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Abstract: Action potentials in myelinated neurons happen only at specialized locations of the axons
known as the nodes of Ranvier. The shapes, timings, and propagation speeds of these action potentials
are controlled by biochemical interactions among neurons, glial cells, and the extracellular space.
The complexity of brain structure and processes suggests that anomalous diffusion could affect
the propagation of action potentials. In this paper, a spatio-temporal fractional cable equation for
action potentials propagation in myelinated neurons is proposed. The impact of the ionic anomalous
diffusion on the distribution of the membrane potential is investigated using numerical simulations.
The results show spatially narrower action potentials at the nodes of Ranvier when using spatial
derivatives of the fractional order only and delayed or lack of action potentials when adding a
temporal derivative of the fractional order. These findings could reveal the pathological patterns
of brain diseases such as epilepsy, multiple sclerosis, and Alzheimer’s disease, which have become
more prevalent in the latest years.
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1. Introduction

Myelination of neurons is a critical growth process taking place during the first two
years of life, which facilitates the fast transmission of information throughout the body. The
process involves the wrapping of the neuronal axons by myelin sheaths made of multiple
layers of glial plasma membrane. The myelinated regions are separated by the nodes of
Ranvier (Figure 1). Some specialized glial cells called oligodendrocytes produce myelin and
create the neuro–glial-controlled clustering of voltage-gated sodium channels at the nodes
of Ranvier and the aggregation of fast voltage-gated potassium channels in the myelin
sheath [1,2]. The existence of some slow potassium channels in the nodes of Ranvier was
reported in [3]. Experiments performed in cell cultures and in vivo reveal that nodal-like
groups are created just before the myelination starts [4]. This indicates that myelination
is highly dependent on timing and neuronal surroundings, especially the amounts of
certain chemicals and water. An impediment to the myelination process or damage to
the myelin sheath, which may or may not lead to demyelination, could cause serious,
possibly life-threatening, neurologic disorders. For instance, multiple sclerosis is the most
common demyelinating disorder affecting young adults that currently has no cure [5].
Mathematical models can provide essential insights into myelination/demyelination pro-
cesses that can further inspire better diagnostic and therapeutic procedures for various
neurological disorders.

Neurons transmit information throughout the body via action potentials. In a myeli-
nated neuron an action potential happens when sodium flows inside the neuron at the
node of Ranvier, and potassium is released into the extracellular space between the axon
and the myelin (the periaxonal space). To prevent the accumulation of potassium and
osmotically driven water in the periaxonal space, potassium diffuses through the myelin’s
potassium channels and the gap junctions connecting the myelin layers and is removed by
the astrocyte endfeet that form gap junctions with the outermost myelin layer [6]. Thus, in
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myelinated neurons, the action potentials do not propagate within the axons but happen
only at the nodes of Ranvier (Figure 1). The work hypothesis of this paper is that the
anomalous diffusion of ions through the neuronal membrane at the nodes of Ranvier and
outside the neurons can influence the propagation of action potentials.
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Figure 1. In a myelinated neuron, action potentials (blue vertical double arrows) happen only at the
nodes of Ranvier and propagate between the cell body and the axon terminals (bidirectional propagation).

It was observed experimentally that the voltage-gated potassium channel Kv2.1 in
the plasma membrane of a cultured human embryotic kidney cell displays anomalous
diffusion [7]. Because the Kv2.1 channel shows similar clustering patterns in the membranes
of cultured human embryonic kidney cells and native neurons [7], it is possible that
anomalous diffusion of potassium can happen in the myelin sheath of neurons as well.
The crowdedness of the very narrow ion channels [8] could be the cause of the anomalous
diffusion of ions through the membrane’s channels. Anomalous diffusion of ions that could
affect the propagation of action potentials does not happen only through the ion channels
of the neuronal membrane. According to [4], clusters of cytoskeletal scaffolding proteins,
cell-adhesion molecules, and parts of the extracellular matrix (ECM) can be found near the
nodes of Ranvier, which could influence ion flow. Furthermore, anomalous diffusion of
ions through the extracellular space (ECS) is also possible due to (1) the ECS geometry;
(2) dead spaces of the ECS, voids, or glial wrapping around cells; (3) flow obstruction by
the ECM; (4) binding sites on the cell membranes of the ECM; (5) the presence of fixed
negative charges on the ECM [9] that control ion mobility [10]; and (6) the tight control
of the ion and water movement in the ECS by astrocytes [6,11]. In particular, anomalous
diffusion might be involved in the regulation of the extracellular potassium concentration
by astrocytes, which is essential for the proper creation and propagation of action potentials
(for example, an unregulated elevated extracellular potassium concentration can cause an
epileptic seizure [12]). Thus, anomalous diffusion of ions and water in the vicinity of the
nodes of Ranvier is caused by a combination of structural geometry and highly dynamic
and possibly emerging biochemical processes.

