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Abstract: In this paper, we propose a fractional differential equation (FDE)-based approach for the
estimation of instantaneous frequencies for windowed signals as a part of signal reconstruction. This
approach is based on modeling bandpass filter results around the peaks of a windowed signal as
fractional differential equations and linking differ-integrator parameters, thereby determining the
long-range dependence on estimated instantaneous frequencies. We investigated the performance of
the proposed approach with two evaluation measures and compared it to a benchmark noniterative
signal reconstruction method (SPSI). The comparison was provided with different overlap parameters
to investigate the performance of the proposed model concerning resolution. An additional compari-
son was provided by applying the proposed method and benchmark method outputs to iterative
signal reconstruction algorithms. The proposed FDE method received better evaluation results in
high resolution for the noniterative case and comparable results with SPSI with an increasing iteration
number of iterative methods, regardless of the overlap parameter.

Keywords: applied fractional calculus; signal reconstruction; instantaneous frequency estimation;
phase estimation; memory parameter

1. Introduction

Signal reconstruction from short-term Fourier transform (STFT) magnitude spectra is a
topic that never loses its relevance. This subject, also referred to as the phase recovery prob-
lem or spectrogram inversion problem, has attracted the attention of various researchers,
and important studies have been carried out. The most-used approach for solving this
problem is the well-known Griffin-Lim algorithm (GLA), which was first introduced by
Griffin and Lim as an iterative repetition of inverse STFT (ISTFT) and STFT by considering
initial phase conditions and exploiting the property of spectrogram redundancy [1].

As the GLA and its derivatives are iterative algorithms, they are time consuming [2,3].
Therefore, in areas where application speed is a concern, different algorithms have been
proposed such as single-pass spectrogram inversion (SPSI). SPSI not only outputs applica-
ble results, but also provides a better initial phase estimate for iterative methods such as
the GLA [4]. Recently, various methods were proposed for noniterative signal reconstruc-
tion problems that claimed improved results concerning SPSI [5,6]. Moreover, with the
emergence of deep learning, neural models have produced state-of-the-art results [7-10].
As a common rule, all recent methods provided results in comparison with SPSI, thus
solidifying its place as a benchmark [11].

Historically, phase recovery methods have been model-based approaches. Speech
and musical signals, which are defined as semi-stationary signals, have been represented
with sinusoidal models. A sinusoidal model takes a speech signal of a given frame length,
the time length in which the audio signal is accepted as stationary, as a weighted sum of
sinusoids with different phases, frequencies, and amplitudes [12]. The sinusoidal model
has been used in both analysis and synthesis applications of audio signal processing. Phase
vocoder applications are used for audio signal synthesis for audio processing applica-
tions [13]. During synthesis, a given encoded audio signal or a feature set of an audio
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signal is used to reconstruct the signal in the time domain. Generally, short-term Fourier
transform (STFT) magnitudes are analyzed to define phase and frequency components
of sinusoids.

For example, the SPSI algorithm first detects spectral peaks and applies quadratic
interpolation techniques around the neighborhood of peak bins to obtain an estimate for
instantaneous frequency. First, the magnitude of the STFT of the signal is calculated; then,
a quadratic function that passes through an amplitude point at peak bin and amplitude
points in its two neighborhoods is fitted [14]. Next, with the phase-locked vocoder ap-
proach, signal phases are obtained. A linear interpolation gives the phase estimate, which
is called the phase accumulator. In the frequency domain, if a peak has happened, a simple
estimate for phases of its adjacent bins is a 180° shift. If the peak is not in the center but
between two peak bins, it is assumed that one of the adjacent bins also influenced the phase.
Therefore, a phase alternation strategy dependent on the location of the instantaneous
frequency estimate was proposed [15].

In signal synthesis, there are model assumptions that signals typically obey, such as
them being sinusoids or them being solutions to ordinary differential equations (ODEs).
For calculating the parameters of signals, functions are fitted based on these assumptions.
Modeling bandpass filter outputs using ODEs have found use in sound synthesis [16].
Using simple time-dependent and nonlinear terms, the relationship between ODE coeffi-
cients and physically meaningful control parameters such as pitch, pitch bend, decay rate,
and attack time can be stated. This relationship makes it possible to generate artificial
sounds using ODE models. One of the assumptions for signal models is that a signal is
a result of the weighted sum of its history. This approach is called linear prediction and
it has been widely used in audio signal processing and time-series analysis [17]. This
autoregressive approach can be considered as a special case for the more general autore-
gressive fractionally integrated moving average (ARFIMA), which is used in time-series
analysis with signals that show long-term dependence [18]. This property is elemental in
fractional-order calculus.

