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Abstract: Quantum calculus (also known as the q-calculus) is a technique that is similar to traditional
calculus, but focuses on the concept of deriving q-analogous results without the use of the limits. In
this paper, we suggest and analyze some new q-iterative methods by using the q-analogue of the
Taylor’s series and the coupled system technique. In the domain of q-calculus, we determine the
convergence of our proposed q-algorithms. Numerical examples demonstrate that the new q-iterative
methods can generate solutions to the nonlinear equations with acceptable accuracy. These newly
established methods also exhibit predictability. Furthermore, an analogy is settled between the well
known classical methods and our proposed q-Iterative methods.

Keywords: Taylor’s series in q-calculus; iterative methods; convergence analysis; Daftardar-Gejji–
Jafari decomposition technique

1. Introduction

In most scientific and engineering applications, the problem of finding the solution
of nonlinear equations have become an active area of research. Many researchers have
explored various order iterative methods to find solutions of the nonlinear equations using
various techniques such as homotopy perturbation technique, variational iterative methods
and decomposition technique, for details, see [1–11]. Firstly, Traub [12] initiated the study
of the iterative methods for the solution of the nonlinear equations and introduced a basic
quadratic convergent Newton iterative method for the solution of the nonlinear equations,
which have much significance in the literature. Later on, in order to improve efficiency
and local order of convergence of the Newtons method, Cordero and Torregrosa [13],
Frontini and Sormani [14], Hasanov [15], Weerakoon and Fernando [16] and Ozban [17]
have presented different modifications of the Newton’s method using quadrature rules.
Daftardar-Gejji and Jafari [18] have used different modifications of Adomian decomposition
method [19] and suggested a simple technique that does not need derivative evaluation of
the Adomian polynomial, which is major advantage of using this technique over Adomian
decomposition method. Saqib and Iqbal [20] and Ali et al. [21,22] have used this decompo-
sition technique and developed a family of iterative methods with better efficiency and
convergence order for solving the nonlinear equations. This study shifts the paradigm of
determining higher order iterative methods for solving the nonlinear equations towards
the q-analogue of the iterative methods in the q-calculus.

In the last quarter of the 20th century, q-calculus appeared as an amalgamation of
mathematics and physics (see [23–29]), and much consideration has been given by many
researchers because of its wide range of applications in many fields of mathematics such
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as combinatorics, theory of relativity, mechanics, number theory and orthogonal polyno-
mials. Firstly, Jackson [30] introduced the q-Taylor’s formula. Then, Jing and Fan [31]
derived q-Taylor’s formula with its q-remainder by using the q-differentiation approach
and established results on the q-remainder in the q-Taylor’s formula. Ernest [32] presented
the four different q-Taylor’s formulas along with q integral remainder. Prashant et al. [33]
have used the q-Taylor’s formula and investigated the q-analogue of the iterative methods,
particularly the q-analogue of generalized Newton Raphson method and the q-analogue
of the Newton Raphson method for the solution of algebraic transcendental equations
and compared the accuracy of the results obtained by the classical methods. Many linear
and nonlinear models appearing in science and engineering problems can be modeled by
using the q differential equations. Jafari et al. [34] have adopted Daftardar decomposition
technique for solving the q difference equations and also determined the convergence of
the method.

In this study, we determine the q-analogue of the iterative methods proposed and
suggested by Noor and Noor [35] and Ullah et al. [36] with the help of the q-Taylor’s series
and decomposition technique [14].

Now, we recall some of the basic results in the area of the q-calculus [37] for 0 < q < 1
that will support the development of our proposed q-iterative methods for the solution of
the nonlinear equations.

Let q ∈(0,1) the q-integer be defined as:

[n]q = 1 + q + q2 + · · ·+ qn − 1 =
1− qn

1− q
for n = 1, 2, . . . (1)

[n]q = n for q = 1. (2)

For q factorial and for 0 ≤ k ≤ n, the q binomials are defined as:

[n]q! = [n]q[n− 1]q · · · [1]q [0]q! = 1,
[

n
k

]
q
=

[n]q!
[k]q![n− k]q!

. (3)

Definition 1 (see [37]). The q-derivative for real valued continuous function f (x) is defined
as follows

Dq(x) =
(

d
dx

)
q

f (x) =
f (qx)− f (x)

qx− x
, q 6= 1. (4)

When q → 1, then the q-derivative is reduced to the standard derivative. Furthermore, the
q-derivative can be represented as (Dq f )(x), and it is known as the Jackson Derivative. The higher
order q-derivative for the function f (x) is given as

D0
q f = f , Dn

q f = Dq
(

Dn−1
q
)

for n = 1, 2, 3, . . . . (5)

Definition 2 (see [37]). The q-derivative of product and quotient of function f (x) and g(x) is
defined as follows

Dq( f (x)g(x)) = g(x)Dq f (x) + f (qx)Dqg(x) = g(qx)Dq f (x) + f (x)Dqg(x),

Dq

(
f (x)
g(x)

)
=

g(x)Dq f (x)− f (x)Dqg(x)
g(qx)g(x)

such that g(x)g(qx) 6= 0.

Definition 3 (see [30–32]). Let f (x) be a continuous function on some interval (a, b) and c ∈[a,b]
then Jackson q-Taylor’s formula is given as:

f (x) =
∞

∑
k=1

Dk
q(x− c)k

[k]!
(
∀ x ∈ (a, b)

)
, (6)
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where,

(x− c)0 = 1, (x− c)k =
k−1

∏
i=0

(x− cq)i, k ∈ N, (7)

where 0 < q < 1 and Dq, D2
q , . . . are all q-derivatives.