Anomalous diffusion through various materials has been successfully modeled using
fractional calculus [13]. A few generalizations of the classic cable equation that models
the spatio-temporal propagation of action potentials in neurons that involve fractional
derivatives have been proposed in the literature. In [14,15], a fractional cable equation
was proposed that uses a temporal Riemann–Liouville fractional derivative acting on
the classic Laplace operator to model anomalous electro-diffusion in neurons. In [16],
a space-fractional cable equation was derived to model the non-local forward (from the
neuronal body to the axon terminals) propagation of action potentials in mature myelinated
neurons. In this paper, a spatio-temporal fractional cable equation is proposed that involves
both spatial and temporal fractional derivatives. The equation models the bidirectional
(forward and backward) propagation of the action potentials in the presence of anomalous
diffusion. The proposed work is a straightforward generalization of the mathematical
model in [16]. In the case when the order of the temporal derivative is 1 and only the
forward propagation of the action potentials is considered, the results presented in [16]
are recovered. The proposed equation is coupled with the fractional Hodgkin–Huxley
equations (a slight variation of those proposed in [17]) and solved numerically using the
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methods in [18,19]. Computer simulations show spatially narrower action potentials at
the nodes of Ranvier at a fixed time when using spatial derivatives of the fractional order
only and delayed or lack of action potentials when also using a temporal derivative of
the fractional order. The spatially narrower shape of the action potentials resembles the
experimentally observed action potentials [20] better than the shape predicted by the
classic cable equation. Delayed or lack of action potentials bear the mark of neurological
disorders [21–26]. It is important to notice that these signs of brain pathology were obtained
without adding many more equations and parameters to the cable equation, which is the
current mathematical modeling approach.

The structure of the paper is as follows. The mathematical preliminaries needed in the
paper are given in Section 2. The derivation of the spatio-temporal fractional cable equation
is presented in Section 3, together with a numerical solution to the equation coupled with
the fractional Hodgkin–Huxley equations. Numerical simulations are shown in Section 4.
The paper ends with a section of conclusions and further work.

2. Mathematical Preliminaries

The fractional calculus results needed in the paper are given in this section [27–32].

Definition 1.

1. [28] (p. 33); [29]: Let f ∈ L1(a, b) and α > 0. The left-sided Riemann–Liouville fractional
integral of order α is

Iα
a+ f (x) =

1
Γ(α)

x∫
a

f (y)

(x− y)1−α
dy (1)

and the right-sided Riemann–Liouville fractional integral of order α is

Iα
b− f (x) =

1
Γ(α)

b∫
x

f (y)

(y− x)1−α
dy (2)

where Γ(s) =
∫ ∞

0 ts−1e−tdt is the gamma function. In particular, I0
a+ f (x) = I0

b− f (x) = f (x).
2. [27,29,31]: If f : [a, b]→ R is n-times differentiable on (a, b) ⊂ R with f (n) ∈ L1(a, b)

and n− 1 < α < n, n = 1, 2, 3 . . ., then the left-sided Caputo fractional derivative of order
α is

Dα
a+ f (x) =

1
Γ(n− α)

x∫
a

f (n)(y)

(x− y)α+1−n dy = In−α
a+ f (n)(x) (3)

and the right-sided Caputo fractional derivative of order α is

Dα
b− f (x) =

(−1)n

Γ(n− α)

b∫
x

f (n)(y)

(y− x)α−n+1 dy = (−1)n In−α
b− f (n)(x) (4)

where f (n) is the nth-order derivative of f . In particular, Dn
a+ f (x) = f (n)(x), and

Dn
b− f (x) = (−1)n f (n)(x).

3. [27,30,31]: The left (right)-sided Caputo fractional derivative of order nα, with n− 1 < nα < n,
n = 2, 3, . . ., is said to be a left(right)-sided sequential Caputo fractional derivative if

Dnα
a+ f (x) = Dα

a+

(
D(n−1)α

a+

)
f (x), Dnα

b− f (x) = Dα
b−

(
D(n−1)α

b−

)
f (x). (5)

For 0 < α < 1, d
(

Dα
a+ f (x)

)
/dx = Dα+1

a+ f (x) if f (a) = 0, and d
(

Dα
b− f (x)

)
/dx =

−Dα+1
b− f (x) if f (b) = 0.
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Proposition 1.

1. [28] (p. 40); [29]: If α > 0, Re(β) > 0 , then

Iα
a+(x− a)β−1 = Γ(β)

Γ(α+β) (x− a)α+β−1, x > a

Iα
b−(b− x)β−1 = Γ(β)

Γ(α+β) (b− x)α+β−1, x < b
(6)

Dα
a+(x− a)β−1 = Γ(β)

Γ(β−α) (x− a)β−α−1, x > a,
0 < α < 1

Dα
b−(b− x)β−1 = Γ(β)

Γ(β−α) (b− x)β−α−1, x < b,
0 < α < 1

(7)

Dα
a+c = Dα

b−c = 0, c constant. (8)

2. [29,31]: If n− 1 < α ≤ n for n = 1, 2, 3 . . . and the function f has the property that there
exist p > µ ≥ −1 and a continuous function g such that f (n)(x) = xpg(x) for x > a, then

Dα
a+ Iα

a+ f (x) = f (x),

Iα
a+Dα

a+ f (x) = f (x)−
n−1
∑

j=0
f (j)(a+) xj

j! . (9)

3. [30–32]: If 0 < α ≤ 1 and the function f has continuous sequential Caputo derivatives Dkα f
for k = 0, 1, . . . , n + 1, then the following generalized Taylor’s formulas hold for a < x < b:

f (x) =
n
∑

k=0

Dαk
a+ f (a)

Γ(kα+1) (x− a)kα +
D(n+1)α

0+ f (ξ)
Γ((n+1)α+1) (x− a)(n+1)α,

for a ≤ ξ ≤ x, and

f (x) =
n
∑

k=0

Dαk
b− f (b)

Γ(kα+1) (b− x)kα +
D(n+1)α

b− f (ξ)
Γ((n+1)α+1) (b− x)(n+1)α

for x ≤ ξ ≤ b.

(10)

The following representations are also valid [32]:

f (x) = f (x0) +
Dα

a+ f (x0)
Γ(α+1)

(
(x− a)α − (x0 − a)α)+ R2α

f (x) = f (x0) +
Dα

b− f (x0)

Γ(α+1)

(
(b− x)α − (b− x0)

α)+ R̃2α

(11)

where R2α , R̃2α are remainder terms.

