confirm
that φ1,2(α

∗) = 0 and dφ(α)
dα |α=α∗ 6= 0 where φi(α) = α π

2 −min1≤i≤2|arg(λi(α))|. Based on
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Theorem 3 in [53], the equilibrium point Ŝ undergoes a Hopf bifurcation when α crosses α∗.
The similar proof works for the weak Allee effect case.

5. Global Stability
5.1. System with Weak Allee Effect

We know from the previous analysis that in the case of the weak Allee effect, the prey
extinction point W2 = (0, ȳw) and the interior point Ŵ = (x̂w, ŷw) are conditionally locally
asymptotically stable. In the following, we study the global asymptotic stability of those
equilibrium points.

Theorem 8. If −n
(

ȳw

γ2 + n
− 1
)
≤ m ≤ −γ2 + n

sȳw

(
r2

4β1
+

β2ȳ2
w

l

)
, then W2 = (0, ȳw) is

globally asymptotically stable.

Proof. We consider the following positive definite Lyapunov function.

V1(x, y) = x + y− ȳw − ȳw ln
y

ȳw

Calculating the α-order derivative of V1(x, y) along the solution of system (6) and
applying Lemma 3.1 in [54], we obtain the following.

Dα
∗V1(x, y) ≤ Dα

∗x +
y− ȳw

y
Dα
∗y

= rx− β1x2 − bxy
1 + cx + qy

+ (y− ȳw)

(
s(y−m)

y + n
− β2y

l + x

)
= − β1

(
x− r

2β1

)2
+

r2

4β1
− bxy

1 + cx + qy
+

sy2

y + n
− msy

y + n
− sȳwy

y + n
+

msȳw

y + n

− β2ȳwy
l + x

+
β2ȳ2

w
l + x

− β2

l + x
(y− ȳw)

2

≤ r2

4β1
+

sy2

y + n
− msy

y + n
− sȳwy

y + n
+

msȳw

y + n
+

β2ȳ2
w

l + x
− β2

l + x
(y− ȳw)

2

≤ r2

4β1
+ sy− msy

n
− sȳwy

γ2 + n
+

msȳw

γ2 + n
+

β2ȳ2
w

l
− β2

l + x
(y− ȳw)

2

=

(
r2

4β1
+

msȳw

γ2 + n
+

β2ȳ2
w

l

)
+ s
(

1− m
n
− ȳw

γ2 + n

)
y− β2

l + x
(y− ȳw)

2

Since −n
(

ȳw

γ2 + n
− 1
)
≤ m ≤ −γ2 + n

sȳw

(
r2

4β1
+

β2ȳ2
w

l

)
, we obtain the following.

Dα
∗V1 ≤ −

β2

l + x
(y− ȳw)

2.

In this case, Dα
∗V1(x, y) ≤ 0 for all (x, y) ∈ R2

+ and Dα
∗V1(x, y) = 0 implies that y = ȳw.

Substituting y = ȳw to the second equation of system (6) we obtain the following.

0 = Dα
∗ ȳw = sȳw

(
ȳw −m
ȳw + n

)
− β2ȳ2

w
l + x

. (25)

The unique solution of (25) is x = 0, which shows that singleton {W2} is the only
invariant set on which Dα

∗V1(x, y) = 0. By Lemma 4.6 in [55], it is proven that W2 is globally
asymptotically stable.
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Theorem 9. The interior point Ŵ of model (6) is globally asymptotically stable if the following is
the case:

(i) −n
(

ŷw

γ2 + n
+

β2ŷw

s(l + γ1)
− 1
)
≤ m ≤ − β2(γ2 + n)ŷw

ls
and;

(ii) b < min
{

2β1
(1 + cx̂w + qŷw)(1 + cγ1 + qγ2)

1 + cx̂w + 2cŷw(1 + cγ1 + qγ2)
,

2β1β2

r
(1 + cγ1 + qγ2)

(1 + cx̂w)(l + γ1)

}
.

Proof. Consider the following positive definite Lyapunov function.

V2(x, y) =
r

β1
(1 + cx̂w + qŷw)

(
x− x̂w − x̂w ln

x
x̂w

)
+

(
y− ŷw − ŷw ln

y
ŷw

)
.

By taking the α-order derivative of V2(x, y) along the solution of system (6) and
applying Lemma 3.1 in [54], one has the following.