Fractional-order calculus is a generalization of integer order differentiation and in-
tegration. The idea of a fractional-order derivative was first discussed by Leibniz and
L'Hospital [19]. The mathematical phenomena of fractional-order calculus make it possible
to describe real objects more accurately than classical, integer order calculus. Due to the
extra free parameter of the non-integer derivation order, fractional-order-based methods
provide an additional degree of freedom in modeling objects, optimizing performance,
and describing natural dynamical behavior with memory [20]. Due to these capabilities,
the fractional-order calculus framework has a close connection to the theory of fractals.
Mandelbrot introduced the concept of fractal theory as a mathematical framework for
explaining self-similar structures in nature [21]. Fractal geometry can be translated as the
study of textural information, which is important for understanding signals. For example,
when assuming that a stochastic signal obeys a well-defined fractal model, a method for
estimating the frequency characteristics of a signal can be derived. Moreover, the param-
eters of this model can be applied to the textural segmentation of a signal [22]. In signal
processing, regardless of a signal being fractal or not, fractal theory helps to explain the
local properties of a signal and provides a simpler geometrical or statistical description of
these properties [23].

Fractional differentiation, or, more correctly, the differ-integration order of a differen-
tial equation, gives a metric for the long-term dependence or fractal dimension. Moreover,
Griinwald-Letnikow fractional differ-integration shifts a sinusoid phase with direct re-
lation to its differ-integration order [24]. Fractional-order calculus-based models have
found use in two ways. First, by differ-integrating a signal, its autocorrelation function can
be manipulated. This can result in a reduced number of parameters in linear predictive
analysis. An approach based on a weighted sum of fractional derivatives of a signal,
which is called fractional linear prediction, has been shown to have good signal prediction
capability [25]. Fractional calculus is a nonlocal approach and, therefore, employs infinite
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memory. Proposed methods for optimal fractional linear prediction with limited memory
have not only provided good results on prediction accuracy but also provided a tool for
reducing the number of linear prediction coefficients that are needed for encoding an
audio signal [26-28]. Another application of the fractional derivative in audio processing
is using it as a metric for fractal analysis. The excitation in an autoregressive model can
be assumed as the fractional derivative of Gaussian noise [29]. Fractal features have also
been applied to speech recognition, voiced—unvoiced speech separation [30], and speaker
emotion classification [31]. A fusion of fractal-geometry-based features was shown to
produce comparable results to mel-frequency cepstral coefficients when applied to speech
classification problems [32].

In this article, the fractional-order calculus framework is applied to the audio re-
construction problem, whereby bandpass filter outputs around peak frequencies are
modeled as fractional-order differential equations. Fractal geometry or fractional-order
calculus-based models have been applied to various cases of signal processing to an extent,
but we show that this framework has higher potential by linking the memory feature of the
fractionally integrated model to instantaneous frequency estimates. Our starting point is
simple. A signal with long-range dependence is expected to show low-frequency behavior,
and a signal without long-range dependence is expected to show high-frequency behavior.
By analyzing a signal’s long-range dependence, we can create a model to estimate its instan-
taneous frequency. Furthermore, by applying this framework to the phase reconstruction
problem, we show that a method based on a fractional-order differential equation model
can achieve better objective test scores using the perceptual evaluation method than the
benchmark SPSI method in redundant conditions. We compared our results with those
of three different GLA-based methods and show that our proposed phase reconstruction
method produces similar results to the benchmark.

2. Materials and Methods

In time-series applications or fractal theory, the use of differential equations is valid
and has many applications. In time-series analysis, an ARFIMA (0, d, 0) process with unit
increments of time index t can be generalized as a fractional differential equation [33].

