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Abstract: This work focuses on a kind of fractals Parrondo’s paradoxial phenomenon “deicon-
nected+diconnected=connected” in an alternated superior complex system zn+1 = β(z2

n + ci) + (1−
β)zn, i = 1, 2. On the one hand, the connectivity variation in superior Julia sets is explored by
analyzing the connectivity loci. On the other hand, we graphically investigate the position relation
between superior Mandelbrot set and the Connectivity Loci, which results in the conclusion that two
totally disconnected superior Julia sets can originate a new, connected, superior Julia set. Moreover,
we present some graphical examples obtained by the use of the escape-time algorithm and the
derived criteria.
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1. Introduction

The natural process has obvious discrete characteristics; therefore, discrete dynamical
systems are usually applied for the modeling of actual processes. On the other hand,
considering the complexity of nature, more and more attention has been made to the
alternate iteration method [1,2], which is more accurate in revealing the complex behaviors
in processes than a unique system.

In 1999, Parrondo et al. [3,4] proposed that two games with loosing gains can para-
doxically become a winning game. This classical “losing + losing = winning” phenomenon
was known as Parrondo’s paradox, which inspired a new research fever in physics and
mathematics areas [5,6] about the combination of two systems with negative expected
values. In this theory, the game was divided into process A and B. As the game goes
on, A actually changes the distribution of B branch, and the overall outcome changes.
By analyzing the trajectories of system states, Almeida et al. extended the paradox to the
chaos area and exposed the “chaos + chaos = order” phenomenon, which indicated that
two chaotic behaviours can reduce to order via alternate iteration.

It should be noted that fractals and chaos are two basic branches in nonlinear science
and, to some extent, are closely related to each other. Although the concept of fractal
was given in 1975 [7], its basic principle was put forward as early as 1918, when Gaston
Julia [8] firstly investigated a simple complex map zn+1 = z2

n + c, zn, c ∈ C. Aided by
computer technology, Mandelbrot [7] visualized the parameter area where the connected
Julia sets’ parameter c is located. In recent years, there has been much research surrounding
the properties of M-J sets [9–13], effects of noise disturbance [14–18] and related applica-
tions [17–22]. Meanwhile, a few researchers have also focused on the special fractal sets
generated from alternated complex maps, superior complex maps, hyper-complex systems,
etc. In addition, fractional mathematics is closely related to chaos and fractals. Fractional
systems are worth studying from the fractal perspective. In [23,24], researchers investigated
the citation profiles of researchers in fractional calculus, and proposed that the application
areas of fractional calculus contain the fractal concept. Based on the control theory and
method, Wang [25–27] investigates the Julia sets of a fractional Lotka–Volterra model and
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realizes its state feedback control. In [28], the numerical simulation of a Boussinesq equa-
tion with different fractal dimension and fractional order is carried out. The results show
that the correlation model is suitable for groundwater flow in fractured media.

In the various research on fractals, connectivity is one of the most basic and important
branches. In physics, Wang indicated that the connectivity of Julia sets can be used to
describe particle velocity [20,21]. In biology, Mojica proposed that the cells differentiating
real organisms are similar in some features of connected Julia sets [29]. Based on the
two-dimensional predator–prey model, Sun et al. applied Julia sets to represent the
origin area to ensure the coexistence of two populations. The authors presented that
the connectivity of such an origin area is important for the stability of populations [22].
The connectivity investigations mentioned above were mainly concentrated on the Julia
sets from a single map. For alternate cases, Danca [1,2] illustrated, in the graphical results,
that the connectivity properties have many forms, including connected, disconnected and
totally disconnected. Further, Wang [30] compared the connectivity of an alternate iteration
Julia set with their original separated Julia sets and gave a preliminary study on the fractals
Parrondo’s phenomenon of the classical alternate system.

Recently, some of the fractals studies concentrate on Julia sets generated by a more
complicated iteration scheme.