The rest of this article is organized as follows: in Section 2, the structures of the q-
iterative methods will be designed by proposing the Lists A–C. In Section 3, we deal with
the convergence analysis of the proposed q-iterative methods, and it is established that
these methods have the same order of convergence as the classical methods for q = 1. In
Section 4, we present some of the examples to check the efficacy and performance of these
methods. Furthermore, the comparisons of the results obtained by q-iterative methods with
the previously known iterative methods will be discussed in the same section. Section 5
explores a general form of the q-iterative method based on the proposed iterative methods.
Finally, the findings of our article are given in Section 6.

2. Construction of the q-Iterative Methods

In this section, some new different order multi-step q-iterative methods are con-
structed by considering the Taylor’s series in the q-calculus. Here, we consider the
nonlinear equation

f (x) = 0 (∀ x ∈ R). (8)

Suppose that α is the root of Equation (8) and λ is an initial guess in the neighborhood
of α. By the same technique used in [28], we rewrite the nonlinear Equation (8) as the
coupled system of equations by using the Taylor’s series in the neighborhood of λ in the
q-calculus:

f (λ) + (x− λ)Dq f (λ) + G(x)= 0, (9)

G(x) = f (x)− f (λ)− (x− λ)Dq f (λ). (10)

Since f (x) = 0, the relation (10) can be written as:

x = λ− f (λ)
Dq f (λ)

− G(x)
Dq f (λ)

, (11)

x = c + Mq(x), (12)

where

c := λ− f (λ)
Dq f (λ)

, (13)

and

Mq(x) := − G(x)
Dq f (λ)

(14)

is a nonlinear operator and c is treated as constant.
It is noted that if we consider x0 as an initial guess, then from (10), we have

f (x0) = G(x0). (15)

It is wort mentioning that Equation (15) plays a very significant role in the develop-
ment of new multi-step q-iterative methods. Now, we establish a sequence of higher order
iterative methods implementing the decomposition technique presented by Daftardar-Gejji
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and Jafari [18]. The main idea behind the implementation of this technique is to find out
the solution of q-type functional Equation (12) in terms of infinite series:

x =
∞

∑
i=0

xi. (16)

Now, we decompose the operator Mq(x) defined in (14), such as:

Mq(x) = Mq(x0) +
∞

∑
i=1

{
Mq

(
i

∑
j=0

xj

)
−Mq

(
i−1

∑
j=0

xj

)}
. (17)

From the Equations (12), (16) and (17), we have

∞

∑
i=1

xi = c + Mq(x0) +
∞

∑
i=1

{
Mq

(
i

∑
j=0

xj

)
−Mq

(
i−1

∑
j=0

xj

)}
, (18)

which generates the following iterative scheme

x0 = c,
x1 = Mq(x0),
x2 = Mq(x0 + x1)−Mq(x0),

...

xn+1 = Mq

(
∑n

j=0 xj

)
−Mq

(
∑n−1

j=0 xj

)
, n = 1, 2, . . . .

(19)

It follows that

x1 + x2 + · · ·+ xn+1 = Mq
(
x0 + x1 + x2 + · · ·+ xn

)
,

and

x = c +
∞

∑
i=1

xi. (20)

Theorem 1 (see [34]). If M is a contraction mapping, the defined series in (16) is absolutely
convergent.

Proof. If M is a contraction mapping, we see that∥∥Mq(x)−Mq(y)
∥∥ ≤ α‖x− y‖ 0 < α < 1, (21)

then in view of (19), we have

‖xn+1‖ =
∥∥Mq(x1 + x2 + ... + xn)−Mq(x1 + x2 + ... + xn−1)

∥∥ ≤ α‖xn‖ ≤ αn‖x0‖
n = 0, 1, 2, . . . .

So, the series x=∑∞
i=0 xi converges uniformly and absolutely to the solution of Equation (12)

(see [38]). It is noted that x is approximated by

Xn = x0 + x1 + x2 + · · ·+ xn,

and thus lim
x→∞

Xn = x.

This completes the proof.

Our iterative techniques proceed with the following algorithms:
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List A: From (19), we have for n = 0 :

x ≈ X0 = x0 = c = λ− f (λ)
Dq f (λ)

. (22)

This formulation suggests the following iterative scheme for solving the nonlin-
ear Equation (8). Now, for the given initial guess x0, the approximate solution is
computed by the iterative representation

xn+1 = xn −
f (xn)

Dq f (xn)
(23)

This represents the Newton’s method in the q-calculus which has quadratic conver-
gence. It is proved by Singh et al. [33].

By replacing the value of the q-derivative in (23), we have

xn+1 =xn −
f (xn)

f (qxn)− f (xn)
(q−1)xn

(24)

=xn −
(q− 1)xn f (xn)

f (qxn)− f (xn)
, n = 0, 1, . . . . (25)

This method resembles the method of secants (chords).

Now, with the help of (10) and (19), we get

x1 = Mq(x0) = −
G(x0)

Dq f (λ)
= − f (x0)

Dq f (λ)
. (26)

List B: From (19), we have for n = 1 :

x ≈ X1 = x0 + x1 = x0 + Mq(x0). (27)

By using (22) and (26), we have

x = λ− f (λ)
Dq f (λ))

− f (x0)

Dq f (λ)
. (28)

This formulation suggests the following iterative scheme for solving the nonlinear
Equation (8).

