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Abstract: Fractional-order chaotic oscillators (FOCOs) have shown more complexity than integer-
order chaotic ones. However, the majority of electronic implementations were performed using
embedded systems; compared to analog implementations, they require huge hardware resources to
approximate the solution of the fractional-order derivatives. In this manner, we propose the design of
FOCOs using fractional-order integrators based on operational transconductance amplifiers (OTAs).
The case study shows the implementation of FOCOs by cascading first-order OTA-based filters
designed with complementary metal-oxide-semiconductor (CMOS) technology. The OTAs have
programmable transconductance, and the robustness of the fractional-order integrator is verified by
performing process, voltage and temperature variations as well as Monte Carlo analyses for a CMOS
technology of 180 nm from the United Microelectronics Corporation. Finally, it is highlighted that
post-layout simulations are in good agreement with the simulations of the mathematical model of
the FOCO.

Keywords: fractional-order chaotic oscillator; fractional-order integrator; CMOS technology; active
filter; OTA; PVT analysis; Monte Carlo simulation

1. Introduction

It is well known that chaotic systems can occur in various natural and man-made
systems, and are known to have great sensitivity to initial conditions. On the one hand,
as already mentioned in [1], according to the Poincaré–Bendixson theorem, autonomous
and integer-order chaotic oscillators must have a minimum order of three for chaos to
appear. The three ordinary differential equations (ODEs) can be associated to state variables
that can be designed with complementary metal-oxide-semiconductor (CMOS) integrated
circuit (IC) technology, as was done in [2], from three decades ago. On the other hand,
fractional-order chaotic oscillators (FOCOs) do not follow the integer-order characteristic in
which the number of state variables define the order. For example, if a FOCO is modeled by
three ODEs and each derivate has a fractional-order equal to 0.9, then the fractional-order
of the system is 2.7.

In the time domain, the majority of FOCOs can be simulated by applying approx-
imations, such as Grüwnwald–Letnikov [3], Adams–Bashforth–Moulton and Adomian
decompositions [4,5]. Those algorithms were implemented using embedded systems, such
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as field-programmable gate arrays (FPGAs), but compared to analog solutions, they require
huge hardware resources. For example, field-programmable analog arrays (FPAAs) and
amplifiers were used to design FOCOs in [3,6], and fractional-order circuits were also
implemented by a constant phase element, as shown in [7]. The authors in [8] showed cryp-
tographic applications of a FOCO with high-effective analog computation, using amplifiers
and two anti-parallel semiconductor diodes to provide a hyperbolic sine nonlinearity.

Some examples of the analog and digital implementations of commensurate (all
derivatives have the same fractional order) or incommensurate (all or some derivatives
have different fractional order) FOCOs are given in [3]. In the analog domain, and from
a state-space point of view, the fractional-order derivative is solved by implementing
a fractional-order integrator that can be designed using discrete amplifiers or FPAAs.
The fractional-order integrator can be synthesized by fractances, fractal capacitors or other
fractional-order topologies, as summarized in [3,9]. However, recently, the authors in [10]
showed approximations of the fractional-order differentiator and integrator operators,
using standard active filter transfer functions. Some CMOS realizations were validated
via simulations, using CMOS technology of 350nm. More recently, a new category of
fractional-order filters, realized without employing a fractional-order Laplacian operator,
was introduced in [11], where the procedure resulted in a rational integer-order transfer
function, and its implementation was possible, using conventional integer-order realization
techniques. This is the focus of this work, following the design of FOCOs by cascading
active filters, as shown in [12].

The operational amplifier (opamp) is the universal device used to implement chaotic
systems [13], and hyper-chaotic [14], and multi-scroll attractors [15]. The voltage level of
opamp-based implementations of FOCOs can be scaled down to allow FPAA implementa-
tions [12] but still, the silicon area is huge. In this manner, and as already demonstrated
in [2], the CMOS operational transconductance amplifier (OTA) is helpful to reduce the
silicon area when designing chaotic systems. Other CMOS amplifiers that are useful
to design chaotic oscillators are summarized in [16], and others include the following:
voltage differencing transconductance amplifier (VDTA) [17], current backward transcon-
ductance amplifier (CBTA) [18], operational trans-resistance amplifier (OTRA) [19], second-
generation current conveyor (CCII), differential-input double-output transconductance
amplifier (DOTA+), and differential voltage current conveyor (DVCC) [20]. Among them,
the OTA shows advantages to develop cryptographic applications [21].