For instance, Mandelbrot and Julia sets generated by using the Picard–Mann itera-
tion procedure were intriduced in [31]. Based on the Jungck-CR iteration process with
s-convexity, authors proved new escape criteria for the generation of Mandelbrot and
Julia sets and presented some graphical examples obtained by the use of an escape time
algorithm and the derived criteria in [32]. In [33], the authors investigated the biomorphs
for certain polynomials by using a more general iteration method and examined their
graphical behaviour with respect to the variation in parameters. In [34], the authors adjust
algorithms according to the developed conditions and draw some attractive Julia and Man-
delbrot sets with iterate sequences from proposed fixed-point iterative methods. Moreover,
some results about superior M-J sets was presented by Rani in [13,35]. Further, Rani and
Yadav [36] alternated two maps of quadratic family zn+1 = β(z2

n + ci) + (1− β)zn, i = 1, 2
in superior orbit, and indicated that alternate superior Julia sets also show three connec-
tivities: connected, disconnected and totally disconnected. The effects of the superior
Mandelbrot set were searched by a new noise criterion in [37]. In [38], researchers found
that the superior Julia set showed a higher stability in certain high intensities, and discussed
its application in particle dynamics. The effects of dynamic noise in superior Mandelbrot
sets were analyzed in [39]. In [40], Mann iteration and superior Julia sets were used for
biological morphogenesis algorithm optimization.

Although considerable studies have been made on the superior M-J set, to our best
knowledge, little attention was paid to the connectivity investigation. As mentioned above,
superior Julia sets have a higher stability than the classical ones, and also show potential
application prospects. Thus, it is of interest to seek the Parrondo’s paradox in the alternate
superior complex system from the perspective of connectivity.

Motivated by the significant investigations mentioned above, the main motivation of
this work is to provide a detailed analysis of the connectivity change law of superior Julia
sets in an alternated case.

The reminder of this paper is organized as follows. Essential definitions and lemmas
are given in Section 2. In Section 3, graphical explorations of alternate superior Julia sets are
investigated. Through the use of the escape-time algorithm and image simulation method,
“disconnected + disconnected = connected” and “connected + connected = disconn-ected”
phenomena are proved in visual way. Section 4 concludes this work by discussing the po-
tential applications of this fractal’s phenomenon and pointing out the prospective research
direction.
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2. Preliminaries

Definition 1 ([13]). Consider the following Mann iteration, which can be introduced a one-step
feedback process

xn+1 = g( f (xn), xn) = β f (xn) + (1− β)xn.

where β lies between 0 and 1, xn represents input and xn+1 is expressed as output. Simplifying the
process with invariable β and then consider this process as complex quadratic map

Pc : zn+1 = β(z2
n + c) + (1− β)zn, 0 < β ≤ 1. (1)

When β = 1, Pc can be seen as a simple complex map: zn+1 = z2
n + c. The filled superior Julia

set of system (1) is defined as K(Pc), which satisfies that

K(Pc) = {z0| Pn
c (z0) 9 ∞, n→ ∞},

where Pn
c denote the n-th iteration of z0. The superior Julia set of system (1), denoted by SJ is the

boundary of K(Pc), i.e., SJ(Pc) = ∂K(Pc).

Definition 2. The Mandelbrot-efficacy set of system (1) is defined as

M(Pc) = {c| The superior Julia sets SJ(Pc) is connected}.

Definition 3 ([13]). Considering two complex quadratic maps alternated in superior orbit

Pc1,c2 : zn+1 =

{
β(z2

n + c1) + (1− β)zn, if n is even,
β(z2

n + c2) + (1− β)zn, if n is odd,
(2)

The filled alternate superior Julia set of system (2) is denoted as K(Pc1,c2), which satisfies that

K(Pc1,c2) = {z0| Pn
c1,c2

(z0) 9 ∞, n→ ∞},

where Pn
c1,c2

represents the n-th iteration of the initial point z0. The alternate superior Julia set of
Pc1,c2 is the boundary of the filled alternate superior Julia set, that is, SJ(Pc1,c2) = ∂K(Pc1,c2).

Lemma 1 ([36]). For system

Oc1,c2 : zn+1 = β((z2
n + c1)

2 + c2) + (1− β)(z2
n + c1), zn, c1, c2 ∈ C.

SJ(Pc1,c2) and SJ(Oc1,c2) are the same for given c1 and c2 parameter values.