;Tzf(t) =w(t), te[0,T—1] 1)

In Equation (1), the f(t) signal is a one-dimensional vector with a length of T. Most
audio processing applications deal with normalized and sampled signals with respect to
the specified sample rate. To avoid dependence on the sample rate and reaching physically
incorrect models, we take f(t) as a dimensionless signal, and t as a dimensionless variable
of time [22]. The power spectral density function (PSDF) of f(t) is given by |F(w) 2
and w(t) is white noise. The PSD of white noise is a constant c; hence, the following
equation is valid:

i *[F(w)* = c @

The PSD of a function, modeled as a fractional differential equation, can be estimated as

A c NFFT

where 3 = 2«.

From Equation (3), we can see that, depending on the value of (3, the system exhibits
different characteristics in terms of long-range dependence and frequency response.

If B < 0, the system in Equation (3) becomes a differentiator. The spectrogram of the
system will be dominated by high-frequency components as the differentiator behaves like
a high-pass filter. Consequently, the system will not exhibit long-range dependence.
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If B > 0, the system in Equation (3) becomes an integrator. The spectrogram of the
system will be dominated by low-frequency components as the integrator behaves as a
low-pass filter. Consequently, the system will have long-range dependence.

The estimation of differential equation order has been investigated in time-series anal-
yses. One of the most extensively used solutions is a linear regression model, as proposed
by Geweke and Porter-Hudak [34]. We can apply the least-squares error method to obtain
estimates for 3 and C and create a regression line.

e= 2(1111’k—1r1I5k)2 = Z[IHPk— (C-— Blnwk)]z 4)
k k
where C = Inc.

This method is simple to implement. We only need spectrogram magnitudes to
evaluate the result, as often is the case with signal reconstruction. If we apply this
method to appropriately normalized values, we can reduce the significant workload of
least-squares estimation.

To find the values of C and 3, which minimize this error function, we calculate g—g =0

and g—é = 0. Solving these two equations yields the following expressions for 3 and C:

_ NYi(InPy)(Inwy) — (Ex In wy) (Xx InPy)

P ®)
(LkInwy)® = N i (In wy)?
C:lZ(lnP )+Eme (6)
N TN T
Using Equations (5) and (6), we can estimate
InPy = —Blnw, +C (7)

We can use this approach with the modifications described below to estimate instanta-
neous frequency. Figure 1 shows a diagram of the proposed approach.

ljw [ * | Fy(w)|® =¢; (B1,C4) B

[iw] %] Fa(w) |* =¢, (B C2) o,

< l |

. ljw|PF(w)* =i | (8,C) S

Differ-integrator parameter estimation

Figure 1. Proposed instantaneous frequency estimation with fractional differential equation models around spectrogram

peak frequencies.

First of all, we take spectral peaks and their two adjacent points in the spectrogram
into consideration; then, for every peak bin index j, we model these data points according
to the differential equation in Equation (1) and obtain their PSDFs as

[joo**[E; (w)[* = ¢ ®)



Fractal Fract. 2021, 5, 83

50f13

Equation (8) models PSDF of ith band pass filter output that corresponds to a peak
bin index j of a signal frame m. Accordingly, we can create an estimate for new Py using
Equations (3) and (7) as

P, = wy Piggand InPy = —B;Inw + G )

Then, we can calculate the 3 and C values to produce a regression line that passes
through the peak and its adjacent points as seen in. Algorithm 1 shows this process.

Algorithm 1. Pseudocode for FDE-based instantaneous frequency estimation on a signal frame.

Input: Spectrogram magnitude of the signal frame |F(w)|, NFFT
Output: dj, sign(pB;)
1:  Calculate logarithmic power spectrogram InP(w)

2:  Assign05,1,2,3to wg_1, wy, wiiq, and N
3 w) <+ Inwy4
4 wh<«0
5 wh ¢+ Inwyig
6:  denominatorl + w} + w}
7 denominator + (w] + wg)z — N(wf? + w}i?)
8:  for every spectral peak bin j in InP(w) do:
9: Pmax < max(InPy_1, InPy, InPy 1)
10: Ppin < min(InPy_4, InPy, InP,4)
11: if InPy_; < InPy,q then:
12: Pll «— (ln Py1— Pmin)/(Pmax - Pmin)
13: Plg 0
14: Py 1
15: nominatorl « 1+ Py
16: Bi < [(P'yw)) — nominatorl-denominatorl] /denominator
17: C; < (nominatorl/N) + B;-denominatorl/N
18: else if InPy_1 > InPy; then:
19; P <0
20: P/3 — (hlPkJrl - Pmin)/(PmaX - Pmin)
21 Py 1
22: nominatorl < 1+ P'3
23: Bi < [(P'3w}) — nominatorl-denominatorl] /denominator
24: C; < (nominatorl/N) + B;-denominatorl /N
25: else:
26: P <0
27 P30
28: Py 1
29: nominatorl + 1
30: B0
31: G« 1/3
32: endif
33: @ ¢ 2n(j + CiB;) /NFFT
34:  return &y, sign( B;)
35:  endfor