An incommensurate fractional-order Rössler system was implemented, using CMOS
OTAs in [22]. The CMOS OTA was also used to design the fractional-order Newton–Leipnik
chaotic system [23], and fractional-order neuron models [24,25]. In this manner, we show
the CMOS OTA-based design of a fractional-order integrator that is approximated by a
Laplace transfer function, as shown in [1]. The transfer function is synthesized herein by
designing CMOS OTA-based first-order active filters, and the robustness of the CMOS
FOCOs is verified by performing process, voltage and temperature (PVT) variations as
well as Monte Carlo (MC) analyses [26]. The design of FOCOs using CMOS technology
will improve applications in lightweight security [27], low-power and wireless secure
communications [3], and Internet of Things [28].

The rest of this paper is organized as follows: Two FOCOs are the case study and are
described in Section 2. Their block diagram descriptions in the Laplace domain and our
proposed OTA implementations of the fractional-order integrator and FOCOs are shown
in Section 3. Section 4 shows the design of OTAs, multiplier, saturated nonlinear function,
and fractional-order integrator, using CMOS technology of 180 nm from the United Micro-
electronics Corporation (UMC). The layout design and post-layout simulations are given in
Section 5, along with PVT and MC analyses to guarantee the robustness of the OTA-based
CMOS FOCOs. Finally, the conclusions are given in Section 6.
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2. Fractional-Order Chaotic Oscillators

Nowadays, fractional calculus is widely applied in many engineering areas; one of
them was highlighted in the topic of fractional-order circuits and systems [3,9], where the
main goal is the approximation of the fractional-order differentiator and integrator opera-
tors [10–12]. As emphasized in [29], the main advantage of fractional calculus is to extend
the differential operators such that they exhibit non-integers orders. For instance, according
to the Riemann–Liouville approach, the notion of a fractional integral of order α(α > 0) is a
natural consequence of the Cauchy formula defined in (1) for repeated integrals [30], where
the gamma function is given in (2). Introducing the Laplace transform by the notation
L{ f (t)} =

∫ ∞
0 e−st f (t)dt to (2), one can obtain (3), which is a generalization of the case

with n-fold repeated integrals (α = n).

0 Iα
t f (t) ,

1
Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ (1)

Γ(α) ,
∫ ∞

0
e−ttα−1dt (2)

L{0 Iα
t f (t)} = 1

sα
L{ f (t)} (3)

Taking advantage of the Laplace transform, this section describes two representative
FOCOs that are labeled as FOCO1 and FOCO2. FOCO1 is taken from [31]; its scaled model
in the Laplace domain, to allow the CMOS design, is given in (4), and it consists of three
state variables: X(s), Y(s), and Z(s), and one quadratic term x2. From these equations, it
can be appreciated that its implementation requires amplifiers, adders, subtractors, and one
multiplier to design the quadratic term. The derivatives have a fractional order equal to
0.9, and it generates chaotic behavior by setting a = 2.05, b = 1.12, and c = 0.42, and
using initial conditions equal to x0 = 0.1, y0 = z0 = 0. Figure 1 shows the portraits of
FOCO1, which are obtained by plotting the state variables among them to appreciate the
chaotic attractor.

s0.9X(s) = Y(s)
s0.9Y(s) = Z(s)
s0.9Z(s) = −aX(s)− bY(s)− cZ(s)− 3X(s) ∗ X(s)

(4)

Figure 1. Portraits of the chaotic attractors of FOCO1 given in (4). Each plot shows the attractor
among two or three state variables x, y, z.