3. Mathematical Model

In this section, the mathematical derivation of the spatio-temporal fractional cable
equation is presented. The bidirectional propagation of action potentials between the cell
body and the axon terminals is modeled using left- and right-sided spatial fractional order
operators. For simplicity, in what follows the notations Dα

a+ , Dα
b− will be used for the

spatial Caputo fractional derivatives and the notation ∂α
a+ will be used for the temporal

Caputo fractional derivative.

Definition 2. The non-local voltage of order α(t) = (α1(t), α2(t), α3(t)), αi(t) > 0, i = 1, 2, 3
between two points in R3 of position vectors 0 = (0, 0, 0) and x = (x1, x2, x3) ∈ (0, R),
R = (R1, R2, R3) is
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V(x, t) = − p

L
α1(t)−1
1 Γ(α1(t))

x1∫
0
(x1 − y1)

α1(t)−1E1(y, t)dy1

− p

Lα2(t)−1
2 Γ(α2(t))

x2∫
0
(x2 − y2)

α2(t)−1E2(y, t)dy2

− p

L
α3(t)−1
3 Γ(α3(t))

x3∫
0
(x3 − y3)

α3(t)−1E3(y, t)dy3

− q

L
α1(t)−1
1 Γ(α1(t))

R1∫
x1

(y1 − x1)
α1(t)−1E1(y, t)dy1

− q

Lα2(t)−1
2 Γ(α2(t))

R2∫
x2

(y2 − x2)
α2(t)−1E2(y, t)dy2

− q

L
α3(t)−1
3 Γ(α3(t))

R3∫
x3

(y3 − x3)
α3(t)−1E3(y, t)dy3

(12)

where E(y, t) = (E1(y, t), E2(y, t), E3(y, t)) is the electric field vector, t ≥ 0 is a non-dimensional
time, and Li, i = 1, 2, 3 are characteristic lengths. The positive constants p and q satisfy the
constraint p + q = 1. For mathematical convenience, let V(0) = 0.

For now, the time-dependent, spatial, non-local effects are neglected. Because the
axonal branches are long and narrow, the action potentials depend only on one spatial
variable [33] and thus the problem is one-dimensional. Thus, the axon can be modeled as
a circular cylinder of constant radius r and one characteristic length L, the length of the
internodal region, and assume that

α1(t) = α2(t) = α3(t) = α = constant, 0 < α ≤ 1. (13)

In this case, the element of the path along the integration of
→
E (a generalization of a

measure proposed in [34]):

dyα(t) =

(
1

Γ(α1(t))
yα1(t)−1

1 dy1,
1

Γ(α2(t))
yα2(t)−1

2 dy2,
1

Γ(α3(t))
yα3(t)−1

3 dy3

)
reduces to

dyα =
yα−1

Γ(α)
dy = d

[
yα

Γ(α + 1)

]
. (14)

since αΓ(α) = Γ(α + 1).
The electric field is assumed to be uniform along the axon and the standard convention

of current direction is valid: the membrane and synaptic current are positive when they
are outward, and the electrode currents are positive when they are inward. Then, by using
Expression (14), Formula (12) becomes

V(x, t) = − Ep
Lα−1

∫ x
0 d(x− y)α −

Eq
Lα−1

∫ R
x d(y− x)α = − Ep

Lα−1

∫ x
0 d
[
(x−y)α

Γ(α+1)

]
− Eq

Lα−1

∫ R
x d
[
(y−x)α

Γ(α+1)

]
= E

Lα−1
pxα−q(R−x)α

Γ(α+1) .
(15)

Comparing Formulas (15) and (6) gives

V(x, t) = pIα
0+

(
E

Lα−1

)
− qIα

R−

(
E

Lα−1

)
.

Consider an equally spaced discretization of [0, R] with step size ∆x and the number
of nodes chosen such that, when α = 1, the following formula reduces to the classic forward
approximation of the first-order derivative. Then Formula (15) yields

∆V(x, t) = V(x + ∆x, t)−V(x, t) =
E

Lα−1Γ(α + 1)
(
(x + ∆x)α − xα

)
. (16)
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On the other hand, using Formula (11) and the fact that p + q = 1 give

∆V(x, t) = (p + q)V(x + ∆x, t)− (p + q)V(x, t)

≈ pDα
0+V(x,t)+q(−1)αDα

R−V(x,t)
Γ(α+1)

(
(x + ∆x)α − xα

) (17)

where the Caputo fractional derivatives are taken with respect to the spatial variable x.
Thus, as ∆x → 0 , Formulas (16) and (17) yield

pDα
0+V(x, t) + q(−1)αDα

R−V(x, t) =
E

Lα−1 . (18)

The uniformity of the current density in every cross-sectional area of the cylindrical
neuron gives [33]

E =
rL I
πr2 (19)

where rL is the intracellular resistance and I is the electric current. Combining Formulas (18)
and (19) gives the expression of the longitudinal current:

IL = −πr2Lα−1

rL

[
p Dα

0+V(x, t) + q(−1)α Dα
R−V(x, t)

]
(20)

where the negative sign comes from the current sign convention. Replacing Formula (19)
into Formula (16) also yields Ohm’s law:

∆V(x, t) = Rα I

for the generalized electric resistance:

Rα =
rL

πr2Lα−1Γ(α + 1)
(
(x + ∆x)α − xα

)
. (21)

As in [17,33,35], the following currents are introduced:

Im = 2πr ∆x im
Ie = 2πr ∆x ie

Ic = 2πr ∆x c∗m∂
β
0+V, 0 < β ≤ 1

(22)

where Im and Ie are the membrane and external currents, respectively, and im and ie are
their corresponding currents per unit area. The capacitor current is Ic and

cm =
c∗m

Tβ−1 (23)

where cm is the specific membrane capacitance, and T is a characteristic time. The use
of a temporal Caputo fractional derivative in the expression of Ic was justified in [17]
as giving a more accurate characterization of experimentally observed propagation of
action potentials.