For the given initial guess x0, the approximate solution is computed by the following
iterative method:

yn = xn −
f (xn)

Dq f (xn)
, (29)

xn+1 = yn −
f (yn)

Dq f (xn)
, n = 0, 1, 2, . . . . (30)

This is q-analogue of Chun method [3], which has cubic convergence for q = 1.
The error term for this algorithm is computed in Theorem (2).
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By using (10), (19) and (26), we can obtain

x1 + x2 = Mq(x0 + x1) = −
G(x0 + x1)

Dq f (λ)

= −
f (x0 + x1)− f (λ)− (x0 + x1 − λ)Dq f (λ)

Dq f (λ)

= − f (x0 + x1)

Dq f (λ)
− f (x0)

Dq f (λ)
. (31)

List C: Again, from (19), we have for n = 2 :

x ≈ X2 = x0 + x1 + x2 = x0 + Mq(x0) + Mq(x0 + x1)−Mq(x0)

= c + Mq(x0 + x1). (32)

By using (22) and (31), we get

x = λ− f (λ)
Dq f (λ)

− f (x0)

Dq f (λ)
− f (x0 + x1)

Dq f (λ)
. (33)

This formulation allows us to suggest the following iterative method for solving the
nonlinear Equation (8).

For the given initial guess x0, the approximate solution is computed by the following
iterative method:

yn = xn −
f (xn)

Dq f (xn)
, (34)

zn = yn −
f (yn)

Dq f (xn)
, (35)

xn+1 = zn −
f (zn)

Dq f (xn)
, n = 0, 1, 2, . . . . (36)

This is q-analogue of convergent iterative method was investigated by Ullah et al. [36].
Furthermore, it has fourth order convergence for q = 1. The Error equation for this
algorithm is computed in Theorem (2).

3. Convergence Analysis

This section is comprised of the convergence analysis of the q-iterative methods
determined by Lists B and C in the previous section.

Theorem 2. Let I ⊂ R be an open interval and f : I → R be a differentiable function. If α ∈ I
is a simple root of f (x) = 0 and x0 is sufficiently close to α, then the convergence order of multi-
step methods determined by Lists B and C have convergence of the order at least three and four,
respectively, and we write it as [3; q] and [4; q], where q represents q-calculus. Furthermore, it
satisfies the error equations

en+1 = 2b2
2e3

n + (7b2b3 − 9b3
2)e

4
n + O(e5

n),

en+1 = 4b3
2e4

n + (20b3b2
2 − 26b4

2)e
5
n + O(e6

n).
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Proof. Expanding f (xn) and Dq f (xn) in terms of q-Taylor’s series about α to get

f (xn) =Dq f (α)en +
1
[2]!

D2
q f (α)e2

n +
1
[3]!

D3
q f (α)e3

n + · · · , (37)

f (xn) =Dq f (α)
{

en + b2e2
n + b3e3

n + b4e4
n + · · ·

}
, (38)

Dq f (xn) = Dq f (α)
{

1 + 2b2en + 3b3e2
n + 4b4e3

n + · · ·
}

, (39)

where

bm =
Dm

q f (α)
[m]!Dq f (α)

for m = 2, 3, . . . and en = xn − α. (40)

In view of the Equations (38) and (39), we get

f (xn)

Dq f (xn)
= en − b2e2

n −
(

2b3 − 2b2
2

)
e3

n + O
(

e4
n

)
. (41)

Now, by substituting (41) into (29), we get

yn = xn −
fq(xn)

Dq f (xn)
= α + b2e2

n +
(

2b3 − 2b2
2

)
e3

n + O
(

e4
n

)
. (42)

Expanding f (yn) in terms of Taylor’s series about α to get

f (yn) = Dq f (α)
{

b2e2
n +

(
2b3 − 2b2

2

)
e3

n +
(

3b4 − 7b2b3 + 5b3
2

)
e4

n + O
(

e5
n

)}
. (43)

From (39) and (43), we have

f (yn)

Dq f (xn)
= b2e2

n + (2b3 − 4b2
2)e

3
n + (3b4 − 14b2b3 + 13b3

2)e
4
n + O(e5

n). (44)

By applying (42) and (44) into (30), we get the error term of the List B:

xn+1 = α + 2b2
2e3

n +
(

7b2b3 − 9b3
2

)
e4

n + O
(

e5
n

)
,

en+1 = 2b2
2e3

n +
(

7b2b3 − 9b3
2

)
e4

n + O
(

e5
n

)
,

zn = α + 2b2
2e3

n +
(

7b2b3 − 9b3
2

)
e4

n + O
(

e5
n

)
. (45)

Expanding f (zn) in terms of Taylor’s series about α to get

f (zn) = Dq f (α)
{

2b2
2e3

n +
(

7b2b3 − 9b3
2

)
e4

n

+
(

10b2b4 + 6c2
3 − 44b3b2

2 + 30b4
2

)
e5

n + O
(

e6
n

)}
. (46)

By the help of (39) and (46), we can deduce

f (zn)

Dq f (xn)
= 2b2

2e3
n +

(
7b2b3 − 13b3

2

)
e4

n

+
(

10b2b4 + 6b2
3 − 64b3b2

2 + 56b4
2

)
e5

n + O
(

e6
n

)
. (47)
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By applying (45) and (47) into (34), we get the error term of the List C:

xn+1 = α + 4b3
2e4

n +
(

20b3b2
2 − 26b4

2

)
e5

n + O
(

e6
n

)
, (48)

en+1 = 4b3
2e4

n +
(

20b3b2
2 − 26b4

2

)
e5

n + O(e6
n). (49)

This completes the proof.

4. Numerical Examples and Comparison Results

This section elaborates on the efficacy of algorithms introduced in this paper with the
support of examples. All the numerical experiments are performed with Intel (R) Core
[TM] 2 × 2.1 GHz, 12 GB of RAM, and all the codes are written in Maple. We use ε = 10−15

and obtain an approximated simple root rather than the exact based on the exactness ε of
the computer.

For the computational work, we use the following stopping criteria:

(i)|xn+1 − xn| < ε and (ii)| f (xn+1)| < ε (50)

Abbreviation CAG is used for classical iterative method and QAG for the q-analogue
of classical iterative method, and term div is used for divergence of method.

