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Abstract: A random walk on a two dimensional square in R2 space with a hidden absorbing fractal
set Fµ is considered. This search-like problem is treated in the framework of a diffusion–reaction
equation, when an absorbing term is included inside a Fokker–Planck equation as a reaction term.
This macroscopic approach for the 2D transport in the R2 space corresponds to the comb geometry,
when the random walk consists of 1D movements in the x and y directions, respectively, as a
direct-Cartesian product of the 1D movements. The main value in task is the first arrival time
distribution (FATD) to sink points of the fractal set, where travelling particles are absorbed. Analytical
expression for the FATD is obtained in the subdiffusive regime for both the fractal set of sinks and for
a single sink.
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1. Introduction

In this paper, we study a 2D continuous subdiffusive transport in the presence of an absorbing
fractal set. This macroscopic consideration of the problem is treated in the framework of a
diffusion–reaction equation, when an absorbing term is included inside a Fokker–Planck equation
as a reaction term, and this approach is analogous to 1D search problems [1–4]. In the 2D case,
this macroscopic continuous search task is less studied, although a theory of intermittent search tasks
in 2D is well developed for both lattices [5–7] and continuous spaces [8,9].

The 2D movements in the xy-space consist of a direct product of 1D movements in the x and
y directions separately. That is, the movements are topologically constrained to a comb geometry,
while, at the same time, any point on R2 is accessible due to this “search” strategy. The latter is a 2D
random walk in the presence of absorbing sinks that eventually is reduced to the non-Markovian
transport in a comb geometry (see Figure 1). A comb model is a simple caricature of various types
of natural branched structures, where random walks on comb structures provide a geometrical
explanation of anomalous diffusion. An extended review of a variety of realizations of comb models
can be found in [10]. As a specific motivation for the present study, this model can be applied in
tubular search processes like neurons [5,11–17]. In particular, an intermittent search process on a
dendrite tree has been considered [11], while a relation between the comb model and a spine dendrite
structure has been established as well [12–15] with further explorations of anomalous diffusion inside
spine dendrites [16–18]. Another important application relates to fabrication of fractal absorbers in
metamaterials applied for antenna technology (see, e.g., [19] and references therein).
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Figure 1. A random walk on a comb in the presence of a fractal sink structure. This fractal
structure, where the sink points are placed at y = Y, is shown in zoom. The comb consists of
the backbone-x axis and the y direction corresponds to continuously distributed fingers along the
backbone. This structure results from the phenomenological consideration of 2D diffusion with
diffusion coefficients Dxx = Dxδ(y) and Dyy = Dy, where Dx, Dy are constant values [20].

The main question in task is the first arrival time distribution (FATD) for a fractal structure of sinks
Fµ, where traveling particles are absorbed. A general analytical expression has been obtained, and
we show that, in the subdiffusive regime, the FATD has an universal time behavior ∼t−3/4, when the
power law index is independent of the fractal dimension µ in the large time asymptotic. The suggested
analytical method makes it possible to study the FATD for anomalous diffusion in the presence of a
single sink, as well. It is well known that the 2D diffusion in R2 is recurrent [21]. Therefore, an analytical
expression for the FATD for a single sink, say at a point (x, y) = (X, Y), is another important question
in task. However, a straightforward solution of the macroscopic equation with µ = 0 cannot be
obtained, in contrast to the case with µ 6= 0, which can be solved analytically. Therefore, first, we use
the analytical solution for the FATD for a fractal set of sinks with µ 6= 0. Then, taking into account that
the fractal set in continuous space is not a frozen-fixed structure, the limit µ→ 0 is performed, and the
FATD for a single sink is obtained in the form of the Fox H-functions.

Preliminaries: Subdiffusion and Boundary Conditions on a Comb

Important parts of the 2D continuous movements are boundaries and boundary conditions [8].
Therefore, in this section, we briefly outline some properties of the comb model, related to the finite
boundary conditions. In Appendix B, we present more details of the fractional comb motion, when the
boundaries are at infinity. The necessary elements of fractional calculus for this issue are presented in
Appendix A. A macroscopic consideration of diffusion on comb structures is based on a Fokker–Planck
equation [20]. According to the phenomenological approach of Arkhincheev and Baskin [20], the comb
geometry implies that the displacement in the x-direction is possible only along the structure axis,
i.e., along the x-axis at y = 0. Diffusion in the x-direction is highly inhomogeneous, and the diffusion
coefficient is given by means of the Dirac delta function, Dxx = Dxδ(y), while the diffusion coefficient
in the y-direction, the side-branch direction, also called teeth or fingers, is a constant, namely Dyy = Dy.
This situation also implies that fingers are continuously and homogeneously distributed along the
backbone. Then, the diffusion equation on the comb structure reads [20]