Dα
∗V2 ≤

r
β1

(1 + cx̂w + qŷw)
x− x̂w

x
Dα
∗x +

y− ŷw

y
Dα
∗y

=
r

β1
(1 + cx̂w + qŷw)(x− x̂w)

(
r− β1x− by

1 + cx + qy

)
+ (y− ŷw)

(
s(y−m)

y + n
− β2y

l + x

)
= − r(1 + cx̂w + qŷw)(x− x̂w)

2 − br(1 + cx̂w)(x− x̂w)(y− ŷw)

β1(1 + cx + qy)

+
bcrŷw(x− x̂w)2

β1(1 + cx + qy)
+

sy2

y + n
− msy

y + n
− sŷwy

y + n
+

msŷw

y + n
− β2ŷwy

l + x

+
β2ŷ2

w
l + x

− β2
(y− ŷw)2

l + x

≤
(

bcr
β1

ŷw − r(1 + cx̂w + qŷw)

)
(x− x̂w)

2

+
br
β1

(1 + cx̂w)

(1 + cγ1 + qγ2)

(x− x̂w)2 + (y− ŷw)2

2
+ sy− msy

n

− sŷwy
γ2 + n

+
msŷw

γ2 + n
− β2ŷwy

l + γ1
+

β2ŷ2
w

l
− β2

(y− ŷw)2

l + γ1

=

(
bcr
β1

ŷw − r(1 + cx̂w + qŷw) +
br(1 + cx̂w)

2β1(1 + cγ1 + qγ2)

)
(x− x̂w)

2

−
(

β2

l + γ1
− br(1 + cx̂w)

2β1(1 + cγ1 + qγ2)

)
(y− ŷw)

2

+

(
s− ms

n
− sŷw

γ2 + n
− β2ŷw

l + γ1

)
y +

(
msŷw

γ2 + n
+

β2ŷ2
w

l

)
.

It is clear that if

−n
(

ŷw

γ2 + n
+

β2ŷw

s(l + γ1)
− 1
)
≤ m ≤ − β2(γ2 + n)ŷw

ls

and

b < min
{

2β1
(1 + cx̂w + qŷw)(1 + cγ1 + qγ2)

(1 + cx̂w + 2cŷw(1 + cγ1 + qγ2))
,

2β1β2

r
(1 + cγ1 + qγ2)

(1 + cx̂w)(l + γ1)

}
,

then Dα
∗V2(x, y) ≤ 0 for all (x, y) ∈ R2

+. Moreover, Dα
∗V2(x, y) = 0 implies that (x, y) =

(x̂, ŷ). Based on that, the only invariant set on which Dα
∗V2(x, y) = 0 is the singleton {Ŵ}.

By Lemma 4.6 in [55], it follows that Ŵ is globally asymptotically stable.
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5.2. System with Strong Allee Effect

Previous analysis shows that for the system with a strong Allee effect, the predator
extinction point S1 = ( r

β1
, 0) is always locally asymptotically stable. Hence, in the following,

we study the global asymptotic stability only for the equilibrium point S1 = ( r
β1

, 0).

Theorem 10. If m ≥
(

br
β1s

+ 1
)
(γ2 + n), then the predator extinction point S1 =

(
r

β1
, 0
)

of

system (6) is globally asymptotically stable.

Proof. Define a positive definite Lyapunov function at S1.

V3(x, y) =
(

x− r
β1
− r

β1
ln

β1x
r

)
+ y.

According to Lemma 3.1. in [54], the α-order derivative of V3(x, y) along the solution
of system (6) satisfies the following.

Dα
∗V3(x, y) ≤

x− r
β1

x
Dα
∗x + Dα

∗y

=
x− r

β1

x

(
r− β1x− by

1 + cx + qy

)
x + y

(
s(y−m)

y + n
− β2y

l + x

)
= − β1

(
x− r

β1

)2
− bxy

1 + cx + qy
+

bry
β1(1 + cx + qy)

+ s
y2

y + n
−ms

y
y + n

− β2
y2

l + x

≤ − β1

(
x− r

β1

)2
+

bry
β1

+ sy−ms
y

y + n
.

Based on Theorem 2, we have y(t) ≤ γ2 and, thus, we have the following.

Dα
∗V3(x, y) ≤ − β1

(
x− r

β1

)2
+

bry
β1

+ sy−ms
y

γ2 + n

= − β1

(
x− r

β1

)2
+

(
br
β1

+ s− ms
γ2 + n

)
y.

We note that if m ≥
(

br
β1s

+ 1
)
(γ2 + n), then Dα

∗V3(x, y) ≤ 0 for all (x, y) ∈ R2
+.

Furthermore, Dα
∗V3(x, y) = 0 implies that (x, y) = ( r

β1
, 0).