Recall the classical List 2.2 in [35] (CAG1), defined by

yn = xn −
f (xn)

f ′(xn)
and xn+1 = yn −

f (yn)

f ′(xn)
(∀ n = 0, 1, 2, . . .).

and the classical List 2.3 in [36] (CAG2), defined by

yn = xn −
f (xn)

f ′(xn)
,

zn = yn −
f (yn)

f ′(xn)
,

xn+1 = zn −
f (zn)

f ′(xn)
, for n = 0, 1, 2, . . . .

For simplicity, we denote the iterative Lists B and C by QAG1 and QAG2, respectively.
The computational results are presented in Tables 1–6 to elaborate the performance and
efficacy of our q iterative methods that is the main motivation of transformation of the
classical methods towards the q-iterative methods.

For simplicity, initially in Examples 1–3, we check the performance of q-iterative
methods with the classical methods for different values of q up to three iterations. Similarly,
we can check the performance of the q-iterative methods for the different values of q for
the rest of the iterations until we achieve the desired accuracy.

Example 1 (see [3]). We consider the nonlinear equation:

f (x) = xex2 − sin2 x + 3 cos x + 5. (51)

The exact solution for this example is x = 1.207647827130919. We take x0 = −2 as
an initial guess. Table 1 shows the computation of xi and f (xi) for i = 1, 2, 3 and different
values of q by using QAG1.
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Table 1. Calculation of xi and f (xi) for i = 1, 2, 3 and different values of q by using QAG1.

q x1 f (x1) x2 f (x2) x3 f (x3)

1.02 1.7250206931 3.025329e+01 1.4474835253 7.379764e+00 1.2518646781 9.612675e-01

1.01 1.7146118692 2.883931e+01 1.4305859139 6.635881e+00 1.2420681659 7.368529e-01

0.9999 1.7039972727 2.746138e+01 1.4138444432 5.942719e+00 1.2336242968 5.488326e-01

0.98 1.6827973761 2.489016e+01 1.3819710496 4.732768e+00 1.2210048207 2.767866e-01

0.97 1.6720053179 2.366777e+01 1.3665877297 4.195734e+00 1.2164975903 1.821333e-01

0.99 1.6934971518 2.615875e+01 1.3977906174 5.316156e+00 1.2267061933 3.983936e-01

0.96 1.6611219970 2.249026e+01 1.3516779288 3.701888e+00 1.2130682867 1.109783e-01

0.95 1.6501477370 2.135624e+01 1.3372782267 3.248313e+00 1.2105873872 5.995948e-02

0.9 1.5938858602 1.628822e+01 1.2741571956 1.498487e+00 1.2074940697 3.121695e-03

0.8 1.4737314129 8.631573e+00 1.2037818654 7.805411e-02 1.2070782899 1.155594e-02

0.7 1.3426598641 3.415231e+00 1.2098745341 4.537035e-02 1.2083400493 1.407187e-02

0.6 1.2021358529 1.110139e-01 1.2043272420 6.709762e-02 1.2056858306 3.972595e-02

0.5 1.0551639918 2.509831e+00 0.8000270036 5.058134e+00 5.3921025287 2.284390e+13

0.4 1.2618215234 1.196531e+00 1.2449990477 8.032748e-01 1.2395189569 6.795706e-01

Proceeding in the way of Table 1, we get x = 1.2076478271 for different values of q,
which is the required solution. One can observe from Table 1 that more accurate values
of xis can be obtained when q approaches towards one and for which f (xi) tend towards
zero. The values of f (x1) = 2.746138e + 01, f (x2) = 5.942719e + 00, f (x3) = 5.488326e −
01 calculated by QAG1 at q = 0.9999 are closer to zero as compared to the values f (x1)
= 2.747477e + 01, f (x2) = 5.949309e + 00, f (x3) = 5.505169e − 01 calculated by CAG1.
Furthermore, Equation (51) converges towards the root x5 = 1.2076478271 for q = 0.9999
and f (x) = 4.435401e − 12. Table 2 shows the computation of xi and f (xi) for i = 1, 2, 3 for
different values of q by using the List C (QAG2).

Table 2. Calculation of xi and f (xi) for i = 1, 2, 3 and different values of q by using QAG2.

q x1 f (x1) x2 f (x2) x3 f (x3)

1.02 1.6694991316 2.339181e+01 1.3531960626 3.751021e+00 1.2127490200 1.043912e-01

1.01 1.6589604001 2.226275e+01 1.3391400100 3.305714e+00 1.2107771567 6.384855e-02

0.9999 1.6483076255 2.117115e+01 1.3256085221 2.896627e+00 1.2094270195 3.622758e-02

0.99 1.6378605159 2.014678e+01 1.3130192725 2.532342e+00 1.2085807901 1.897265e-02

0.98 1.6273047549 1.915594e+01 1.3010027394 2.198535e+00 1.2080737484 8.654896e-03

0.97 1.6167470984 1.820720e+01 1.2897082127 1.896564e+00 1.2078048652 3.189788e-03

0.96 1.6061879189 1.729859e+01 1.2791506509 1.624142e+00 1.2076848052 7.509703e-04

0.95 1.5956267820 1.642815e+01 1.2693411891 1.379186e+00 1.2076465297 2.634743e-05

0.9 1.5427300899 1.258434e+01 1.2316217651 5.049568e-01 1.2076068661 8.317613e-04

0.8 1.4351491676 6.832250e+00 1.2061294870 3.076338e-02 1.2077295521 1.659826e-03

0.7 1.3223454750 2.800732e+00 1.2066348770 2.053914e-02 1.2078327767 3.756890e-03

0.6 1.2029703471 9.432425e-02 1.2097943109 4.373048e-02 1.2067390111 1.843054e-02

0.5 1.0780919174 2.195871e+00 1.4172230345 6.079244e+00 1.2081162362 9.518872e-03

0.4 0.9495337533 3.745734e+00 0.5641997450 6.473432e+00 div div
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Proceeding in the way of Table 2, we get the required solution x = 1.2076478271.
From Table 2, we see that if q approaches one, we can obtain more accurate values of xis
for which f (xi)s tends towards zero, where i = 1, 2, 3. It is also observe that the values of
f (x1) = 2.117115e + 01, f (x2) = 2.896627e + 00, f (x3) = 3.622758e − 02 at q = 0.9999 calcu-
lated by QAG2 are closer to zero as compared to the values of f (x1) = 2.118172e + 01, f (x2)
= 2.900487e + 00, f (x3) = 3.644647e − 02 calculated by CAG2. Furthermore, Equation (51)
converges to the root x5 = 1.2076478271 for q = 0.9999 and f (x) = 1.424874e − 20.