The replacement of Formulas (20) and (22) in Kirchhoff’s law in the element is shown
in Figure 2b:

Ic + Im − IL|le f t + IL|right − Ie = 0 (24)

gives
c∗m∂

β
0+V = ie − im

+ r
2r̃L

[p Dα
0+V(x,t)+q(−1)α Dα

R−V(x,t)]|right−[p Dα
0+V(x,t)+q(−1)α Dα

R−V(x,t)]|le f t
∆x

(25)

where
r̃L =

rL

Lα−1 . (26)
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Figure 2. (a) One part of a neuron consisting of an internodal (myelinated) region of length 𝐿 
and a node of Ranvier at 𝑥 = 𝐿. The radius of the axon is denoted by 𝑟. The computational 
domain for the dynamic problem is [𝐿/2, 𝐿]. (b) The electric currents entering (the longitudi-
nal current 𝐼 |  and external current 𝐼 ) and exiting (the longitudinal current 𝐼 | , the 
membrane current 𝐼 , and the capacitor current 𝐼 ) a neuronal segment of length Δ𝑥. 

  𝑐𝑚∗ 𝜕0+𝛽 𝑉 = 𝐼 − (𝐺𝑁𝑎𝑚3ℎ + 𝐺𝑁𝑎𝐿)(𝑉 − 𝐸𝑁𝑎) − (𝐺𝐾𝑛4 + 𝐺𝐾𝐿)(𝑉 − 𝐸𝐾) − 𝐺𝐶𝑙𝐿(𝑉 − 𝐸𝐶𝑙), (35)𝑇 𝜕 𝑚 = 𝛼 (1 − 𝑚) − 𝛽 𝑚, (36)𝑇 𝜕 𝑛 = 𝛼 (1 − 𝑛) − 𝛽 𝑛, (37)𝑇 𝜕 ℎ = 𝛼 (1 − ℎ) − 𝛽 ℎ (38)

with initial conditions 𝑉(0) = 𝑉  , 𝑚(0) = 𝛼 𝑉(0)𝛼 𝑉(0) + 𝛽 𝑉(0) , 
𝑛(0) = 𝛼 𝑉(0)𝛼 𝑉(0) + 𝛽 𝑉(0) , 
ℎ(0) = 𝛼 𝑉(0)𝛼 𝑉(0) + 𝛽 𝑉(0) , 

(39)

where 𝛼 = 0.32(𝑉 + 54)1 − exp −0.25(𝑉 + 54) , 𝛽 = 0.28(𝑉 + 27)exp 0.2(𝑉 + 27) − 1,  
𝛼 = 0.032(𝑉 + 52)1 − exp −0.2(𝑉 + 52) , 𝛽 = 0.5 exp − 𝑉 + 5740 , 

𝛼 = 0.128 exp − 𝑉 + 5018 , 𝛽 = 41 + exp(−0.2(𝑉 + 27)) . (40)

In Equations (35)–(38), 𝐼 is an externally applied current per unit area; 𝐸 , 𝐸 , and 𝐸  are the reverse potentials; and 𝐺 , 𝐺 , 𝐺 , 𝐺 , and 𝐺  are, respectively, the volt-
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A numerical discretization of the right-hand side of Equation (33) is given first.  

Figure 2. (a) One part of a neuron consisting of an internodal (myelinated) region of length L and a node of Ranvier at x = L.
The radius of the axon is denoted by r. The computational domain for the dynamic problem is [L/2, L]. (b) The electric
currents entering (the longitudinal current IL|le f t and external current Ie) and exiting (the longitudinal current IL|right, the
membrane current Im, and the capacitor current Ic) a neuronal segment of length ∆x.

As ∆x → 0 :

[p Dα
0+V(x,t)+q(−1)α Dα

R−V(x,t)]|right−[p Dα
0+V(x,t)+q(−1)α Dα

R−V(x,t)]|le f t
∆x

≈ ∂
∂x
[
p Dα

0+V(x, t) + q(−1)α Dα
R−V(x, t)

]
which replaced in Equation (25) and letting ∆x → 0 give the expression of the spatio-
temporal fractional cable equation:

c∗m∂
β
0+V =

r
2r̃L

[
p

∂

∂x
(

Dα
0+V

)
+ q(−1)α ∂

∂x
(

Dα
R−V

)]
+ ie − im. (27)

If V(0, t) = V(R, t) = 0, then Equation (27) can be written in the equivalent form:

c∗m∂
β
0+V =

r
2r̃L

[
pDα+1

0+ V + q(−1)α+1Dα+1
R− V

]
+ ie − im. (28)

For p = 1, q = 0 (or p = 0, q = 1) and α = β = 1, Equation (27) reduces to the classic
cable equation [33]:

cm
∂V
∂t

=
r

2rL

∂2V
∂x2 + ie − im. (29)

A numerical discretization of the second-order spatial derivative in Equation (29)
shows that in myelinated neurons the voltage at node n depends only on the voltages at
the adjacent nodes of Ranvier, n− 1 and n + 1. However, a numerical discretization of the
spatial Caputo fractional derivatives in Equation (27) based on the Gr

..
unwald–Letnikov

formula (see later) shows that the voltage at node n depends on the voltages at all the
previous nodes 0, 1, . . . , n− 1, and all the following nodes n+ 1, n+ 2, . . . n+ N, where N
is the total number of nodes of an axon. The Gr

..
unwald–Letnikov formula can also be used

to approximate numerically the temporal Caputo fractional derivative in Equation (27).
(Although, in this paper, a different numerical scheme is applied to discretize the temporal
Caputo fractional derivative (see later), it is somehow easier to mention the Gr

..
unwald–

Letnikov formula here to highlight temporal non-locality.) Thus, Equation (27) models the
long-term memory and long-range interactions of the voltage in myelinated neurons.