The second case study FOCO2 has three derivatives of fractional-order 0.9 [32], and its
model is given in (5). It consists of three state variables—X(s), Y(s), and Z(s)—and a
nonlinear function denoted by f (x) that can be approximated by saturated nonlinear
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function (SNLF) series. From (5), one can observe that the design requires amplifiers,
adders, and subtractors, and the SNLF is manipulated to generate multi-scroll attractors.
For example, a two-scroll attractor can be implemented by modeling the SNLF by (6),
where m is the slope of the linear segment in the ranges −bp ≤ x ≤ bp, with bp as a
break-point, and the saturation level is given by k. It is simulated by setting a = b = c = d1
= 0.7, m = k/bp = 0.5/0.1 for f (x), and initial conditions x0 = y0 = z0 = 0.1. Figure 2
shows the portraits of FOCO2, which are obtained by plotting the state variables among
them to appreciate the chaotic attractor.

s0.9X(s) = Y(s)
s0.9Y(s) = Z(s)
s0.9Z(s) = −aX(s)− bY(s)− cZ(s) + d1 f (x)

(5)

f (x) =


−k if x < bp
mx if −bp ≤ x ≤ bp
k if x > bp

(6)

Figure 2. Portraits of the chaotic attractors of FOCO2 given by (5). Each plot shows the attractor
among two or three state variables x, y, z.

The amplitudes of the state variables of both FOCOs are lower than ±1, so they are
suitable to be implemented with CMOS technology of 180 nm from UMC, which is biased
by ±0.9 V.

3. Approximation of the Fractional-Order Integrator by OTA Filters

According to [1,3], the fractional-order integrator can be approximated by
H(s) = 1/s0.9, and therefore, Figure 3 shows the block diagrams of FOCO1 and FOCO2.
In this paper, the fractional-order is set to 0.9, whose approximated transfer function is
given in (7) [1]. The design of OTA-based active filter topologies can be performed by
using first-order functions, as already shown in [33]. Henceforth, the transfer function of a
fractional-order integrator H(s) can be arranged to multiply first-order functions as given
in (8). As one sees, H1(s) and H2(s) have one zero and one pole, and can be designed with
first-order shelving equalizers, while H3(s) can be designed by one low-pass filter.

H(s) =
1

s0.9 ≈
2.2675(s + 1.292)(s + 215.4)

(s + 0.01292)(s + 2.154)(s + 359.4)
(7)
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H1(s) =
s + 215.4
s + 359.4

H2(s) =
s + 1.292
s + 2.154

H3(s) =
2.2675

s + 0.01292

(8)

H(s) H(s) H(s)

a

b
c

Z(s) Y(s) X(s)

(a) FOCO1 can be synthesized by three fractional-
order integrators, amplifiers, one adder with 4 nega-
tive inputs, and one multiplier to evaluate X(s)*X(s)
from (4).

(b) FOCO2 can be synthesized by three fractional-
order integrators, amplifiers, one subtractor with 1
positive input and 3 negative inputs, and a SNLF
(placed after block d1).

Figure 3. Block diagrams of the FOCOs, where H(s) = 1/s0.9.

The first-order active filters are designed with the OTA-based topologies shown in
Figure 4. As highlighted in [33], the shelving equalizer can independently adjust the pole
and zero, and the transfer function from Figure 4a is given in (9), while that for the low-pass
filter shown in Figure 4b is given in (10).

gm1

gm2

C

Vo

Vi

(a) Shelving equalizer

gm1
C

gm2

Vi

Vo

(b) Low-pass filter

Figure 4. OTA-based first-order active filters taken from [33], to implement: (a) H1(s) and H2(s),
and (b) H3(s).