Example 2 (see [39] (Population growth model)). Consider the nonlinear equation

1564000 = 1000000 eλ +
435000

λ

(
eλ − 1

)
. (52)

This equation appears in the mathematical modeling of the growth of population over short pe-
riods of time, where λ denotes the constant birth rate of population whose value needs to determined.

For computational work, we take x0 = 1.5 as an initial estimate. The solution of this example
approximated to 16 decimal digits is 0.1009979296857498. In Table 3, we compute the values of
x1, x2, x3 and f (x1), f (x2), f (x3) for different values of q by using QAG1.

Table 3. The computed values of xi and f (xi) for i = 1, 2, 3 and different values of q by using QAG1.

q x1 f (x1) x2 f (x2) x3 f (x3)

1.02 0.5142791696 6.772056e+05 0.1232018298 3.004429e+04 0.1010035073 7.468324e+00

1.01 0.5097137812 6.681808e+05 0.1222121457 2.869170e+04 0.1010024505 6.053356e+00

0.9999 0.5051056237 6.591112e+05 0.1212441701 2.736999e+04 0.1010015437 4.839200e+00

0.99 0.5005916534 6.502654e+05 0.1203256645 2.611695e+04 0.1010007932 3.834194e+00

0.98 0.4960351599 6.413748e+05 0.1194278075 2.489313e+04 0.1010001573 2.982748e+00

0.97 0.4914818733 6.325288e+05 0.1185594952 2.371057e+04 0.1009996292 2.275633e+00

0.96 0.4869319106 6.237276e+05 0.1177201915 2.256843e+04 0.1009991952 1.694573e+00

0.95 0.4823853861 6.149710e+05 0.1169093583 2.146590e+04 0.1009988432 1.223128e+00

0.9 0.4597081677 5.718559e+05 0.1132633228 1.651858e+04 0.1009979633 4.506777e-02

0.8 0.4146701230 4.889359e+05 0.1077950521 9.130505e+03 0.1009981060 2.360760e-01

0.7 0.3701214518 4.103351e+05 0.1043132261 4.446092e+03 0.1009984405 6.839589e-01

0.6 0.3261190990 3.358939e+05 0.1023101377 1.758120e+03 0.1009983768 5.987359e-01

0.5 0.2826923050 2.654100e+05 0.1013283547 4.425044e+02 0.1009981173 2.511882e-01

0.4 0.2398433266 1.986490e+05 0.1009777753 2.698620e+01 0.1009979129 2.244417e-02

Proceeding as the way of Table 3, we get the required solution x = 0.1009979296857498. From
Table 3, It can easily observe that we obtain more accurate values of x1, x2, x3 when q approaches
one and for which f (x1), f (x2), f (x3) tend towards zero. The values of f (x1) = 6.591112e + 05,
f (x2) = 2.736999e + 04, f (x3) = 4.839200e + 00 at q = 0.9999 computed by QAG1 are closer
to zero as compared to the other values of f (x1) = 6.592007e + 05, f (x2) = 2.738286e + 04,
f (x3) = 4.850247e + 00 computed by CAG1. Furthermore, Equation (52) converges towards the
root x5 = 0.1009979297 in the fifth iteration for q = 0.9999 and f (x5) = 4.545278e − 22.

Meantime, in Table 4, we compute the values of x1, x2, x3 and f (x1), f (x2), f (x3) for different
values of q by using QAG2.
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Table 4. The computed values of xi and f (xi) for i = 1, 2, 3 and different values of q by using QAG2.

q x1 f (x1) x2 f (x2) x3 f (x3)

1.02 0.3836245813 4.338095e+05 0.1028722679 2.511938e+03 0.1009979297 3.473304e-05

1.01 0.3798572173 4.272299e+05 0.1027414335 2.336453e+03 0.1009979297 1.377622e-05

0.9999 0.3760675536 4.206350e+05 0.1026168764 2.169407e+03 0.1009979297 3.799508e-06

0.99 0.3723680428 4.142198e+05 0.1025018597 2.015174e+03 0.1009979297 3.969817e-07

0.98 0.3686464634 4.077891e+05 0.1023924737 1.868507e+03 0.1009979297 7.033782e-08

0.97 0.3649403724 4.014077e+05 0.1022896062 1.730594e+03 0.1009979297 7.550798e-08

0.96 0.3612498787 3.950754e+05 0.1021929573 1.601031e+03 0.1009979297 1.396345e-06

0.95 0.3575750888 3.887920e+05 0.1021022363 1.479425e+03 0.1009979297 5.200839e-06

0.9 0.3394402376 3.581029e+05 0.1017280112 9.779077e+02 0.1009979296 7.367781e-05

0.8 0.3044020340 3.002834e+05 0.1012821950 3.806792e+02 0.1009979295 3.115139e-04

0.7 0.2710667500 2.470282e+05 0.1010864659 1.185540e+02 0.1009979294 3.461354e-04

0.6 0.2394852751 1.981025e+05 0.1010160263 2.423142e+01 0.1009979296 1.702203e-04

0.5 0.2096843622 1.532571e+05 0.1009984548 7.031754e-01 0.1009979297 9.707395e-06

We can observe from Table 4 that we get more accurate values of x1, x2, x3 when q ap-
proaches one and for which f (x1), f (x2), f (x3) tend towards zero. In addition, the values of
f (x1) = 4.206350e + 05, f (x2) = 2.169407e + 03, f (x3) = 3.799508e − 06 calculated by
QAG2 at q = 0.9999 are closer to zero as compared to the values f (x1) = 4.207000e + 05,
f (x2) = 2.171013e + 03, f (x3) = 3.859455e− 06 calculated by CAG2. Furthermore, Equation (52)
converges towards the root x4 = 0.1009979296857498 in the fourth iteration for q = 0.9999 and
f (x) = 4.103556e − 22.