Near the resting potential Vrest the membrane current per unit area can be approxi-
mated as [33]

im =
V −Vrest

rm
:=

v
rm

(30)

where v = V −Vrest is the voltage relative to the resting potential, and rm is the specific
membrane resistance. Since Vrest is constant, it follows from Formula (8) that

Dα
0+V = Dα

0+v, Dα
R−V = Dα

R−v, ∂
β
0+V = ∂

β
0+v.
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Thus, Equation (27) becomes

τm∂
β
0+v = λα+1

[
p

∂

∂x
(

Dα
0+v

)
+ q(−1)α ∂

∂x
(

Dα
R−v

)]
+ rmie − v (31)

where
τm = rmc∗m = rmcmTβ−1, λα+1 =

rrm

2 rL
Lα−1. (32)

The generalized electrotonic length λ has the same expression as in [16] and captures
the effect of spatial non-locality via the parameter α ∈ (0, 1) on the relationship among
the geometric parameters r, L and the resistances rm, rL of a neuron. Parameter β ∈ (0, 1)
controls the time scale and accounts for long-term memory effects. Since Equation (27)
remains valid for a time-varying α(t), the variations of α(t) and β, and the interplay
between them, may reveal how aging and myelin assembly and remodeling affect the
timing, speed, and shape of the action potentials.

3.1. Dynamic Problem

In this sub-section, a numerical solution to Equation (31) coupled with the fractional
Hodgkin–Huxley equations is presented. The problem is stated and solved numerically
in a leaky internodal region of length L with one isopotential node at x = L (Figure 2a).
The assumption that the length of the node of Ranvier can be neglected in the model
is supported by the fact that in most neurons the length of the internodal region is of
the order 1000÷ 2000 µm, which is much bigger than the usual nodal length of about
3 µm [36]. It is also assumed that the potential v(x, t) is zero at the middle of the internodal
region and symmetric about the vertical line x = L/2. Thus, the spatial domain is [L/2, L].
The membrane potential of the internodal region is the solution to the following initial
boundary value problem:

τm∂
β
0+v = λα+1

[
p ∂

∂x
(

Dα
0.5L+v

)
+ q(−1)α ∂

∂x
(

Dα
L−v

)]
− v,

x ∈
(

L
2 , L
) (33)

v(x, 0) = 0, v(L/2, t) = 0, v(L, t) = f (t) (34)

where f (t) = V(t)−Vrest and V(t), the membrane potential of the node, is the solution of
the following fractional Hodgkin–Huxley model, adapted from [37]:

c∗m∂
β
0+V = I −

(
GNam3h + GNaL

)
(V − ENa)−

(
GKn4 + GKL

)
(V − EK)− GClL(V − ECl), (35)

Tβ−1∂
β
0+m = αm(1−m)− βmm, (36)

Tβ−1∂
β
0+n = αn(1− n)− βnn, (37)

Tβ−1∂
β
0+h = αh(1− h)− βhh (38)

with initial conditions
V(0) = Vrest ,

m(0) = αm(V(0))
αm(V(0))+βm(V(0)) ,

n(0) = αn(V(0))
αn(V(0))+βn(V(0)) ,

h(0) = αh(V(0))
αh(V(0))+βh(V(0)) ,

(39)

where
αm = 0.32(V+54)

1−exp(−0.25(V+54)) , βm = 0.28(V+27)
exp(0.2(V+27))−1 ,

αn = 0.032(V+52)
1−exp(−0.2(V+52)) , βn = 0.5 exp

(
−V+57

40

)
,

αh = 0.128 exp
(
−V+50

18

)
, βh = 4

1+exp(−0.2(V+27)) .

(40)
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In Equations (35)–(38), I is an externally applied current per unit area; ENa, EK, and ECl
are the reverse potentials; and GNa, GK, GNaL, GKL, and GClL are, respectively, the voltage-
gated maximal conductances of Na+ and K+, and the leak conductances of Na+, K+, and
Cl−. The gating variables m, n, and h are the activations of the Na+ and K+ channels and
the inactivation of the Na+ channel, respectively. Parameters αm, αn, αh, βm, βn, and βh
were found by fitting the classic Hodgkin–Huxley model (β = 1 in Equations (35)–(38))
to experimental data (see, for instance, Section 2.2 of [38] and references within) and thus
they should not be confused with the newly introduced non-local parameters α and β.