Lemma 2 ([1,2]). The connectivity properties of superior Julia set for a complex polynomial of
degree 2 and 0 < β ≤ 1 can be identified based on the following cases:

(1) Superior Julia set is connected if and only if all the critical orbits are bounded;
(2) Superior Julia set is totally disconnected, a red Cantor set, if (but not only if) all the critical

orbits are unbounded;
(3) For a polynomial with at least one critical orbit unbounded, the superior Julia set is totally

disconnected if and only if all the bounded critical orbits are aperiodic.
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3. Graphical Explorations

As can be seen from Figure 1, with the decrease in the value of β, the superior
Mandelbrot set M(Pc) expands rapidly. Therefore, we only consider the case of β = 0.9 in
the next simulations.
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Figure 1. Superior Mandelbrot sets M(Pc) plotted with different β.

Based on the above definitions, system Pc1,c2 originates from the alternation of two sin-
gle systems Pc, and the superior Julia sets of Pc have only two states, which are determined
by the single critical point 0. The Julia sets which are plotted in Figure 2 indicate that the
different connectivity relying on weather parameter c belong to the Mandelbrot set.
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Figure 2. M(Pc), classical Mandelbrot set and (A) Connected Julia set, (B) Connected superior Julia
set, (C) Totally disconnected Julia set, and (D) Totally disconnected superior Julia set.
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For a single system Pc, M(Pc) can be plotted along two coordinates (Re c, Im c).
Further, in this study, the whole Connectivity Loci of an alternate superior system Pc1,c2

is defined asM(P), which is determined by four coordinates (Re c1, Im c1, Re c2, Im c2).
With the help of the graphical method proposed in [2], this paper visualized its structure
via MATLAB software. At a certain resolution, fixing the Im(c2) to 0.3 and screening all
[Rm c1, Im c2, Re c2] which connect alternated superior Julia sets, we plotted the spatial-
Connected Loci in Figure 3. Further, in Figure 4, Fixing the Re(c2) to 0, and we obtain
the planarM(P) by recognizing the connectivity of the Julia sets corresponding to all
[ Im c2, Re c2]. In a few words, Figure 4 is a slice of a three-dimensionalM(P) and similar
slices can be obtained by fixing any two dimensions.

Figure 3. Spatial-Connected Loci (M(P) without Disconnected Loci) with Im(c2) = 0.3.
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As is shown in Figure 5, the connectivity of four locations in Figure 4 is founded to
vary along the Connected Loci, Disconnected Loci and Totally Disconnected Loci. That is,
the gray area leads to connected superior Julia sets, the region between the grey boundary
and blue line leads to disconnected superior Julia sets, the region outside the blue line
gives rise to totally disconnected superior Julia sets.
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Figure 5. (a) K(Pc1=0.42+0.91i, c2=0.3i); (b) K(Pc1=0.42+0.95i, c2=0.3i); (c) K(Pc1=0.42+0.97i, c2=0.3i);
(d) K(Pc1=0.42+0.99i, c2=0.3i).

Now, the next step is to find a pair of parameters c1, c2 which make individual superior
Julia sets disconnected and alternate superior Julia sets connected. With the help of the
relationship between the regions and the connectivity mentioned above, the c2 which
satisfies the phenomenon “disconnected+disconnected=connected” should be outside of
the red boundary and inside the grey region.