Example 3 (see [40]). Consider the van der Waal’s equation

f (x) = 0.986x3 − 5.181x2 + 9.067x− 5.289. (53)

This equation is used to interpret the real and ideal gas behavior that has been converted to
the non-linear form after choosing the appropriate values of the parameters. Its exact solution is
x = 1.92984624284786221849. Here, we take x0 = 3.10.

Table 5. The calculated values of xi and f (xi) for i = 1, 2, 3 and different values of q by using QAG1.

q x1 f (x1) x2 f (x2) x3 f (x3)

0.9999 2.5202589147 4.378340e-01 2.1949546968 7.835843e-02 2.0201748257 1.283785e-02

0.99 2.5115105320 4.227815e-01 2.1831373107 7.175670e-02 2.0087578377 1.058966e-02

0.98 2.5025058715 4.076474e-01 2.1709804383 6.533731e-02 1.9971609647 8.509070e-03

0.97 2.4933259775 3.925895e-01 2.1585882787 5.917107e-02 1.9855208132 6.617240e-03

0.95 2.4744109780 3.627241e-01 2.1330269816 4.760752e-02 1.9622425575 3.387207e-03

0.9 2.4234483030 2.897601e-01 2.0632626947 2.326221e-02 1.9080108794 1.646041e-03

0.8 2.2993595203 1.537076e-01 1.8634563691 3.701777e-03 1.9049539739 1.839852e-03

0.7 2.1233417817 4.361666e-02 1.7302041526 4.077219e-03 1.7584545862 4.282942e-03

0.6 1.8638867517 3.689049e-03 1.8851091208 2.899285e-03 1.9024486639 1.992358e-03

0.5 1.5633390425 9.364898e-03 1.5791722007 7.962836e-03 1.5931768979 1.567623e-03

0.4 1.3893319818 4.831340e-02 1.4342000910 3.331323e-02 1.4679207997 2.455640e-02
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By proceeding as the above table, we can obtain the required solution x = 1.9298462428.
From Table 5, we can observe that we get more accurate values of x1, x2, x3 for which f (x1), f (x2),
f (x3) tend towards zero when q approaches one. The values of f (x1) = 4.378340e − 01,
f (x2) = 7.835843e − 02, f (x3) = 1.283785e − 02 at q = 0.9999 computed by QAG1 are
closer to zero as compared to the values of f (x1) = 4.379863e − 01, f (x2) = 7.842636e − 0,
f (x3) = 1.286153e − 02 computed by CAG1. Furthermore, Equation (53) converges towards the root
x7 = 1.92984624284786221850 in the seventh iteration for q = 0.9999 and f (x) = 3.081547e − 18.

Table 6. The calculated values of xi and f (xi) for i = 1, 2, 3 and different values of q by using QAG2.

q x1 f (x1) x2 f (x2) x3 f (x3)

1.02 2.4541906439 3.324888e-01 2.1294971623 4.612880e-02 1.9793132558 5.685628e-03

1.01 2.4465460254 3.215032e-01 2.1199949026 4.228580e-02 1.9716511617 4.607177e-03

0.9999 2.4387247327 3.105124e-01 2.1103029536 3.856881e-02 1.9641322014 3.623214e-03

0.99 2.4309573266 2.998435e-01 2.1007067436 3.508499e-02 1.9570428610 2.760648e-03

0.98 2.4230062579 2.891735e-01 2.0909118772 3.172520e-02 1.9502501877 1.991531e-03

0.97 2.4149452314 2.786122e-01 2.0810081426 2.852389e-02 1.9439396580 1.325652e-03

0.96 2.4067694211 2.681611e-01 2.0709868209 2.547916e-02 1.9382576782 7.649241e-04

0.95 2.3984733326 2.578211e-01 2.0608364625 2.258868e-02 1.9333949804 3.134112e-04

0.9 2.3549374981 2.077991e-01 2.0074163967 1.033870e-02 1.9308693710 8.898415e-05

0.8 2.2524565779 1.158895e-01 1.8514430978 4.009256e-03 1.9336672846 3.380165e-04

0.7 2.1059949469 3.698096e-02 1.8046133598 4.487988e-03 1.8679147777 3.563896e-03

0.6 1.8657872051 3.631368e-03 1.8953688005 2.393342e-03 1.9150164412 1.168978e-03

0.5 1.5693521850 8.800824e-03 1.5911971423 7.070040e-03 1.6098711773 5.951690e-03

0.4 1.4247737346 3.613315e-02 1.4748490103 2.300092e-02 1.5105345877 1.619046e-02

The computational results obtained from Table 6 illustrate the accuracy of the values of
x1, x2, x3 when q approaches one and for which f (x1), f (x2), f (x3) tend towards zero. Moreover,
the values of f (x1) = 3.105124e − 01, f (x2) = 3.856881e − 02, f (x3) = 3.623214e − 03 at
q = 0.9999 computed by QAG2, are closer to zero as compared to f (x1) = 3.106207e − 01,
f (x2) = 3.860481e − 02, f (x3) = 3.632441e− 03 computed by CAG2. Furthermore, Equation (53)
converges towards the root x6 = 1.92984624284786221849 in the sixth iteration for q = 0.9999 and
f (x) = 2.935505e − 21.