However, we also apply two modifications, as seen in the proposed algorithm. Firstly,
we normalize In Py values of 3 points between 0 and 1; secondly, we take constant values
for wy_1, wy, and wy1 as 0.5, 1, and 2. With these two normalization processes, we
end up obtaining linearized frequency indices around the origin and more distributed
data points. Moreover, because we have normalized frequency values, we expect that the
fractional differentiation order corresponds to the slope of the tangent line. Furthermore,
by normalizing frequency values, we force the equation to be in coherence with the theory
in [34], which employs a least-squares estimator of the slope parameter in linear regression,
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formed using only the lowest-frequency ordinates of the log periodogram. Lastly, these
predefined values help reduce computational costs.

After the calculation of the regression line, two cases are present. Figure 2a,b show
these two cases. In case a, we have 3; < 0, and, in case b, we have 3; > 0. The sign of the
(3; value shows whether the frequency for the actual peak is on the left- or right-hand side
of the plane. If 3; < 0, then we have a system that did not exhibit long-range dependence;
therefore, the spectrogram of the system will be populated by a high-frequency component
and the regression line will be an increasing line that indicates instantaneous frequency
is on the right-hand side of the plane. If 3; > 0, we can concur that the system exhibits
long-range dependence and, being an integrator, its spectrogram will be populated by
low-frequency components. Similarly to case a, we can evaluate that the instantaneous
frequency is on the left-hand side of the plane because it creates a decreasing line.

P P
/\1 . \ - R /\1
P & Pa Pv1 TG
/P'k_ \f & \P{Rﬂ}
k-1 k+1 k-1 k+1

f

(a) (b)

Figure 2. Regression lines around a peak with respect to beta: (a) case a: B < 0; (b) case b: 3 > 0.

To estimate instantaneous frequency, we calculate the line that is normal to the re-
gression line at the point P', (0, C). The frequency estimate of the model is the value that
the normal line hits the x-axis in the frequency domain. This assumption is based on the
case of a peak having equally valued adjacent points. In that case, after normalization of
P'v_1 and P’y 4, values are equal to 0 and |P'y_; — P'y| = |P'i1 — P'i|; therefore, there
is no increasing or decreasing trend. As seen in Figure 3a, the regression line becomes
orthogonal to the magnitude axis, indicating that instantaneous frequency was indeed at
index k.

P ~P
>0, « B0 :
’ \ .p
{ cl \ / e\ k+1
i \

Pl P'e P g
k-1 FcBH

k-1 k+1

(a) (b)

Figure 3. Calculating estimated instantaneous frequency: (a) when 3 = 0, the normal to the regression
line points to the peak frequency bin; (b) upon changing slope of the regression line, the intersection
point of the normal line on the frequency axis moves |Cf| away.

In Figure 3b, if §; < 0, the normal line will hit the x-axis at |C;f;| on the right-hand
side of the plane. This indicates a new instantaneous frequency estimate. Instantaneous
frequency can be calculated as follows:

o 2+ Gii)

@I TNEFT (10)
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where NFFT is the size of the fast Fourier transform (FFT) window applied to the signal
frame, and j is the frequency index of the spectral peak.

From now on, we can apply the same approaches proposed by Dolson and Puckette
to estimate phase values for frames and frequency bins, similarly to SPSI.