To verify the analysis mentioned above, our solution is putting the boundary of
the M(Pc) cover on planarM(P). From Figure 6, it can be seen in the location of c1 =
0.35 + 0.59i that its superior Julia set SJ(Pc1) is totally disconnected, the c2 taken from area
outside red boundary can lead to totally disconnected SJ(Pc2), the c2 taken from gray area
can lead to connected SJ(Pc1,c2). For example, one c2 can be set to 0.35− 0.59i (point θ1 in
Figure 7); totally disconnected filled superior Julia set K(Pc=0.35+0.59i), totally disconnected
filled superior Julia set K(Pc=0.35−0.59i) and connected filled alternate superior Julia set
K(Pc1=0.35+0.59i, c2=0.35−0.59i) are shown in Figure 8.
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Figure 6. The boundary of M(Pc) and two slices ofM(P).
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Figure 7. The detail ofM(P) with c1 = 0.35 + 0.59i.
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Figure 8. (a) K(Pc=0.35+0.59i); (b) K(Pc=0.35−0.59i); (c) K(Pc1=0.35+0.59i, c2=0.35−0.59i).
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Based on the above research, in addition to “disconnected+disconnected=connected”,
the establishment condition of “connected+connected=disconnected” is that c2 located
between the blue and red boundary. According to the enlarged part in Figure 9, one can
choose a proper point c2 = 0.39 + 0.32i (point θ2 in Figure 9), connected filled superior
Julia set K(Pc=0.40+0.35i), connected filled superior Julia set K(Pc=0.39+0.32i) and totally
disconnected filled alternate superior Julia set K(Pc1=0.40+0.35i, c2=0.39+0.32i) are shown in
Figure 10.
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Figure 10. (a) K(Pc=0.40+0.35i); (b) K(Pc=0.39+0.32i); (c) K(Pc1=0.40+0.35i, c2=0.39+0.32i).

4. Conclusions

This paper demonstrates that “disconnected+disconnected=connected” and “con-
nected+connected=disconnected” Parrondo’s Paradox phenomena exist in an alternate
superior system. As mentioned in the introduction section, superior Julia sets show higher
stability in certain situations, and alternate systems have been widely applied to physics,
biology, etc. This phenomenon, occurring in alternate superior systems may have potential
applications in many fields. We hope that the result of this paper can provide a reference
for future research. On the other hand, according to the introduction, there is a close
relationship between fractal and fractional; therefore, future research may further expand
the Parrondo’s Paradox phenomenon to the fields, combining fractal and fractional.

Author Contributions: Conceptualization, D.W.; methodology, Y.Z. and D.W.; validation, Y.Z. and
D.W.; formal analysis, Y.Z. and D.W.; writing—original draft preparation, Y.Z. and D.W.; writing—
review and editing, Y.Z. and D.W.; visualization, Y.Z.; funding acquisition, D.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the China Postdoctoral Science Foundation Funded Project
(No. 2017M612337), and the Scientific and Technological Planning Projects of Universities in Shan-
dong Province (No. J18KB097).



Fractal Fract. 2021, 5, 39 9 of 10

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Danca, M.F.; Romera, M.; Pastor, G. Alternated Julia sets and connectivity properties. Int. J. Bifurc. Chaos 2009, 19, 2123–2129.

[CrossRef]
2. Danca, M.F.; Bourke, P.; Romera, M. Graphical exploration of the connectivity sets of alternated Julia sets. Nonlinear Dyn. 2013, 73,

1155–1163. [CrossRef]
3. Harmer, G.P.; Abbott, D. Parrondo’s paradox. Stat. Sci. 1999, 14, 206–213.
4. Harmer, G.P.; Abbott, D. Game theory Losing strategies can win by Parrondo’s paradox. Nature 1999, 402, 864. [CrossRef]
5. Minor, D.P. Parrondo’s paradox–hope for losers! Coll. Math. J. 2003, 34, 15–20.
6. Chen, L.; Li, C.F.; Gong, M.; Guo, G.C. Quantum Parrondo game based on a quantum ratchet effect. Phys. A Stat. Mech. Its Appl.

2010, 389, 4071–4074. [CrossRef]
7. Mandelbrot, B.B. Fractals: Form, Chance, and Dimension; W. H. Freeman: San Francisco, CA, USA, 1977.
8. Julia, G. Mémoire sur l’itération des fonctions rationnelles. J. De Mathématiques Pureset Appliquées 1918, 8, 47–245.
9. Wang, X.Y.; Gu, L. Research fractal structures of generalized M-J sets using three algorithms. Fractals 2008, 16, 79–88. [CrossRef]
10. Nazeer, W.; Kang, S.M.; Tanveer, M.; Shahid, A.A. Fixed point results in the generation of Julia and Mandelbrot sets. J. Inequalities