4.1. Error Analysis and Application of the q-Iterative Methods

Error is considered as the difference between a true value and an estimate (see [39]),
or an approximation, it can easily be observed from the numerical values that if we compute
the errors of q-iterative methods than they fluctuate for different values of q. The error
decreases when q approaches to the extreme values between 0 and 1. In view of this
result, the q-iterative methods are calculated for a large value of q = 0.99999, which will
approximate the ordinary iterative methods.
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List B (QAG1)

Nonlinear equation True Solution Approximate solution at q = 0.9999 Error

Equation (51) 1.20764782713091892701 1.20764782713091892700 7.187741e-21
Equation (52) 0.10099792968574978895 0.10099792968574978895 3.394397e-28
Equation (53) 1.92984624284786221849 1.92984624284786218283 3.565288e-17

List C (QAG2)

Nonlinear equation True Solution Approximate solution at q = 0.9999 Error

Equation (51) 1.20764782713091892701 1.20764782713091892701 7.016521e-22
Equation (52) 0.10099792968574978895 0.10099792968574978895 3.064831e-28
Equation (53) 1.92984624284786221849 1.92984624284786221845 3.396321e-20

4.2. Comparison of the Classical and q-Analogue of Iterative Methods

Here, we check the robustness and efficiency of our new iterative methods by consid-
ering some of the nonlinear equations. Furthermore, we compare the standard Newton’s
method (NM), fourth order Chun method (CM) (see [3]), CAG1 and CAG2 with our new
iterative methods QAG1 and QAG2. In Table 7, we display the number of iterations (IT),
the approximate root xn, the value f (xn) and δ be the distance between two successive
estimations. It is important to mention that in order to get better computational results of
the q-iterative methods, we take the value of q = 0.9999.

f1(x) = xex2 − sin2 x + 3 cos(x) + 5,

f2(x) = 0.1056885297x2 +

(
ex − e−x

2

)
− sin(x),

f3(x) = 0.986x3 − 5.181x2 + 9.067x− 5.289,

f4(x) = 1, 000, 000ex + 435, 000
(

ex − 1
x

)
− 1, 564, 000,

f5(x) = x3 + 4x2 − 10,

f6(x) = x2 − ex − 3x + 2,

f7(x) = x2 − (1− x)5,

f8(x) =
(

x3 − 9x2 + 24x− 20
)1/3

+ ex/2,

f9(x) = 3
√

x3 − 3x2 + log(x + 1).

Table 7. The methods and their IT, xn, f (xn) and δ.

f1(x) = xex2 − sin2 x + 3 cos x + 5, x0 = −2

Methods IT xn f (xn) δ = |xn − xn−1|

NM 8 1.2076478271309189 5.538944e-20 4.261204e-11
CM 6 1.2076478271309189 1.063857e-17 4.175854e-10
CAG1 6 1.2076478271309189 6.780624e-34 1.948602e-12
QAG1 5 1.2076478271309189 4.435401e-12 7.441078e-05
CAG2 5 1.2076478271309189 1.009799e-37 1.383883e-10
QAG2 5 1.2076478271309189 1.424874e-20 1.175311e-10

f2(x) = 0.1056885297x2 +
(

ex−e−x

2

)
− sin(x), x0 = −1.2

NM 9 0.3170617745729571 5.220965e-21 1.571531e-10
CM 7 0.3170617745729571 2.444123e-46 4.508430e-16
CAG1 6 0.3170617745729575 1.510838e-17 1.782637e-06
QAG1 6 0.3170617745730157 1.964445e-15 1.741348e-06
CAG2 5 0.3170617745729571 3.494619e-19 1.009576e-05
QAG2 5 0.3170617745729571 2.502232e-19 1.000084e-05
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Table 7. Cont.

f3(x) = 0.986x3 − 5.181x2 + 9.067x− 5.289, x0 = 3.10

NM 10 1.9298462428478622 1.815641e-25 5.866916e-13
CM 7 1.9298462428478621 6.121465e-18 2.408838e-09
CAG1 7 1.9298462428478622 1.803102e-28 3.036789e-10
QAG1 7 1.9298462428478622 3.081547e-18 2.566058e-11
CAG2 6 1.9298462428478622 7.761545e-40 5.605978e-11
QAG2 6 1.9298462428478622 2.935505e-21 2.073804e-11

f4(x) = 1, 000, 000ex + 435, 000
(

ex−1
x

)
− 1, 564, 000, x0 = 1.5

NM 7 0.1009979296857498 7.697779e-31 1.104193e-18
CM 6 0.1009979296857498 2.569791e-33 4.511244e-20
CAG1 5 0.1009979296857498 5.620211e-45 2.113407e-17
QAG1 5 0.1009979296857498 4.545278e-22 1.496790e-17
CAG2 4 0.1009979296857498 3.875494e-41 2.882365e-12
QAG2 4 0.1009979296857498 4.103556e-22 2.837594e-12

f5(x) = x3 + 4x2 − 10, x0 = 1

NM 5 1.2076478271309189 3.662513e-21 2.126976e-11
CM 41 1.2076478271309189 5.538944e-20 4.261204e-11
CAG1 4 1.3652300134140968 3.000665e-38 1.557777e-13
QAG1 4 1.3652300134140968 6.937438e-20 9.377190e-13
CAG2 3 1.3652300134140968 2.672414e-27 1.361253e-07
QAG2 3 1.3652300134140968 6.648073e-19 1.349188e-07