Hence, the only invariant set on which Dα
∗V3(x, y) = 0 is the singleton {S1}. By

Lemma 4.6 in [55], the predator extinction point S1 is globally asymptotically stable.

6. Numerical Simulations

In this section, some numerical simulations of system (6) are presented to verify
the analytical results such as the stability of equilibrium points and a Hopf bifurcation
and to explore the dynamical behavior of the system (6) for both weak and strong Allee
effects, respectively. The recent development of the numerical schemes for the fractional-
order system such as the Grünwald–Letnikov method [31,56], the predictor-corrector
method [57–59], the homotopy perturbation method [60,61], and the Laplace adomian de-
composition method [62] have been used to solve the fractional-order differential equations.
Here, we apply the fractional-order predictor-corrector method provided by Diethelm
et al. [63] to obtain numerical solutions of the system (6). Based on that, we divide this
section into three subsections that demonstrate the effects of the capturing rate to the
predation rate (b), the Allee threshold (m), and the order of fractional system (α) on the
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stability of equilibrium points. Since parameter values based on real-life observations are
not available, we use hypothetical parameters that correspond to the analytical results.

6.1. The Influence of the Capturing Rate (b)

To understand how the capturing rate (b) could influence the dynamics of system (6)
in the weak Allee effect case (m < 0), we use the following hypothetical parameter values.

r = 0.5, β1 = 0.05, c = 1, q = 0.1, s = 0.1, l = 1, β2 = 0.05, m = −1, and n = 3. (26)

The bifurcation diagrams for both predator and prey populations controlled by
b ∈ [0.2, 0.6] and α = 0.98 are depicted in Figure 1a. When b < b∗w1 ≈ 0.24103, the in-
terior point Ŵ is asymptotically stable. For example, we plot a phase portrait of the
system (6) in Figure 1b for b = 0.20. In this case, one can easily compute that χ2

1w − 4χ2w =
−0.06299 < 0 and χ1w = −0.08727 < 0. According to Theorem 4, the interior point
Ŵ = (4.30171, 8.80734) is asymptotically stable. The stability of the interior point Ŵ is
also achieved in the interval b ∈ (b∗w2 = 0.53846, b∗w3 = 0.55487). To show such typical
behavior, we plot a phase portrait of the system (6) in Figure 1d for b = 0.54. Furthermore,
our numerical simulations also show the existence of limit-cycles solution enclosing the
interior point Ŵ for b ∈ (b∗w1, b∗w2) as provided in the green area in Figure 1a. As an
example, we plot some numerical solutions of the system (6) with b = 0.27 in Figure 1c.
It is observed that all solutions of system (6) converge to a limit-cycle and the interior
point Ŵ = (2.76631, 5.82563) losses its stability. This situation shows that the system (6)
undergoes a Hopf bifurcation with respect to b. When b > b∗w3, the interior point Ŵ does
not exist anymore and the prey extinction point W2 = (0, 1) becomes stable via forward
bifurcation. The numerical solutions of system (6), which show the stability of W2 = (0, 1),
are shown in Figure 1e.

Next, we numerically investigate the effect of the capturing rate (b) under the strong
Allee effect case (m > 0) using the following hypothetical parameters.

r = 0.5, β1 = 0.1, c = 1, q = 0.1, s = 0.1, l = 1, β2 = 0.05, m = 0.4, and n = 0.2. (27)

Here, we also take α = 0.98. We notice that the predator extinction point S1 = (5, 0)
is always asymptotically stable, see Theorem 5b. Then, by varying b from 0.2 to 0.6, we
plot the bifurcation diagrams for both predator and prey population in Figure 2a. It is
found that the system (6) in this case has similar qualitative behavior as in the previous
simulation (see Figures 1 and 2), with the exception of the stability properties of the
predator extinction point S1 = (5, 0). In the first simulation, the predator extinction point is
always unstable while, in the latter case, it is always locally asymptotically stable. The local
stability properties of the predator extinction point can be clearly observed from the phase
portraits depicted in Figure 2b–e.