∂

∂t
P(x, y, t) = Dxδ(y)

∂2

∂x2 P(x, y, t) + Dy
∂2

∂y2 P(x, y, t), (1)

where P(x, y, t) is the probability density function (PDF) of finding a diffusing particle at time t at the
position with coordinates (x, y) in the 2D comb space. The initial condition is P(x, y, t = 0) = δ(x)δ(y)
and natural boundary conditions are chosen for the backbone at infinity, i.e., P(x, y, t) = ∂xP(x, y, t) = 0
for x = ±∞, and reflecting boundary conditions are at y = ±h, namely ∂yP(x, y, t)|y=±h = 0,
for fingers.
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Following standard procedures of the Fourier transformation with respect to the space
variables and the Laplace transformation with respect to the time, LFx

[
P(x, y, t)] = ˆ̃P(k, y, s),

particular solutions of the comb equation can be obtained. In the Fourier–Laplace space,
Equation (1) reads

s ˆ̃P(k, y, s) = −Dxδ(y)k2 ˆ̃P(k, y, s) + Dy
∂2

∂y2
ˆ̃P(k, y, s) + δ(y), (2)

where s is the Laplace variable and k is the Fourier variable. We look for solutions in the form [22]

ˆ̃P(k, y, s) = g1(k, s)g2(y, s) = g1(k, s)
cosh

[
(h− |y|)

√
s/Dy

]
cosh

[
h
√

s/Dy
] , (3)

where g1(k, s) = ˆ̃P(k, y = 0, s) describes diffusion along the backbone in Laplace space. This also
supposes that g2(y = 0, s) = 1 is the second boundary condition for fingers. In sequel we consider
subdiffusion along the fingers, which takes place at the condition h

√
s/Dy � 1 [22].

Substituting solution (3) into Equation (2) and integrating over y, we obtain

g1(k, s) =
1

2
√

sDy + Dxk2 . (4)

Analytical solutions of the distribution functions can be represented in the form of the
Mittag–Leffler and the Fox H functions, as described in Appendix B. It turns out that the transport
along the backbone is subdiffusive until time t < T = h2/Dy, when the boundaries are not reached by
particles during normal diffusion, which occurs along the side-branched fingers.

For sequel analysis, it is convenient to work with dimensionless space-time variables and

parameters. It can be done by a scaling procedure as follows: t · D3
y

D2
x
→ t, x · Dx

Dy
→ x, and y · Dx

Dy
→ y.

Then, Equation (1) in the dimensionless form reads

∂

∂t
P(x, y, t) = δ(y)

∂2

∂x2 P(x, y, t) +
∂2

∂y2 P(x, y, t), (5)

where the diffusion coefficients in both x and y directions are equaled to one. The dimensionless
subdiffusive time scale is T = h2D2

y/D2
x.

2. First Arrival Time Distribution for Subdiffusion

As admitted above, the random walk in the presence of sinks is analogous to a search problem.
An important characteristic of the search process is a first arrival time distribution (FATD) ℘fa(t),
which is an important characteristics of first-passage processes [21,23]. In a random search equation,
it plays a role of a strength of a δ-sink term. For example, a Brownian random search process is
governed by the diffusion equation with the δ-sink term in the form of the Dirac delta function with an
unknown strength ℘fa(t) at point (x, y) = (X, Y). Then, amending dimensionless Equation (5) with
this δ-sink term of strength ℘fa(t), we obtain the diffusion–reaction equation for the non-normalized
PDF f (x, y, t),

∂

∂t
f (x, y, t) = δ(y)

∂2

∂x2 f (x, y, t) +
∂2

∂y2 f (x, y, t)− ℘fa(t)δ(x− X)δ(y−Y). (6)

The initial condition is P(x, y, t = 0) = δ(x− x0)δ(y− y0). Considering subdiffusion along the
backbone, natural (zero) boundary conditions are chosen at infinity for both the backbone and fingers
that ensures a subdiffusive transport along the backbone.
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Integration over the R2 space yields that the FATD relates to the survival probability S(t) as follows

℘fa(t) = −
d
dt

∫ ∞

−∞
f (x, y, t)dxdy = −dS(t)

dt
. (7)

The random walk is finished when a particle arrives at the point (X, Y), where it is absorbed by
the sink term, and the PDF vanishes, f (X, Y, t) = 0. Then, the condition f (X, Y, t) = 0 leads to the
equation for the FATD ℘fa(t). This condition is also valid in the Laplace space f̂ (X, Y, s) = 0.