Vout

Vin
=

s + gm1/C
s + gm2/C

(9)

Vout

Vin
=

gm1/C
s + gm2/C

(10)

From (9) and H1(s), one can choose the value of gm1 to evaluate C and the resistance
generated by gm2. Therefore, if gm1 = 500 µA/V the capacitor value is obtained as

C =
gm1

215.4
= 2.32 µF. In this manner, gm2 = (2.32 µF)(359.4) = 833 µA/V. The same

process is performed to evaluate all the transconductances of the OTAs and Cs associated
to H2(s) and H3(s). For H2(s), gm1 = 500 µA/V, C = 386 µF, and gm2 = 833 µA/V.
For H3(s), gm1 = 500 µA/V, C = 221 µF, and gm2 = 2.93 µA/V.

Our proposed OTA implementation of the fractional-order integrator is shown in
Figure 5, where it is worth mentioning that the three first-order OTA filters are connected
in cascade, considering that the filter with the largest zero and largest pole is placed at the
input port, i.e., H1(s).
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gm2

gmr2

C2

gm3

gmr3

C3

Vi

Vo
gm1

C1

gmr1

Figure 5. Proposed OTA design of
1

s0.9 that is approximated by (7), and designed by cascading

H1(s)H2(s)H3(s).

The OTAs can be macro-modeled into the simulation program with IC emphasis
(SPICE). That way, from Figure 3a our proposed OTA implementation of FOCO1 is shown
in Figure 6, where H(s) is designed as shown in Figure 5. The HSPICE simulation of
FOCO1 is done by setting the transconductance values as follows: gma to gmh are ob-
tained to accomplish the values of the coefficients a = 2.05, b = 1.12 and c = 0.42 given
in (4). For instance, if gm1 = 500 µA/V, then gma must be 2.05 times gm1. The same
process is performed to obtain all the transconductance values so that gma = 1025 µA/V,
gmb = 560 µA/V, gmc = 210 µA/V and gmg = 3000 µA/V. gmh = 500 µA/V, and is used
to transform the sum of the output currents of each OTA into voltage.

The multiplier is implemented with the macro-model AD734. The simulation results
of our proposed OTA-based FOCO1 are shown in Figure 7.

From Figure 3b, our proposed OTA implementation of FOCO2 is shown in Figure 8,
where H(s) is designed as shown in Figure 5. The HSPICE simulation of FOCO2 is done
by setting gma = 350 µA/V, gmb = 350 µA/V, gmc = 350 µA/V, gmd = 350 µA/V and
gme = 1000 µA/V. The SNLF block is macro-modeled by a piecewise-linear (PWL) function
with breakpoints bp = 0.1 and k = 0.5. The simulation results of the OTA-based FOCO2
are shown in Figure 9.

Figure 6. Proposed OTA implementation of the FOCO1 given in (4).
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0.0
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 V(x)
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(V) : V(x)

V(y)

(a) Attractor between states x vs y

 
(
V

)

-1.0

-0.5

0.0
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 V(x)

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75

(V) : V(x)

V(z)

(b) Attractor between states x vs z

 
(
V

)

-1.0

-0.5

0.0
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 V(y)

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5

(V) : V(y)

V(z)

(c) Attractor between states y vs z

Figure 7. Portraits of the HSPICE simulation of FOCO1 from Figure 6.

Figure 8. Proposed OTA implementation of the FOCO2 given in (5).
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0.0

0.1
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 V(x)

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

(V) : V(x)
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(a) Attractor between states x vs y

 
(
V

)

-0.1

-50.0m

0.0

50.0m

0.1

 V(x)
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(V) : V(x)
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(b) Attractor between states x vs z

 
(
V

)

-0.1

-50.0m

0.0
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0.1

 V(y)

-0.2 -0.15 -0.1 -50.0m 0.0 50.0m 0.1 0.15

(V) : V(y)

V(z)

(c) Attractor between states y vs z

Figure 9. Portraits of the HSPICE simulation of FOCO2 from Figure 8.

4. CMOS Design of the OTAs, Multiplier, Nonlinear Function and
Fractional-Order Integrator

The CMOS design of FOCOs becomes a challenge, due to the high level of accuracy
required to accomplish the characteristics of the OTAs, the fractional-order integrator and
nonlinear functions to create the attractor. For instance, the OTAs require high differential
gain, high gain-bandwidth product, and the best linearity as possible [34]. In addition,
an OTA must be robust to PVT and Monte Carlo variations [35]. This section details the
design of the blocks required to implement the proposed OTA-based FOCO1 shown in
Figure 6 and FOCO2 shown in Figure 8, by using CMOS technology of 180 nm from UMC.