Remark 1. Based on Figures 1 and 2, the capturing rate (b) has great influence to both prey and
predator population densities. For parameter values as in (26) and (27), for both weak and strong
Allee effects, the densities of both prey and predator populations decrease with increasing capturing
rates. In particular, increasing the capturing rate such that b > b∗w3 (for the weak Allee effect case)
or b > b∗s3 (for the strong Allee effect case) may stabilize the prey extinction point (0, 1) as stated in
Theorems 3c and 5c. This means that the prey population will become extinct while the predator
still survives. We also notice that for the case of strong Allee effect (m > 0), the system (6) may
exhibit a bistability phenomenon, see Figure 2b,d,e. Hence, the system (6) is highly sensitive to
the initial condition when the Allee effect is strong. From the ecological point of view, this result
is quite interesting. We can still maintain the existence of both prey and predator even under
conditions of a strong Allee effect, that is, as long as we have a sufficiently large initial predator
density. Furthermore, Figure 1b,d,e confirm the global asymptotic stability behavior of system (6)
for the weak Allee effect case.
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6.2. The Impacts of the Allee Threshold (m)

We next study numerically the impacts of the Allee threshold (m) to the dynamics of
system (6) using the following hypothetic values of parameters.

r = 0.5, β1 = 0.1, b = 0.4, c = 1, q = 0.1, s = 0.1, l = 1, β2 = 0.05, and n = 3. (28)

In Figure 3a we show the bifurcation diagrams of both predator and prey populations
for parameter m ∈ [−2, 1] and α = 0.98. It is shown that when m < m∗1 ≈ −1.73333,
the prey extinction point W2 is asymptotically stable. If we increase m such that m > m∗1 −
1.73333, then the prey extinction point W2 loses its stability when an asymptotically stable
interior point Ŵ appears. This shows that the system (6) exhibits a forward bifurcation.
The interior point Ŵ remains asymptotically stable for m ∈ (m∗1 , m∗2). Moreover, Figure 3a
shows the occurence of a Hopf bifurcation when m passes through m∗2 ≈ −1.50769. Indeed,
in the interval m ∈ (m∗2 , m∗3 = 0), there is no stable equilibrium point and there exists
a limit cycle around the interior point Ŵ; see the green area in Figure 3a. Our further
observation shows that the system (6) with m ∈ (m∗3 , m∗4 ≈ 0.82356) has a bistability
phenomenon where both interior point Ŝ and the predator extinction point S1 = (5, 0) are
locally asymptotically stable. If we increase m such that m > m∗4 , the interior point Ŝ loses
its existence and the predator extinction point S1 becomes a unique stable equilibrium
point of the system (6).

In order to provide a better view of the dynamics of the system (6) with parameter
values (28) and α = 0.98, we ploted several phase-portraits for different values of m in
Figure 3b–e. Figure 3b shows the phase-portrait of the system (6) with m = −1.79 <

m∗1 . Here, we have 0.5 = r < bȳw
1+qȳw

= 0.50960 and 1.21 = m + n < β2
ls (ȳw + n)2 =

9.94580. According to Theorem 3c, the prey extintion point W2 = (0, 1.46) is asymptotically
stable. Figure 3b confirms this behavior where all numerical solutions converge to the prey
extinction point W2 = (0, 1.46). The phase portrait of the system (6) with m = −0.46 > m∗2
is depicted in Figure 3c. In this respect, we have χ1w = 0.03488 > 0 and 0.87258 = α∗ <
α = 0.98. Thus, the stability condition of the interior point Ŵ = (1.21751, 2.31593) in
Figure 3c, where all numerical solutions of the system (6) are convergent to a limit-cycle.
The appearence of a stable limit-cycle indicates the presence of a Hopf bifurcation in the
system. Next, we consider a case of m ∈ (m∗3 , m∗4) by choosing m = 0.4. The phase-portrait
in Figure 3d shows that numerical solutions are convergent to the predator extinction
point S1 = (5, 0) or to the interior point Ŝ1 = (2.24039, 2.40121), depending on the initial
conditions. Hence, the system (6) exhibits a bistability phenomenon. Finally, if we take m =
0.90 > m∗4 , then we have situation where the interior point Ŝ disappears and the predator
extinction point S1 = (5, 0) becomes the only equilibrium point which is asymptotically
stable. This behavior is plotted in Figure 3e.