2.1. Fractal Set of Sinks

As admitted above, our aim is to to find the time distribution of first arrivals at the sink term at
point (X, Y). However, as shown in the sequel, a single point sink cannot be found in the 2D search,
in contrast to the 1D search (when Y = 0). Therefore, to overcome this deficiency of the macroscopic
study of the FATD, we introduce a fractal set of sinks as follows.

Let in the vicinity of an unknown (hidden) point (X, Y) there be a fractal set of sink points.
For example, it is a random Cantor set with the fractal dimension µ

Fµ = Fµ(x, y) = Fµ(x). (8)

The set is embedded in an ε-segment/interval R1(ε), that is Fµ ⊆ R1(ε), where an arriving particle
is absorbed by sinks.

Therefore, a particle with the initial point (x0, y0) is absorbed arriving at any point
(Xjµ , Y) ≡ (Xj , Y) of the fractal set Fµ. Equation (6) in the Laplace space, f̂ (s) = L[ f (t)](s) now reads

s f̂ (x, y, s)− δ(x− x0)δ(y− y0) = δ(y)
∂2

∂x2 f̂ (x, y, s) +
∂2

∂y2 f̂ (x, y, s)−∑
j
℘̂fa(s)δ(x− Xj)δ(y−Y), (9)

where for simplicity of the notation ∑j ≡ ∑Xj∈Fµ
is used for sum over Fµ(x) . As admitted above and is

understood in the sequel analysis, the FATD ℘fa(t) can be found only for a set of x points with nonzero
(at least) fractal measure (Hausdorff, or box-counting) for the present geometry. Note that, otherwise,
the equation in task becomes singular due to the last term (without the sum), and, as a result of this
deficiency, the FATD cannot be found. Performing the Fourier transforms with respect to x and y,
we obtain

s f̂ (kx, ky, s)− e−ikx x0 e−ikyy0 = −k2
x f̂ (kx, y = 0, s)− k2

y f̂ (kx, ky, s)−∑
j
℘̂fa(s)e

−ikxXj e−ikyY . (10)

This yields

f̂ (kx, ky, s) =
e−ikx x0 e−ikyy0

s + k2
y

− k2
x f̂ (kx, y = 0, s)

s + k2
y

−∑
j

℘̂fa(s)e
−ikxXj e−ikyY

s + k2
y

. (11)

To obtain this equation in a closed form, we express f̂ (kx, y = 0, s) in terms of the known
components of f̂ (kx, ky, s). To this end, we perform the Fourier inversion of Equation (11) with respect
to y. This procedure yields

f̂ (kx, y, s) = e−ikx x0
e−|y−y0|

√
s

2
√

s
− k2

x f̂ (kx, y = 0, s)
e−|y|

√
s

2
√

s
−∑

j
℘̂fa(s)e

−ikxXj
e−|y−Y|

√
s

2
√

s
, (12)
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and for y = 0 we obtain the relation

f̂ (kx, y = 0, s) = e−ikx x0
e−|y0|

√
s

k2
x + 2

√
s
−∑

j
℘̂fa(s)e

−ikxXj
e−|Y|

√
s

k2
x + 2

√
s

. (13)

Substituting Equation (13) into Equation (12) and performing the Fourier inversion with respect
to kx, we obtain

f̂ (x, y, s) = F−1
x

{
e−ikx x0

e−|y−y0|
√

s

2
√

s
− k2

x
e−|y|

√
s

2
√

s

×
[

e−ikx x0
e−|y0|

√
s

k2
x + 2

√
s
−∑

j
℘̂fa(s)e

−ikxXj
e−|Y|

√
s

k2
x + 2

√
s

]

− ∑
j
℘̂fa(s)e

−ikxXj
e−|y−Y|

√
s

√
s

}
(14)

The obtained result reads

f̂ (x, y, s) =
δ(x− x0)

2
√

s

[
e−|y−y0|

√
s − e−(|y|+|y0|)

√
s
]
− ℘̂fa(s)

2
√

s ∑
i

δ(x− Xi)
[
e−|y−Y|

√
s − e−(|y|+|Y|)

√
s
]

+
1

2
√

2s1/2

[
e−|x−x0|

√
2s1/2

e−(|y|+|y0|)
√

s −∑
i
℘̂fa(s)e

|x−Xi |
√

2s1/2
e−|x−x0|

√
2s1/2

e−(|y|+|Y|)
√

s

]
. (15)