Appl. 2015, 2015, 1–16. [CrossRef]
11. Dhurandhar, S.V.; Bhavsar, V.C.; Gujar, U.G. Analysis of z-plane fractal images from z← zα + c for α < 0. Comput. Graph. 1993,

17, 89–94.
12. Wang, X.Y.; Liu, X.D.; Zhu, W.Y.; Gu, S.S. Analysis of c-plane fractal images from z← zα + c for (α < 0). Fractals 2020, 8, 307–314.
13. Rani, M.; Kumar, V. Superior julia set. J. Korea Soc. Math. Educ. Ser. D Res. Math. Educ. 2004, 8, 261–277.
14. Andreadis, I.; Karakasidis, T.E. On a closeness of the Julia sets of noise-perturbed complex quadratic maps. Int. J. Bifurc. Chaos

2012, 22, 1250221. [CrossRef]
15. Wang, X.Y.; Ge, F.D. Quasi-sine Fibonacci M set with perturbation. Nonlinear Dyn. 2012, 69, 1765–1779. [CrossRef]
16. Wang, X.Y.; Wang, Z.; Lang, Y.H.; Zhang, Z.F. Noise perturbed generalized Mandelbrot sets. J. Math. Anal. Appl. 2008, 347,

179–187. [CrossRef]
17. Wang, X.Y.; Chang, P.J.; Gu, N.N. Additive perturbed generalized Mandelbrot-Julia sets. Appl. Math. Comput. 2007, 189, 754–765.

[CrossRef]
18. Wang, X.Y.; Jia, R.H.; Zhang, Z.F. The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative.

Appl. Math. Comput. 2009, 210, 107–118.
19. Beck, C. Physical meaning for Mandelbrot and Julia sets. Phys. D Nonlinear Phenom. 1999, 125, 171–182. [CrossRef]
20. Wang, X.Y.; Meng, Q.Y. Study on the physical meaning for generalized Mandelbrot-Julia sets based on the Langevin problem.

Acta Phys. Sin. 2004, 53, 388–395.
21. Wang, X.Y.; Liu, W.; Yu, X.J. Research on Brownian movement based on generalized Mandelbrot-Julia sets from a class complex

mapping system. Mod. Phys. Lett. B 2007, 21, 1321–1341. [CrossRef]
22. Sun, W.H.; Zhang, Y.P.; Zhang, X. Fractal analysis and control in the predator-prey model. Int. J. Comput. Math. 2017, 94, 737–746.

[CrossRef]
23. José M.; António M.L. Fractional Jensen–Shannon Analysis of the Scientific Output of Researchers in Fractional Calculus. Entropy

2017, 19, 127.
24. Ionescu, C.M. The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics;

Springer: New York, NY, USA, 2013.
25. Wang, Y.P; Liu, S.T.; Li, H.; Wang, D. On the spatial Julia set generated by fractional Lotka-Volterra system with noise. Chaos

Solitons Fractals 2019, 128, 129–138. [CrossRef]
26. Wang, Y.P.; Liu, S.T. Fractal analysis and control of the fractional Lotka–Volterra model. Nonlinear Dyn. 2019, 95, 1457–1470.

[CrossRef]
27. Wang, Y.P.; Liu, S.T.; Wang, D. Fractal dimension analysis and control of Julia set generated by fractional Lotka–Volterra models.

Commun. Nonlinear Sci. Numer. Simul. 2019, 72, 417–431. [CrossRef]
28. Yadav, M.P.; Agarwal, R. Numerical investigation of fractional-fractal Boussinesq equation. Chaos Interdiscip. J. Nonlinear Sci.

2019, 29, 013109. [CrossRef] [PubMed]
29. Mojica, N.S.; Navarro, J.; Marijuán, P.C.; Lahoz-Beltra, R. Cellular “bauplans”: Evolving unicellular forms by means of Julia sets

and Pickover biomorphs. Biosystems 2009, 98, 19–30. [CrossRef] [PubMed]
30. Wang, D.; Liu, S.T.; Zhao, Y. A preliminary study on the fractal phenomenon:“ disconnected+disconnected=connected”. Fractals

2017, 25, 1750004. [CrossRef]
31. Zou, C.; Shahid, A.A.; Tassaddiq, A.; Khan, A.; Ahmad, M. Mandelbrot sets and julia sets in picard-mann orbit. IEEE Access 2020,

8, 64411–64421. [CrossRef]
32. Kwun, Y.C.; Tanveer, M.; Nazeer, W.; Gdawiec, K.; Kang, S.M. Mandelbrot and Julia Sets via Jungck–CR Iteration with s–Convexity.