Phase values for frequency bin j and frame m can be given as

(pm,j = (Pm—l,j + hOp Size'a)j (11)

From [15], we know that phase values for adjacent bins of the peak can be estimated
as 180° (m)-shifted values. Depending on the sign of 3;, we apply the same scenario as used
in SPSI because the instantaneous frequency estimate stays halfway between the peak and
adjacent frequency bins. Depending on the value, the weight of the adjacent frequency bins
on the phase will change. Thus, if 3; < 0, the neighbor bin on the right will also influence
the phase; accordingly, bins on the right will have the phase value of the peak bin, and bins
on the left will have the n-shifted value of the peak bin. If 3; > 0, the complete opposite
would apply.

When all the phase values have been computed, the function will return to the time
domain by applying inverse FFT (IFFT) with the Hanning window. Then, the frames will
be added in an overlapping manner to finally reconstruct the signal. The whole process is
summarized in Figure 4.

1
. frmn{t)
|
l\ ©m11 :
Instantaneous Frequenc :
| Fro-a(w}] . : P, Phase Locking + IFFT fra(t)
" Estimation [/ | m
I
L Prm-1
BPl (Bm,l:cm,l | U‘s\m,l P ||
(B2 Cooll | & Pz || L
BP, Bm,zl m.2) "2 2 Pha_se IFFT foult)
[ | | Locking
| Fm(w) I BP; - (Bm,i:cm,i) I d\Jm,i I Prni -

n
f(t) < Overlap Add

Figure 4. Proposed signal reconstruction flow.

3. Results

For the tests, we used a subset of the TIMIT database. TIMIT is a read speech corpus,
which is used for benchmarking speech processing implementations [35]. The corpus
contains 16 bit, 16 kHz speech samples from various dialects of American English. In this
work, we used 50 male and 50 female speech samples.

Reconstruction performance was evaluated by two objective measures: spectral con-
vergence (SC) [2] and perceptual evaluation of speech quality (PESQ) [36]. Spectral conver-
gence is commonly used as a loss function or an objective measure and can be given as

_ JIISTFT(X)| — S| [
||S||Fr0

In Equation (12), S is the target magnitude spectrogram, x is the signal, and ||-||,,
denotes the Frobenius norm. This measure is generally used in the logarithmic form
101og(SC). It is widely stated that spectral convergence is not a measure highly correlated

SC

(12)
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with human perception. The perceptual evaluation of speech quality metric was proposed
by the International Telecommunication Union Telecommunication Standardization Sector
(ITU-T) for providing a highly correlated measure with subjective evaluation metrics.
PESQ employs auditory transform that reflects human auditory perceptions, thereby
producing highly correlated results with subjective evaluation methodologies such as mean
opinion score (MOS) and Multiple Stimuli with Hidden Reference and Anchor (MUSHRA)
for 16 kHz sampled data.

A well-known property of the STFT spectrogram is that it is a redundant representation
because it is computed by overlapping windowed short-term frames of a signal. This means
that there is no guarantee of any spectrogram-like complex number array being equal to the
STFT of a signal in the time domain. A complex-valued array that corresponds to the STFT
of a time-domain signal is called a consistent spectrogram [37]. Spectrogram consistency
is an integral part of signal reconstruction algorithms such as Griffin-Lim. In this regard,
overlap value is important because it affects spectrogram resolution and consistency.
An increased hop factor also increases aliasing. In the tests, 512 sample length Hamming
windows with three different hop sizes of 64, 128, and 256 were applied to the signals.
The FDE-based method was compared to SPSI and random phase.

3.1. Comparison of FDE-Based Method to SPSI with Respect to the Hop Size

Figure 5 shows the SC and PESQ boxplots for comparison of the FDE-based method
and SPSI with hop sizes of 64, 128, and 256. Table 1 gives comparisons of FDE, SPSI,
and random phase concerning the average results of SC and PESQ.

Table 1. Mean SC and PESQ measurement results of SPSI, FDE method, and random phase concern-
ing increasing hop size.

Hop Size Method SC PESQ

SPSI —5.02086 3.150896

64 (87.5% overlap) FDE Method —5.02798 3.27584
Random —1.08779 1.644972

SPSI —5.39316 3.261765

128 (75% overlap) FDE Method —5.39769 3.289174
Random —1.55655 1.627104

SPSI —7.05101 3.360622

256 (50% overlap) FDE Method —7.06164 3.331025
Random —2.30093 1.579338

Table 1 and Figure 5 show that the FDE-based method and SPSI achieved nearly iden-
tical SC results, with the FDE-based method having the slightest upper hand. In Table 1,
SC performance had a greater improvement when using the FDE-based method upon in-
creasing hop size. Due to the small differences, we can concur that the proposed FDE-based
method and SPSI behaved similarly in the sense of spectrogram convergence, concerning
decreasing overlap value and resolution. Inspecting the value distribution in Figure 5a—
validates this result.