Then, arriving at the point (x, y) = (Xj, Y), a particle is absorbed and f̂ (Xj, Y, s) = 0 in
Equation (15). First, however, the summation over the fractal set Fµ is performed. One should recognize
that fractal sets (like a Cantor set) are uncountable. Therefore, the sum ∑j . . . in Equation (15) is purely
formal and its mathematical realization corresponds to integration to fractal measure Mµ ∼ lµ

such that ∑li∈Fµ
δ(l − li) = 1

Γ(µ) lµ−1 is the fractal density [24–26], and dMµ = 1
Γ(µ) lµ−1dl. Here,

Γ(µ) = (µ − 1)! is the gamma function. Therefore, summation over all points of the fractal set
corresponds to integration with fractal measure, ∑Xi∈Fµ

g(Xi) =
∫ ε

0 g(l)dMµ(l). Accounting for all i
and x = Xj that Xi = X + li and Xj = X + l, where l, li ∈ (0, ε), we obtain

∑
i

δ(Xj − Xi) = ∑
li∈Fµ

δ(l − li) =
1

Γ(µ)
lµ−1 ∼ 1

Γ(µ)
εµ−1 , (16a)

∑
i

e−
√

2|x−Xi |s
1
4 = ∑

li∈Fµ

e−
√

2|l−li |s
1
4 ∼

∫ ε

0

lµ−1

Γ(µ)
e−
√

2ls
1
4 dl = 2−µ/2s−µ/4 γ(µ,

√
2ε s1/4)

Γ(µ)
∼ εµ . (16b)

Here, γ(µ, z) = Γ(µ)− Γ(µ, z) is an incomplete gamma function. For z � 1, it is estimated by
Γ(µ)zµ [27].

Taking into account Equations (16a) and (16b) and the sink condition f (X, Y, s) = 0, one obtains
from Equation (15)

℘̂fa(s) ≈
εΓ(µ)s

1
4 e−
√

2|X−x0|s
1
4 e−(|Y|+|y0|)s

1
2

√
2εµ

(
e−|Y−y0|s

1
2 − e−2|Y|s

1
2

)
+ εµ+1Γ(µ)sµ+ 1

4 e−2|Y|s
1
2

(17)

For the large time asymptotic s� 1 Equation (17) reads

℘̂fa(s) ≈ ε1−µΓ(µ)s−
1
4 e−
√

2|X−x0|s
1
4 (|Y|+ |y0|)−1 . (18)
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In this limit, the second term in the denominator can be neglected, while the first one is of
the order of ∼

√
s(|Y| + |y0|). In the nominator, only the first, largest exponential is taken into

account. The Laplace inversion of Equation (18) yields the FATD for the fractal set Fµ in the large time
asymptotics. To that end, we present the exponential in the form of the Fox H function [28,29] (see also
Appendix B)

e−
√

2|X−x0|s
1
4 = H1,0

0,1

[
√

2|X− x0|s
1
4

∣∣∣∣∣ −
(0, 1)

]
, (19)

which eventually yields

℘fa(t) ≈
ε1−µΓ(µ)
|Y|+ |y0|

L−1

{
s−

1
4 H1,0

0,1

[
√

2|X− x0|s
1
4

∣∣∣∣∣ −
(0, 1)

]}

=
ε1−µΓ(µ)
|Y|+ |y0|

t−
3
4 H1,0

1,1

[
√

2|X− x0|t−
1
4

∣∣∣∣∣ (1/4, 1/4)
(0, 1)

]
. (20)

Equation (20) is the main result, which determines the FATD of anomalously diffusive particles
to the fractal set of sinks. Since asymptotic expansion of the Fox H function at zero is O(1), the time
asymptotic behavior of the FATD is ℘fa(t) � t−

3
4 . The factor ε1−µΓ(µ) is a part of a stationary

probability, and it yields the correct unite limit for µ = 1. The limit of a single sink point for µ → 0
does not exists in solution (20). However, 2D diffusion is recurrent, therefore a single sink can be found
as well. This means that the limits µ→ 0 and s→ 0 do not commute. Then, to obtain the FATD for a
single sink, the limit µ→ 0 should be taken first in Equation (17).

2.2. Single Sink

Now, the limit is µ→ 0, which means that the only one sink point is considered first, and then
the limit of the large times s→ 0 are considered in Equation (17). Eventually, for µ = 0, the absorbing
point (Xj, Y) = (X, Y) yields the Laplace image of the FATD, ℘̂fa(s) as follows

℘̂fa(s) ≈ e−
√

2|X−x0|s
1
4 e−(|Y|+|y0|)s

1
2 e2|Y|s

1
2 ≡ e−

√
2|X−x0|s

1
4 e−∆ys

1
2 , (21)

where ∆y = |y0| − |Y| > 0. We believe that this restriction results from a correlation between the initial
condition and the sink term. This restriction is discussed in Section 3.