3.2. Numerical Discretization

A numerical discretization of the right-hand side of Equation (33) is given first.
Let L/2 = x0 < x1 < · · · < xN−1 < xN = L be an equally spaced discretization of the

interval [L/2, L] of constant step size ∆x. The spatial fractional derivatives are approxi-
mated using the right- and left-shifted Gr

..
unwald–Letnikov formulas given in [18,39] and

the boundary conditions in (34) (the link between the Caputo fractional derivatives and
the Gr

..
unwald–Letnikov formulas is established through an integration by parts):

∂
∂x
(

Dα
0.5L+v

(
xj, t

))
= 1

∆xα+1

j+1
∑

i=0
gα+1

i v
(
xj−i+1, t

)
, 0 < j < N

∂
∂x
(

Dα
L−v

(
xj, t

))
= −1

∆xα+1

N−j+1
∑

i=0
gα+1

i v
(
xj+i−1, t

)
+ f (t)

Γ(−α)(L−xj)
α+1 , 0 < j < N

(41)

where

gα+1
i =

(−1)iΓ(α + 2)
Γ(i + 1)Γ(α− i + 2)

, gα+1
0 = 1. (42)

Formula (41) can be re-written by changing the indexes of the terms in the sums:

∂

∂x
(

Dα
0.5L+v

(
xj, t

))
=

1
∆xα+1

j+1

∑
k=0

gα+1
j+1−kv(xk, t), 0 < j < N (43)

∂

∂x
(

Dα
L−v

(
xj, t

))
=
−1

∆xα+1

N

∑
k=j−1

gα+1
k+1−jv(xk, t) +

f (t)

Γ(−α)
(

L− xj
)α+1 , 0 < j < N (44)

As in [18], Formula (43) introduces the following matrix L̂ of dimension (N − 1)× (N − 1):

L̂jk =


gα+1

j+1−k, 1 ≤ j ≤ N − 1, 1 ≤ k ≤ j
1, 1 ≤ j < N − 1, k = j + 1

0, otherwise

Similarly, a matrix Ľ of dimension (N − 1)× (N − 1) corresponding to Formula (44)
can be introduced. However, using Formula (42), it is easy to show that Ľ = L̂T . The
terms involving the boundary conditions in Formulas (43) and (44) are not included in
the expressions of matrices L̂ and Ľ. The boundary terms are collected from the sums in
Formulas (43) and (44) and stored in the following vectors:

b̂j =

{
0, 1 ≤ j ≤ N − 2
f (t), j = N − 1

, b̌j = f (t)gα+1
N+1−j , 1 ≤ j ≤ N − 1 (45)

where the boundary conditions (34) have been used.
Replacing Formulas (43)–(45) in Equation (33) and grouping the like terms give

∂
β
0+v

(
xj, t

)
=

N−1

∑
k=1

Bjkv(xk, t) + bj + dj, 1 ≤ j ≤ N − 1 (46)
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where

Bjk =
λα+1

τm∆xα+1

(
pL̂jk + q(−1)α+1 L̂kj

)
− 1

τm
δjk, 1 ≤ j, k ≤ N − 1

with δjk the Kronecker delta function,

bj =
λα+1

τm∆xα+1

[
pb̂j + q(−1)α+1b̌j

]
, 1 ≤ j ≤ N − 1

and the last term of Formula (44) is stored in the following vector:

dj = q(−1)α λα+1 f (t)
τm∆xα+1

1

Γ(−α)(N − j)α+1 , 1 ≤ j ≤ N − 1.

The real part of (−1)α is used in the numerical simulations.
Equations (46) and (35)–(38) form a system of coupled, non-linear, fractional ordinary

differential equations that needs to be solved numerically using the initial conditions (34)
and (39). Let

uj(t) = v
(

xj, t
)

, 1 ≤ j ≤ N − 1,
uN(t) = V(t), uN+1(t) = m(t), uN+2(t) = n(t), uN+3(t) = h(t).

Then, Equations (46) and (35)–(38) can be written in compact form:

∂
β
0+uj(t) = Fj(t, u1(t), . . . , uN+3(t)), 1 ≤ j ≤ N + 3 (47)

where Fj(t), 1 ≤ j ≤ N + 3, are the corresponding right-hand sides of Equations (46)
and (35)–(38). The initial conditions (34) and (39) are denoted by uj,0, 1 ≤ j ≤ N + 3.
A numerical discretization of system (47) is presented next.

The fractional Hodgkin–Huxley equations in [17,35] were solved using either a non-
standard finite difference scheme [35] that combines the Gr

..
unwald–Letnikov formula

and a denominator function dependent on the step size satisfying certain conditions, or
a semi-analytic approach [17] that involves the predator-corrector method given in [40].
The numerical scheme used in this paper is a variant of the one in [40]. More precisely,
system (47) is solved numerically using MATLAB’s function fde12 [19], which is an imple-
mentation of (1) a modified predictor–corrector method, which combines generalizations
of the Adam–Bashforth (predictor) and Adam–Moulton (corrector) methods [41]; and (2) a
fast Fourier transform (FFT) algorithm that reduces the computational cost [42]. For the
sake of completeness, the main steps of the modified predictor-corrector method in [40,41]
are presented further.

Applying the left-sided Riemann–Liouville fractional integral of order β ∈ (0, 1) to
system (47) and using Formulas (9) and (6) give

uj(t) = uj,0 +
1

Γ(β)

∫ t

0
(t− s)β−1Fj(s, u1(s), . . . , uN+3(s))ds, 1 ≤ j ≤ N + 3 (48)

Let 0 = t0 < t1 < . . . < tM be an equally spaced discretization of a time interval [0, t]
with constant step size ∆t, denoted by uj(tn) = un

j .
The generalization of the Adams–Bashforth method involves the use of the product

rectangle rule to approximate:

∫ tn+1
0 (tn+1 − s)β−1Fj(s, u1(s), . . . , uN+3(s))ds ≈

n
∑

k=0
âk,n+1Fj

(
tk, uk

1, . . . , uk
N+3

)
,

1 ≤ j ≤ N + 3
(49)
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where

âk,n+1 =
∫ tk+1

tk

(tn+1 − s)β−1ds =
∆tβ

β

[
(n + 1− k)β − (n− k)β

]
.