IEEE Access 2020, 7, 12167–12176. [CrossRef]
33. Jolaoso, L.O.; Khan, S.H. Some Escape Time Results for General Complex Polynomials and Biomorphs Generation by a New

Iteration Process. Mathematics 2020, 8, 2172. [CrossRef]

http://doi.org/10.1142/S0218127409023962
http://dx.doi.org/10.1007/s11071-013-0859-y
http://dx.doi.org/10.1038/47220
http://dx.doi.org/10.1016/j.physa.2010.06.011
http://dx.doi.org/10.1142/S0218348X08003764
http://dx.doi.org/10.1186/s13660-015-0820-3
http://dx.doi.org/10.1142/S0218127412502215
http://dx.doi.org/10.1007/s11071-012-0384-4
http://dx.doi.org/10.1016/j.jmaa.2008.04.032
http://dx.doi.org/10.1016/j.amc.2006.11.137
http://dx.doi.org/10.1016/S0167-2789(98)00243-7
http://dx.doi.org/10.1142/S0217984907013560
http://dx.doi.org/10.1080/00207160.2015.1130825
http://dx.doi.org/10.1016/j.chaos.2019.07.044
http://dx.doi.org/10.1007/s11071-018-4638-7
http://dx.doi.org/10.1016/j.cnsns.2019.01.009
http://dx.doi.org/10.1063/1.5080139
http://www.ncbi.nlm.nih.gov/pubmed/30709111
http://dx.doi.org/10.1016/j.biosystems.2009.07.002
http://www.ncbi.nlm.nih.gov/pubmed/19596047
http://dx.doi.org/10.1142/S0218348X17500049
http://dx.doi.org/10.1109/ACCESS.2020.2984689
http://dx.doi.org/10.1109/ACCESS.2019.2892013
http://dx.doi.org/10.3390/math8122172


Fractal Fract. 2021, 5, 39 10 of 10

34. Zhou, H.; Tanveer, M.; Li, J. Comparative study of some fixed-point methods in the generation of Julia and mandelbrot sets. J.
Math. 2020, 2020, 7020921. [CrossRef]

35. Rani, M.; Kumar, V. Superior mandelbrot set. J. Korea Soc. Math. Educ. Ser. D Res. Math. Educ. 2004, 8, 279–291.
36. Yadav, A.; Rani, M. Alternate superior Julia sets. Chaos Solitons Fractals 2015, 73, 1–9. [CrossRef]
37. Negi, A.; Rani, M. New approach to dynamic noise on superior Mandelbrot set. Chaos Solitons Fractals 2008, 36, 1089–1096.

[CrossRef]
38. Rani, M.; Agarwal, R. Effect of stochastic noise on superior Julia sets. J. Math. Imaging Vis. 2010, 36, 63–68. [CrossRef]
39. Agarwal, R.; Agarwal, V. Dynamic noise perturbed generalized superior Mandelbrot sets. Nonlinear Dyn. 2012, 67, 1883–1891.

[CrossRef]
40. Gdawiec, K.; Kotarski, W.; Lisowska, A. Biomorphs via modified iterations. J. Nonlinear Sci. Appl. 2016, 9, 2305–2315. [CrossRef]

http://dx.doi.org/10.1155/2020/7020921
http://dx.doi.org/10.1016/j.chaos.2014.12.008
http://dx.doi.org/10.1016/j.chaos.2006.07.026
http://dx.doi.org/10.1007/s10851-009-0171-0
http://dx.doi.org/10.1007/s11071-011-0115-2
http://dx.doi.org/10.22436/jnsa.009.05.33

	Introduction
	Preliminaries
	Graphical Explorations
	Conclusions
	References