In terms of the PESQ score for decreasing overlap, the FDE-based method produced
better results for all different overlap values, but in the marginal case of 50% overlap. When
the hop size was 64, the FDE-based method achieved a 4% increase in PESQ score concern-
ing SPSI. From Figure 5d e, it can be seen that the PESQ value deviation was also smaller
in the cases with 87.5% and 75% overlap. It can be said that, for higher-resolution cases,
which result in fewer aliases, the FDE-based method constructs perceptually better signals.
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Figure 5. SC and PESQ boxplots for different hop sizes: (a) SC boxplot of FDE method and SPSI
for hop size = 64, overlap = 87.5%; (b) SC boxplot of FDE method and SPSI for hop size = 128,
overlap = 75%; (¢) SC boxplot of FDE method and SPSI for hop size = 256, overlap = 50%; (d) PESQ
boxplot of FDE method and SPSI for hop size = 64, overlap = 87.5%; (e) PESQ boxplot of FDE method
and SPSI for hop size = 128, overlap = 75%; (f) PESQ boxplot of FDE method and SPSI for hop
size = 256, overlap = 50%.

3.2. Comparison of FDE-Based Method and SPSI as Initial Values to GLA-Based Methods

The GLA repeats ISTFT and STFT iterations by considering initial phase conditions.
It is based on exploiting spectrogram redundancy [1]. The convergence performance of the
GLA can be further improved by introducing an additional momentum coefficient into the
reconstruction. This approach is called the fast GLA (FGLA) [2]. The GLA and FGLA take
into account two consistency criteria. First, for a complex-valued spectrogram X, whose
amplitude is given as A, X must be a result of a Gabor transform of a set of real numbers
x. Second, the amplitude of a Gabor transform of x must be equal to A. The first can be
considered the hard constraint, whereas the second can be relaxed to allow applications
with near 50% overlap and an auxiliary variable to increase convergence performance.
Gabor transform is a special case of STFT with Gaussian windows. This method is called
the GLA with an alternating direction method of multipliers (GLA-ADMM) [3].

We applied the FDE-based method, SPSI, and random phase to three GLA-based
iterative reconstruction methods as initial phase values and compared the deviation of SC
and PESQ metrics with iterations.
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In all cases, the FDE-based method produced similar, if not slightly better, results to
benchmark SPSI in terms of SC. As the difference was substantially small, we can claim
that the FDE-based method and SPSI would produce similar SC results for high-resolution
cases when the two constraints of GLA iteration are set as hard constraints.

In Figure 6a,d, it can be seen that the initial results for the FDE-based method were
higher than both SPSI and random phase initialization. Beginning from the first iteration,
the PESQ results for FDE method-based initialization and SPSI initialization coincided.
Over the iterations, all iterative methods produced similar SC and PESQ results with FDE
and SPSI initialization. Figure 6b,e show similar results for increased hop size.

Spectral Convergence

Spectral Convergence

Spectral Convergence
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Figure 6. GLA, FGLA, and GLAADMM comparison with SPSI, FDE method, and random phase values as initial phases:
(a) SC for 10 iterations for hop size = 64, overlap = 87.5%; (b) SC for 10 iterations for hop size = 128, overlap = 75%;
(c) SC for 10 iterations for hop size = 256, overlap = 50%; (d) PESQ for 10 iterations for hop size = 64, overlap = 87.5%;
(e) PESQ for 10 iterations for hop size = 128, overlap = 75%; (f) PESQ for 10 iterations for hop size = 256, overlap = 50%.