By replacing Formula (49) in Expression (48), the predator formula is obtained:

un+1,P
j (t) = uj,0 +

1
Γ(β)

n

∑
k=0

âk,n+1Fj

(
tk, uk

1, . . . , uk
N+3

)
, 1 ≤ j ≤ N + 3. (50)

The generalization of the Adams–Moulton method involves the use of the product
trapezoidal quadrature formula to approximate:

∫ tn+1
0 (tn+1 − s)β−1Fj(s, u1(s), . . . , uN+3(s))ds ≈

n+1
∑

k=0
ǎk,n+1Fj

(
tk, uk

1, . . . , uk
N+3

)
,

1 ≤ j ≤ N + 3
(51)

where a piecewise linear interpolant of Fj is used on the left-hand side of Formula (51).
Thus,

ǎk,n+1 =
∫ tn+1

0 (tn+1 − s)β−1 ϕk,n+1(s)ds

= ∆tβ

β(β+1)


(

nβ+1 − (n− β)(n + 1)β
)

, k = 0(
(n− k + 2)β+1 − 2(n− k + 1)β+1 + (n− k)β+1

)
, 1 ≤ k ≤ n

1, k = n + 1

where ϕk,n+1 are the piecewise linear (hat) basis functions associated with nodes tk,
0 ≤ k ≤ n + 1.

By now replacing Formula (51) in Expression (48), the corrector formula is obtained:

un+1
j (t) = uj,0 +

1
Γ(β)

n

∑
k=0

ǎk,n+1Fj

(
tk, uk

1, . . . , uk
N+3

)
+

1
Γ(β)

ǎn+1,n+1Fj

(
tn+1, un+1,P

1 , . . . , un+1,P
N+3

)
, 1 ≤ j ≤ N + 3. (52)

Lastly, the sums in the predictor and corrector Formulas (50) and (52) can be written
as discrete convolutions, which are efficiently calculated using the FFT algorithm given
in [42].

4. Results

The parameters used in the numerical simulations are given in Table 1. The simulations
use an internodal length of L = 1000 µm, which gives the maximum propagation speed
of an action potential [43]. This value of L is within the range of values for the internodal
length found in the literature ([44] gives L = 200 ÷ 2000 µm where the lower (higher)
value corresponds to the initial myelination (full maturity) stage [45]). In the simulations,
the time step size is ∆t = 0.0001 and the space step size ∆x = 0.01. For simplicity, T = 1.
The plots showing the spatial variations of v(x, t) (Figures 3a, 4a, 6a and 8a) represent the
solutions v of problems (33)–(34) on the interval [L/2, L] and their mirror images about the
vertical line at the node of Ranvier. This approach offers a better visualization of the action
potentials at the node of Ranvier for a fixed time.

Figures 3 and 4 show spatial and temporal variations of v(x, t) for β = 1 and various
values of α when p = 1, q = 0 (Figure 3) and p = 0, q = 1 (Figure 4). As expected, when
α = 1, there is no difference between the two cases since the classic solution of the cable
equation is recovered. At fixed time t = 0.1 ms, the shape of the action potentials at the
node of Ranvier becomes narrower as α decreases, with the narrower shapes obtained for
the case p = 0, q = 1. (Figures 3a and 4a). These spatially narrower action potentials at
the nodes look like the ones in ([20], Figure 7D). In the case p = 0, q = 1, the numerical
solution becomes unstable for α < 0.55. However, a solution in this scenario might not be
physiologically meaningful since a too narrow action potential will lack the gradual spread
of v within the internodal region seen in optical recordings of membrane potentials [20].
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At fixed location x = 700 µm, the amplitude of v decreases and shifts to the right as α
decreases (Figures 3b and 4b). The amplitude of v decreases faster with decreasing α in
the case p = 0, q = 1 (Figure 4b) than in the case p = 1, q = 0 (Figure 3b). This effect
of the bidirectional propagation on the temporal variations of the membrane potential
within the internodal region has not been observed experimentally. Figure 5 shows the
time variations of the gating variables n(t), m(t), and h(t) for β = 1 and various values of
α when p = 1, q = 0. Since the gating variables are independent of the spatial variable x,
the values of α, p, and q do not influence the variations of n(t), m(t), and h(t). Thus, the
plots in Figure 5 are the solutions to the classic Hodgkin–Huxley equations.

Table 1. List of parameters with corresponding values and physical units.

Parameters Values and Units Reference

Vrest −65 mV [37]
ENa 60 mV [37]
EK −88 mV [37]
ECl −61 mV [37]
GNa 0.3 mS/mm2 [37]
GK 0.25 mS/mm2 [37]

GNaL 0.000247 mS/mm2 [37]
GKL 0.0005 mS/mm2 [37]
GClL 0.001 mS/mm2 [37]
cm 0.01 µF/mm2 [37]
I 0.1 µA/mm2

r 0.002 mm [33]
rm 103 kΩ·mm2 [33]
rL 1 kΩ·mm [33]
L 1 mm [33]
α 0.65 (0.25, 0.5, 0.85, 1)
β 0.66 (0.7, 0.8, 0.95, 1)
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Figure 3. (a) Spatial variations of v(x, t) at t = 0.1 ms, and (b) temporal variations of v(x, t) at
x = 700 µm for various values of α. Here, p = 1, q = 0, and β = 1.
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Figure 4. (a) Spatial variations of v(x, t) at t = 0.1 ms, and (b) temporal variations of v(x, t) at
x = 700 µm for various values of α. Here, p = 0, q = 1, and β = 1.
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Figure 5. Time variations of the gating variables n(t) (red), m(t) (blue), and h(t) (green), obtained by
solving the fractional Hodgkin–Huxley Equations (35)–(38) for β = 1. Here, p = 1, q = 0, and α = 1
(square symbol); α = 0.65 (diamond symbol); α = 0.5 (circle symbol); and α = 0.25 (x-mark symbol).