4.1. CMOS Operational Transconductance Amplifier (OTA)

The OTA that is required to implement a FOCO must provide high linearity to ac-
complish the characteristics of the fractional-order integrator. A slight variation in the
linearity may generate a fractional-order different from the desired one, and the response
of the FOCO may be mitigated or be different from the desired one. The linearity of
the OTA is characterized by its transconductance gm, which must be linear in the entire
dynamic range.

As for the FOCO1 the transconductances have values between 210 µA/V and
3000 µA/V, and since the range in which the gm of an OTA can be varied with the variable
resistors is only ±150 µA/V, then the variable resistors are mainly used to improve the
accuracy of the OTA. For this reason, this paper uses different sizes of the transistors and
the OTA with programmable gm shown in Figure 10, where the transconductance is tuned
by the resistors R connected in the sources of the differential pair. The Rs can be designed
with MOS transistors, as detailed in [36], and the bias of the flipped voltage-followers are
designed according to [37]. The sizes of the CMOS OTA, to provide a gm = 500 µA/V and
gm = 350 µA/V, are shown in Table 1 by using a load capacitor of CL = 220 pF. The table
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lists the direct current (DC) gain in decibels (dB), gain-bandwidth (GBW) in kilo hertz
(KHz), phase margin (PM) in degrees (◦), common-mode rejection ration (CMRR) in dB,
slew rate (SR) in volt/ µs, power supply rejection ratio (PSRR), power dissipation in milli-
watts, the small and large-signal figures of merit (FoM) from [35], the width (W) and length
(L) of the MOS transistors in micro-meters, and the bias current (Ib).

M3

CL

VDD

VSS

M1 M2

M5 M7

Vin- Vin+ Vout

M4 M6

M8

M9

M10

M11

M12

M13

M14

M15

Vbn
Vcn

Vcp Vcp

R R

Figure 10. CMOS OTA taken from [36].

To design both FOCOs, other transconductances (gm) are required. Table 1 shows the
sizes of the MOS transistors of two gm values, but for the complete design, seven gm values
are required, namely, 2 µA/V, 200 µA/V, 350 µA/V, 500 µA/V, 800 µA/V, 1000 µA/V,
and 3000 µA/V. These gms are obtained by designing the CMOS OTA with different bias
currents and voltage controls of the degenerated resistors that are implemented by MOS
transistors as shown in [36].

Table 1. Electrical characteristics and sizes of the CMOS OTA shown in Figure 10 to provide a
gm = 500 µA/V and gm = 350 µA/V.

Parameter gm = 500 u gm = 350 u

DC GAIN (dB) 61.232 61.125
GBW (KHz) 425 419

PM (◦) 88.96 88.943
CMRR (dB) 73 74
SR+ (v/µs) 0.098 0.095
SR- (v/µs) 0.106 0.105

PSRR+ (dB) 89 89
PSRR- (dB) 61 61

Power dissipation (mW) 3.19 3.18
FoMs 1856.8 1843.6
FoMl 431.2 418

W(M1,M2) (µm) 20.16 20.16
W(M3,M14,M15) (µm) 39.6 39.6
W(Mb,M12,M13) (µm) 19.8 19.8

W(M4-M9) (µm) 61.2 61.2
W(M10,M11)(µm) 122.4 122.4

L(µm) 1.8 1.8
Ib (µA) 50 50
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4.2. CMOS Multiplier Design

To evaluate X(s)*X(s) in Figure 6, the CMOS multiplier is designed by using the
topology shown in Figure 11. This CMOS circuit is a four-quadrant multiplier in which
both the input and output signals fluctuate among positive and negative values, and it was
introduced in [38].