Upon decreasing the overlap to 50%, we can see that the GLA-ADMM method’s
performance increased because it was tailored to perform better when the consistency
criterion was relaxed. Figure 6¢c shows that, for SC evaluation, the GLA-ADMM method
resulted in smaller values in the earlier part of the iteration. The small difference con-
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cerning the initialization method indicates the consistency of results with smaller hop
sizes. Expectedly, the GLA-ADMM-based method also performed well in terms of the
PESQ score. In Figure 6d, we can see that the evaluation curves for the FDE-based method
and SPSI followed a similar trajectory with results of smaller hop sizes. Random phase
initialization created a distinction for the 50% overlap case. Due to the nature of the ADMM
method, the GLA-ADMM exploited random values and created a speedy increase. All
in all, we can concur that the FDE-based method and SPSI can both increase GLA-based
iterative reconstruction performance with similar results and produce better results than
random value initialization.

4. Discussion

Although the inherent complexity of fractional-order calculus and the apparent self-
sufficiency of integer order calculus has led to a relative under-exploration of applications of
the fractional-order framework to signal processing, it has been shown that many systems
in science and engineering can be modeled more accurately by fractional-order rather
than integer-order derivatives, and many such methods have been developed to solve
the problem of fractional systems. Moreover, the theory of fractals and fractional-order
time-series modeling has found some applications for various sound synthesis problems.
As a subtopic of sound synthesis, the audio reconstruction problem can benefit from the
non-integer order differ-integration model due to its ability to model a signal memory,
i.e., the dependence of a signal sample on previous samples.

We applied the fractional-order calculus framework to the audio reconstruction prob-
lem. This approach is based on conventional vocoder topologies. Unlike conventional
vocoders, in this work, bandpass filter outputs around peak frequencies were modeled as
fractional-order differential equations. By applying this model, we exploited the memory
feature of fractionally integrated models and linked this feature to instantaneous frequency
estimates. We evaluated our results using two measures. Spectral convergence is one of
the most used measures for similar works, whereas PESQ is a more correlated measure
with human auditory perception. We produced results using these measures concerning
the window overlap. By doing so, we could evaluate method performance regarding
spectrogram resolution and consistency. By applying the fractional-order framework to the
phase reconstruction problem, we show that a method based on a fractional-order differen-
tial equation model can achieve better PESQ scores than the benchmark SPSI method in
high-resolution conditions, along with similar spectral convergence values. Furthermore,
using SPSI and the proposed FDE-based method as initialization tools for three different
GLA-based methods, we show that our proposed phase reconstruction method produced
similar results to benchmark SPSI on iterative algorithms.

We used FDE to model the frequency component of the phase gradient and achieved
up to a 4% increase in signal reconstruction. We expect that modeling the time com-
ponent of the phase gradient with FDE is also possible and that this approach can fur-
ther increase evaluation performance, which will be addressed in our future research.
Moreover, we can increase the adjacent point numbers for differ-integrator value estima-
tion for the frequency component of the phase gradient and evaluate its effect on phase
reconstruction performance.

Additional applications of FDE-based synthesis can be considered with neural ap-
proaches. The sinusoidal model can be suitable for voiced speech; however, unvoiced
speech becomes problematic. Fractal geometry helps to model noise-like characteristics
of unvoiced sounds, thereby improving the evaluation performance of modern synthesis
or enhancement methods. Moreover, fractal features can be considered as neural network
inputs for synthesis and enhancement applications. Additional features can increase model
accuracies, especially for enhancement applications. Neural network training is notori-
ously time-consuming. Models that employ digital signal processing (DSP) modules as
a helper for deep learning (hybrid models) have been proposed. These types of systems
apply proven DSP tools to reduce the workload on neural architecture. With FDE models,
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two improvements are possible. Firstly, input feature size can be reduced, resulting in a
decrease in the number of model parameters; secondly, signal time dependency can be
modeled as a function of its relationship with long-range dependence, thereby improving
the efficiency of neural models.

5. Conclusions

In this article, the fractional-order calculus framework was applied to the audio recon-
struction problem. By applying this model, the memory feature of fractionally integrated
models was linked to the instantaneous frequency estimate. We evaluated our results
using spectral convergence and PESQ measures. We achieved up to 4% improvements in
perceptually correlated PESQ measures for smaller overlaps and comparable results to the
benchmark. Additionally, when using outputs from SPSI and the proposed FDE-based
method, as well as random valued complex vectors, as initial values of three GLA-based
methods, the proposed FDE-based phase reconstruction method produces similar results
to the benchmark SPSI and substantially better results than random phase initialization on
iterative algorithms.
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