Note that, when the Allee effect is weak, i.e., when −n < m < 0, the predator always
exists as depicted in the interval [−2, m∗3 ] in Figure 3a. In this case, the predator growth
rate is always positive and the prey population could suffer from extinction as the m value
decreases. On the other hand, when the Allee effect is strong, i.e., when m > 0, there
is a condition where the predator is always extinct as depicted by the blue solid line in
the interval [m∗3 , 1] in Figure 3a. However, generally speaking, the system (6) could have
a positive or negative growth rate on the predator population since there is a bistability
phenomenon in that interval as explained before. These situations show that our system (6)
may provide the condition for the existence of the predator population which is affected by
the double Allee effect.
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Figure 1. Dynamics of system (6) with parameter values (26) and α = 0.98. (a) Bifurcation diagram
of system (6) driven by b for the case of the weak Allee effect (m = −1 < 0). (b–e) Phase-portrait of
system (6) with (b) b = 0.20, (c) b = 0.27, (d) b = 0.54, and (e) b = 0.57. The predator extinction point
is always unstable.
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Figure 2. Dynamics of system (6) with parameter values (27) and α = 0.98. (a) Bifurcation diagram
of system (6) driven by b for the case of strong Allee effect (m = 0.4 > 0). (b–e) Phase-portrait of
system (6) with (b) b = 0.20, (c) b = 0.40, (d) b = 0.50, and (e) b = 0.60. The predator extinction point
is always locally stable.
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Figure 3. Dynamics of system (6) with parameter values (28) and α = 0.98. (a) Bifurcation diagram
of system (6) driven by m. (b–e) Phase-portrait of system (6) with (b) m = −1.79, (c) m = −0.46,
(d) m = 0.40, and (e) m = 0.90. The predator extinction point is unstable for the weak Allee effect
case (m < 0) and is locally asymptotically stable for the strong Allee effect case (m < 0).
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6.3. The Effects of the Order of Fractional System (α)

In the following simulations, we study the influence of the order of the fractional
derivative (α) by considering the system (6) with the following hypothetical parameter values.

r = 0.5, β1 = 0.1, b = 0.4, c = 1, q = 0.1,
s = 0.1, l = 1, β2 = 0.05, m = 0.5, n = 0.2.

(29)

Based on parameter values (29) and Theorem 7, we can find a critical value α∗ ≈ 0.80631
such that the interior point is asymptotically stable if α < α∗ and it is unstable if α > α∗.
In order to observe such behavior, we plot the bifurcation diagram for α ∈ [0.7, 1.0], see
Figure 4a. It is observed that the interior point Ŝ = (0.38825, 1.80915) is asymptotically
stable when α < α∗. If α > α∗, then the interior point Ŝ loses its stability and all numerical
solutions converge to a limit-cycle via a Hopf bifurcation. The Hopf bifurcation can also be
observed from the phase-portraits shown in Figure 4b for α = 0.73 < α∗ and Figure 4c for
α = 0.89 > α∗.

In Figure 4a, we observe that the order of the fractional derivative does not af-
fect the stability of the interior point as long as 0 < α < α∗. To verify this prop-
erty, we plot in Figure 5 the time series of both prey and predator populations for α =
0.5, 0.6, 0.7, 0.75. It is shown that all solutions are indeed convergent to the interior point
Ŝ = (0.38825, 1.80915), but the solution of system (6) with a higher–order fractional deriva-
tive has faster convergence.
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Figure 4. Dynamics of system (6) with parameter values (29). (a) Bifurcation diagram of system (6)
driven by α. (b,c) Phase-portrait of system (6) with (b) α = 0.73 and (c) α = 0.89.
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Figure 5. Time series of system (6) with parameter values (29) and the initial conditions taken around
the interior point Ŝ = (0.38825, 1.80915).

7. Conclusions

In this paper, a fractional-order Leslie–Gower predator-prey model with Beddington–
DeAngelis functional response and double Allee effect in the predator population is pro-
posed and the dynamics of the model has been analyzed. First, the existence, uniqueness,
non-negativity, and boundedness of the solution have been proven. We then determined
all possible non-negative equilibrium points and their local and global stability properties.
We found that the model has four types of biologically feasible equilibrium. The extinction
of both prey and predator point is always unstable for both weak and strong Allee effect
cases. The predator extinction point is always stable for the strong Allee effect case, but it
is always unstable for the weak Allee effect case. The prey extinction point and the interior
point are conditionally stable. Our numerical simulations showed that for the case of
the weak Allee effect, there is a capturing rate threshold b∗ such that for b > b∗ the prey
population is extinct while the predator population still survives. However, for the case of
the strong Allee effect, the situation is also dependent on the initial value. Here, if the initial
predator population is relatively low then the predator will become extinct but the prey
will survive. Additionally, we also proved the existence of a Hopf bifurcation about the
interior point driven by the order of the fractional derivative (α) and the critical α∗ of this
bifurcation has been determined analytically. The occurrence of the Hopf bifurcation has
been confirmed by our numerical simulations. The existence of Hopf bifurcation controlled
by α has also been observed in [31,32]. This shows that the unstable interior point of the
first order system (i.e., the system is convergent to a limit cycle) may become stable in the
fractional order system (i.e., the system converges to the interior point).
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