Figures 6 and 7 show the results obtained for α = 0.65, β = 0.7 and various values of
p, q. While the width of the action potentials at the node of Ranvier and at the fixed time
t = 0.1 ms barely changes with decreasing p (increasing q) (Figure 6a), the amplitude of the
potential v at fixed location x = 700 µm decreases as p decreases (q increases) (Figure 6b).
The long-term memory represented by β = 0.7 < 1 causes delays in the opening and
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closing of the ion channels, which can be seen in the time variations of the gating variables
n(t), m(t), and h(t) (Figure 7), which further produce the delay in the membrane potential
seen in Figure 6b. Again, the values of α, p and q do not influence the variations in
n(t), m(t), and h(t) (Figure 7).
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Figure 6. (a) Spatial variations of v(x, t) at t = 0.1 ms, and (b) temporal variations of v(x, t) at
x = 700 µm for various values of p, q. Here, α = 0.65 and β = 0.7.
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Figure 7. Time variations of the gating variables n(t) (red), m(t) (blue), and h(t) (green), obtained
by solving the fractional Hodgkin–Huxley Equations (35)–(38) for β = 0.7. Here, α = 0.65 and
p = 0.75, q = 0.25 (square symbol); p = q = 0.5 (diamond symbol); and p = 0.25, q = 0.75
(circle symbol).
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Figures 8–10 show the variations in v(x, t), n(t), m(t), and h(t) for α = 0.65, p = 0.25
and q = 0.75, and various values of β. The same results are obtained for p = 0.75
and q = 0.25. Thus, Figures 6–10 suggest that the bidirectional propagation has little
to no effect on the shapes of the action potentials at the nodes of Ranvier. At the fixed
time t = 0.1 ms, the amplitude of the action potential at the node of Ranvier increases as
the long-term memory increases (corresponding to β decreasing) and its shape becomes
wider (Figure 8a), while at fixed location x = 700 µm the potentials flatten with decreas-
ing β (Figure 8b). As the long-term memory increases, the delay in the opening and
closing of the ion channels increases (Figure 9a–c) until they stop operating at β = 0.66
(Figure 9d). Figure 8b shows that the potential reaches a steady state value at β = 0.66.
The spatio-temporal variations of v(x, t) in Figure 10 show how possible defects in the
membrane potentials start to develop as β decreases. The increasing delay in the action
potentials at the node of Ranvier with decreasing β (Figure 10b) looks like the shapes of
the membrane potentials observed experimentally in transgenic Nav1.8-null knockout
DRG neurons ([21], Figures 8b and 9c). Abnormal Nav1.8 expression in some neurons
may be linked to multiple sclerosis in humans [22]. Mutations of some sodium channels
can cause persistent sodium currents that, combined with the blockade of potassium and
calcium currents, lead to prolonged plateau potentials in the neurons of mice [25] (also [24],
Figure 1B). These potentials resemble the ones in Figure 10b. According to [24], persistent
sodium currents are linked to epilepsy. The same shape of the membrane potential shown
in Figure 10b was also observed experimentally in neurons under spreading depolarization
(SD) and a blockade of astrocytic glutamate transporters ([26], Figure 8a–c). SD occurs in
traumatic brain injuries and ischemic stroke. Lastly, cerebral anoxic depolarization that
happen during a stroke or brain ischemia causes a potential like the one in Figure 10c [23].
Without immediate treatment, this condition leads to brain death. Therefore, there is no
physiological justification to further decrease the value of β. Nevertheless, it was observed
that the solution becomes unstable for β < 0.63.
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Figure 8. (a) Spatial variations of v(x, t) at t = 0.1 ms, and (b) temporal variations of v(x, t) at
x = 700 µm for various values of β. Here, p = 0.25, q = 0.75, and α = 0.65.
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Figure 9. Time variations of the gating variables n(t) (red), m(t) (blue), and h(t) (green), obtained by
solving the fractional Hodgkin–Huxley Equations (35)–(38) for (a) β = 1, (b) β = 0.95, (c) β = 0.8,
and (d) β = 0.66. Here, p = 0.25, q = 0.75, and α = 0.65.
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In conclusion, the spatial non-locality controls the width of action potentials at the
nodes of Ranvier, the narrower shapes being closer to the action potentials observed
experimentally. The spatial parameters p and q control the strength of the forward and
backward propagations of the action potentials; the weaker the forward propagation is, the
lower the amplitude of the action potentials becomes. Lastly, the long-term memory in the
presence of spatial non-locality could delay or stop the propagation of action potentials
and widen the shapes of the action potentials at the nodes of Ranvier.

5. Conclusions

In this paper, it was assumed that the anomalous diffusion of ions and water through
the myelin sheath, nodes of Ranvier and ECS affect the propagation of action potentials in
myelinated neurons. A spatio-temporal fractional cable equation is proposed to model the
effects of the long-range interactions and long-term memory of ions on the bidirectional
propagation of action potentials in myelinated neurons. Caputo fractional derivatives
and their properties were used to derive the equation. Numerical simulations showed the
spatio-temporal distributions of the membrane potential in a leaky internodal region with
one isopotential node described by the fractional Hodgkin–Huxley equations. The main
finding is that the spatially wider shapes of the action potentials at the nodes of Ranvier and
lack or delayed action potentials caused by the long-term memory combined with spatial
non-locality could signal the presence of certain pathological conditions. Future work
will explore possible effects on the propagation of action potentials of a time-dependent,
non-local parameter α(t), and the interplay between α(t) and β.
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