f6(x) = x2 − ex − 3x + 2, x0 = 2

NM 5 0.2575302854398608 3.439576e-27 9.869210e-14
CM 5 0.2575302854398608 9.348485e-20 3.638191e-10
CAG1 4 0.2575302854398608 1.218871e-41 5.694586e-14
QAG1 4 0.2575302854398608 9.378610e-25 4.284785e-14
CAG2 3 0.2575302854398608 9.720474e-29 2.979348e-07
QAG2 3 0.2575302854398608 1.658292e-23 2.973073e-07

f7(x) = x2 − (1− x)5, x0 = 0.9

NM 5 0.3459548158482420 6.819645e-17 6.158927e-09
CM 6 0.3459548158482420 4.839061e-22 1.160085e-11
CAG1 4 0.3459548158482420 9.410608e-42 1.327460e-14
QAG1 3 0.3459548158482420 7.943736e-17 1.736512e-05
CAG2 3 0.3459548158482420 1.606415e-38 2.055302e-10
QAG2 3 0.3459548158482420 1.855349e-23 1.990689e-10

f8(x) =
(
x3 − 9x2 + 24x− 20

)1/3
+ ex/2, x0 = 2

NM Fail
CM Fail
CAG1 Fail
QAG1 4 0.9694264485832326 2.465462e-15 7.651474e-06
CAG2 Fail
QAG2 4 0.9694264485832314 7.378707e-25 1.231459e-10

f9(x) = 3√x3 − 3x2 + log(x + 1), x0 = 3

NM Fail
CM Fail
CAG1 Fail
QAG1 6 2.6925176762621718 1.218786e-16 6.562094e-10
CAG2 Fail
QAG2 5 2.6925176762621717 3.027817e-17 4.453735e-07

Table 7 compares the solutions obtained by using the classical and our the q-iterative
methods. The results show that our q-analogue iterative methods QAG1 and QAG2 give the
same results as the classical methods CAG1 and CAG2. The functions f8(x), f9(x) are not
differentiable at x = 2 and x = 3, respectively, when we choose x = 2 and x = 3 as initial
guesses for f8(x) and f9(x), respectively. Then, the iterative methods: NM,CM,CAG1 and
CAG2 fail, while the new iterative methods QAG1 and QAG2 are applicable and give rapid
convergent results.
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Remark 1 (see [12]). The efficiency index is considered as P
1
m , where P represents the order of the

method and m is the total number of function evaluations per iteration necessary by the method.

• Efficiency index of CAG1 is 3
1
3 = 1.442250.

• Efficiency index of CAG2 is 4
1
4 = 1.414214.

• Efficiency index of QAG1 is 3
1
2 = 1.442250.

• Efficiency index of QAG2 is 4
1
4 = 1.414214.

We conclude that the efficiency indexes calculated by QAG1 and QAG2 are the same as those
calculated by CAG1 and CAG2.

5. Generalization of the Iterative Scheme in q-Calculus

In this section, based on our previous results, we determine the generalized q-iterative
scheme. By adding the values of xis′ (∀ i = 1, 2, . . . , n) in (19), we obtain

x1 + x2 + · · ·+ xn = x0 + Mq
(
x0 + x1 + · · ·+ xn−1

)
.

From (22), we have

x0 = λ− f (λ)
Dq f (λ)

,

x0 + x1 = x0 −
f (x0)

Dq f (λ)
= x0 + Mq(x0),

x = x0 + x1 + x2 = x0 + x1 −
f (x0 + x1)

Dq f (λ)
= x0 + Mq(x0 + x1).

Now, if x is approximated by

x = x0 + x1 + · · ·+ xn = x0 + Mq(x0 + x1 + · · ·+ xn−1)

x = x0 + x1 + · · ·+ xn−1 −
f (x0 + x1 + · · ·+ xn−1)

Dq f (λ)

x = x0 + x1 + · · ·+ xn = x0 + x1 + · · ·+ xn−1 −
f (x0 + x1 + · · ·+ xn−1)

Dq f (λ)
. (54)

Therefore, (54) gives the following iterative scheme:

xn = − f (x0 + x1 + · · ·+ xn−1)

Dq f (λ)
(∀ n = 1, 2, 3, . . .); (55)



x0 = λ− f (λ)
Dq f (λ) ,

x0 + x1 = x0 − f (x0)
Dq f (λ) ,

x0 + x1 + x2 = x0 + x1 − f (x0+x1)
Dq f (λ) ,

...

x0 + x1 + x2 + ... + xn−1 + xn = x0 + x1 + x2 + ... + xn−1 − f (x0+x1+x2+...+xn−1)
Dq f (λ) .
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This formulation allows us to suggest the following generalized q iterative method:

y0 = xm,

y1 = y0 − f (y0)
Dq f (y0)

,

y2 = y1 − f (y1)
Dq f (y0)

,

y3 = y2 − f (y2)
Dq f (y0)

,
...

yn+1 = yn − f (yn)
Dq f (y0)

,

xm+1 = yn+1.

The order of convergence of the iterative scheme is n + 2 for n = 0, 1, 2, . . . and the
number of functional evaluations is also n + 2 as well.

6. Conclusions

The main target of this article is to introduce novel algorithms for solution of the
nonlinear equations in the context of the q-calculus. The new algorithms are introduced
by using the Daftardar–Jafari decomposition technique. The comparison of these newly
established algorithms with the classical methods reflects that the proposed q-iterative
methods are reliable and best alternatives to the already known algorithms. The com-
putational results conclude that the q-analogue of the iterative methods for solving the
algebraic nonlinear equations generate the same results as the classical methods, but con-
vergence rate towards approaching the root is higher than convergence rate suggested
by the classical methods. Furthermore, the errors associated with the proposed methods
are comparatively lesser by the appropriately chosen value of q being close to one. The
difficulty in this method, which needs future investigation, is that we need to estimate the
value of q ∈ (0, 1).
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