M1
M2

M5 M6

M4
M3

M8M7

R1 R2

in1 in2

in3 in3

in4

VDD

VSS

out1
out2

Figure 11. Fully differential four-quadrant multiplier taken from [38].

The sizes of the MOS transistors are found by considering that they are operating
in the saturation region, as shown in [35]. The W/L ratios of all the MOS transistors
from M1 to M8 are equal to 1.44 µm/0.18 µm. The resistance values are calculated to be
R1 = R2 = 3 kΩ. The CMOS multiplier was tested with sinusoidal waveforms connected
in the differential inputs (Vin1 −Vin2) and (Vin3 −Vin4), with the differential output taken
as (Vout2−Vout1). The multiplication result is shown in Figure 12. This is worth mentioning
since a single-ended output is needed in Figure 6. Then, we propose the addition of an OTA
subtractor, as shown in Figure 13, to provide Vout = Vout2 − Vout1, where gma = gmb =
gmc = 500 µA/V.

Four-quadrant Multiplier

 t(s)

0.0 200u 400u 600u 800u 1.0m 1.2m 1.4m 1.6m 1.8m

 
(
P

a
r
a
m

s
)

-1.0

0.0

1.0

 
(
P

a
r
a
m

s
)

-1.0

-0.5

0.0

0.5

1.0

(Params) : t(s)

out(v_21)

(Params) : t(s)

in(v_12)

in(v_34)

Figure 12. Multiplication of two signals using the CMOS design from Figure 11.

Figure 13. Proposed single-ended multiplier combining the fully-differential multiplier shown in
Figure 11 and an OTA-subtractor.
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4.3. Saturated Nonlinear Function (SNLF) Design

In the case of FOCO2, it requires a SNLF block to design the PWL function shown
in Figure 3b, which has three linear segments. This SNLF can be designed by the CMOS
topology shown in Figure 14, which was proposed in [36]. This CMOS circuit presents
advantages, such as programmability of the slope m, saturation level k, and break-points
bp required in (6). The sizes of the MOS transistors are W = 1.35 µm for M1, M2, M3,
W = 6.3 µm for M4, and all the lengths are set to L = 0.18 µm.

Figure 14. CMOS design of the SNLF block taken from [36].

4.4. Proposed CMOS Fractional-Order Integrator

As shown in Figure 5, our proposed OTA design of the fractional-order integrator
1/s0.9 needs the design of the CMOS OTAs, whose transconductances are set to 500 µA/V,
800 µA/V and 2 µA/V. Table 1 shows the sizes of the OTA to provide a gm = 500 µA/V,
and Tables 2 and 3 show the W/L sizes of the OTAs to provide transconductances of
800 µA/V and 2 µA/V, respectively. The multiplicity value is necessary to design the
layout, as shown in [35,36].

Table 2. Sizes of the OTA shown in Figure 10 to provide a gm = 800 µA/V.

Transistor W(µm) L(µm) Multiplicity

M1, M2 5.04 1.8 4
M3, M14, M15 9.9 1.8 4
Mb, M12, M13 9.9 1.8 2

M4 −M9 30.6 1.8 2
M10, M11 30.6 1.8 4

Table 3. Sizes of the OTA shown in Figure 10 to provide a gm = 2 µA/V.

Transistor W(µm) L(µm) Multiplicity

M1, M2 1.26 1.8 4
M3 2.52 1.8 4

Mb, M4 −M11, M12 −M15 2.52 1.8 2

5. Layout Design and Post-Layout Simulation Results

The layout of the OTA with a gm = 500 µA/V is shown in Figure 15, which considers
electromigration and symmetry, and a maximum height is determined for the final layout
to implement the FOCOs in a reduced silicon area. The other OTAs, having different
gm values, are designed in a similar manner. So, the layout of our proposed OTA-based
fractional-order integrator is shown Figure 16, which consists of six OTAs (see Figure 5):
three OTAs having gm = 500 µA/V, two OTAs of gm = 800 µA/V and the last and smallest
(on the right side) having gm = 2 µA/V. The capacitors are set to: C1 = 2.5 µF, C2 = 380 µF
and C3 = 220 µF.
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Figure 15. Layout of the CMOS OTA providing gm = 500 µA/V.

Figure 16. Layout of our proposed OTA fractional-order integrator to approximate 1/s0.9.

The post-layout simulation of our proposed CMOS fractional-order integrator
H(s) = 1/s0.9, has very low error compared to the ideal transfer function in the MatLab-
evaluation from (7), compared to the OTA macro-model simulation from Figure 5, and
compared to the HSPICE simulation using MOS transistor models, as shown in Figure 17.
This guarantees exactness in the implementation of FOCOs.
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Figure 17. Comparison of the gain (up side) and phase margin (down side) responses of the fractional-
order integrator H(s) = 1/s0.9, considering the ideal transfer function approximation in MATLAB,
macro-modeling the OTAs, HSPICE simulation using MOS transistor models, and post-layout simulation.

It is important to mention that the initial values of the CMOS fractional-order integra-
tor, do have an effect on the power consumption. If the initial values are large, the power
consumption of the CMOS circuit increases since both the transient time and the voltage
on the capacitors increase. Using small initial values, the power consumption is 149.8 µW.

PVT variations analyses are performed to ensure robustness of the fractional-order
integrator response. For instance, Figure 18 shows the AC response under PVT variations.
Each of the five corners (typical–typical (TT), fast–fast (FF), slow–slow (SS), slowN–fastP
(SNFP) and fastN–slowP (FNSP)) is simulated by varying 10% of the supply voltage
and varying the temperature from −20◦, 60◦, to 120◦. The variability due to matching
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conditions of the MOS transistors is evaluated by performing Monte Carlo analysis for
1000 runs and assuming 10% deviation (with a Gaussian distribution) in W and L for
all the MOS transistors, whose results are given in Figure 19. This ensures robustness
of our proposed fractional-order integrator and demonstrates its suitability to design
CMOS FOCOs.
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Figure 18. Process–voltage–temperature (PVT) variation simulations of the CMOS fractional-order integrator shown in
Figure 16.

Figure 19. Monte Carlo simulation of our proposed CMOS fractional-order integrator shown in
Figure 16.
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The proposed OTA implementation of FOCO1 given in (4) is shown in Figure 6.
To save the CMOS silicon area, capacitors are scaled in frequency to have values in pF
instead of µF [39]. So, the capacitor values are scaled to become C1 = 2.5pF, C2 = 380pF
and C3 = 220pF. The layout of our proposed CMOS OTA-based FOCO1 is shown in
Figure 20, where it can be appreciated the layout of three fractional-order integrators on the
left side, and the remaining circuitry on the right side. Finally, the post-layout simulation of
FOCO1 is shown in Figure 21, which shows good agreement with the dynamical behavior
of its associated mathematical model shown in Figure 1.

Figure 20. Layout of our proposed CMOS OTA-based FOCO1 shown in Figure 6.
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Figure 21. Portraits of the post-layout simulation of our proposed CMOS OTA-based FOCO1.

6. Conclusions

It was shown that the fractional-order integrator, such as 1/s0.9, can be designed with
CMOS IC technology in order to design CMOS FOCOs. In this manner, we proposed the
CMOS design of the fractional-order integrator by cascading first-order active filter blocks
that were implemented by OTAs. The CMOS OTAs were designed with IC technology of
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180 nm from UMC; they allow programming of the transconductance gm. The robustness
of our proposed CMOS OTA-based fractional-order integrator was verified by performing
PVT and Monte Carlo analyses. The post-layout simulation results of the CMOS design of
FOCO1 were in good agreement with the mathematical model. One may use other CMOS
technologies and also different fractional-orders just by synthesizing the corresponding
Laplace transfer functions by cascading OTA-based first-order filters. As a conclusion, our
proposed designs demonstrated the usefulness of the CMOS fractional-order integrators
to design FOCOs that can be used to enhance applications in lightweight cryptography,
low-power and wireless secure communications and Internet of Things.
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