Performing the inverse Laplace transform of Equation (21), we present the result in the convolution
form as follows

℘fa(t) = Gx(t) ∗ Gy(t) =
∫ t

0
L−1

[
e−∆y

√
s
]
(t− t′)L−1

[
e−
√

2|X−x0|s
1
4
]
(t′)dt′ . (22)

That is, the FATD consists of two physically justified parts. The first one Gy(t) is the FATD for the
Brownian search along the fingers, when the worker passes the distance |y0| from the initial point at y0

to the backbone at y = 0, while the second Brownian distance |Y| is a random walk from the backbone
to the cantor set Fν(y). As expected, this Brownian part of the FATD corresponds to the well known
Lévy–Smirnov distribution [30,31],

Gy(t) = L−1
[
e−∆y

√
s
]
(t) =

∆y√
4πt3

exp

[
−

∆2
y

4t

]
. (23)
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The second part of the FATD, Gx(t), corresponds to subdiffusion along the backbone [4]. Therefore,
to estimate the FATD by the Laplace inversion, we follow the same procedure of Equations (19) and (20)
that yields

Gx(t) = L−1
[

e−
√

2|X−x0|s
1
4
]
(t) = L−1

{
H1,0

0,1

[
√

2|X− x0|s
1
4

∣∣∣∣∣ −
(0, 1)

]}

=
1
t

H1,0
1,1

[
√

2|X− x0|t−
1
4

∣∣∣∣∣ (0, 1/4)
(0, 1)

]
. (24)

3. Discussion

In the paper, we are concerned with a random walk on a 2D square S2(h × h) ∈ R2 with a
hidden absorbing fractal set Fµ ⊆ R1(ε) ⊂ R1

x and reflecting boundaries. This search-like problem
is treated in the framework of a diffusion–reaction equation with the absorption term, which is
included inside the Fokker–Planck equation as the reaction term. This macroscopic approach to the
2D movements in the R2 space is considered in the comb geometry, when the random walk consists
of the 1D movements in the x and y directions, respectively, as a direct—Cartesian—product of the
1D movements, where diffusion in fingers affects strongly the backbone transport. The main value
in task is the first arrival time distribution (FATD) ℘fa(t) of particles traveling to sink points, where
they are absorbed. The imposed finite boundary conditions lead to the two time scales. The first,
initial time scale, T with t < T = D2

yh2/D2
x, corresponds to subdiffusive regime, when the boundary

conditions can be considered at infinity. In this case, the main result for the FATD for the fractal
set of sinks in Equation (20) is not restricted, since t < T = ∞. The FATD for a single sink (22) is
restricted according to the condition ∆y = |y0| − |Y| > 0 and therefore by t < T = T(h). We however
consider h as large as necessary to have a good statistics for the FATD. Moreover, taking for the
initial condition y0 = h, the sink point can always be found, since the condition for the inverse
Laplace transform is always fulfilled due to the condition |y0| − |Y| = h− |Y| > 0. The restriction
∆y = |y0| − |Y| > 0 results from subdiffuion. The latter results from the condition h→ ∞, which leads
for the first time scale t < T → ∞, and the time restriction for the FATD is lifted. Correspondingly,
the sink point is always reachable, and the escape probability (the probability to be absorbed) is
E = limT→∞ ℘̂fa

(
s = 1

T

)
= limT→∞

∫ T
0 ℘fa(t)dt = 1.

As conclusive remarks, we also come to grips with some details of the escape probability E for the
second time scale, t > T. It can be estimated from the reflecting boundary conditions of Equation (1),
when both backbone and fingers are taken into account. Then, the Laplace image obtained from
Equation (3) reads

P̂(x, y, s) =
1
h ∑

k

cos
(

kπx
h

)
s + (kπ/h)2 ·

cosh
[
(h− |y|)

√
s
]

cosh
[
h
√

s
] ∼

cosh
[
(h− |y|)

√
s
]

hs cosh
[
h
√

s
] , (25)

where the main contribution is due to the term with k = 0 [32]. The only outgoing flux is due to
the sink. According to the comb geometry, the current has the y component jy(X, Y, t) = −∂yP(x =

X, y, t)|y=Y, only. Therefore, the hitting probability [21] and the FATD are determined by the current at
(x, y) = (X, Y) and these values are∫ ∞

0
jy(X, Y, t)dt = ĵy(X, Y, s = 0) ∼ 1− |Y|/h , (26a)

℘̂fa(s) = | ĵy(X.Y, s)| =
sinh

[
(h− |Y|)

√
s
]

h
√

s cosh
[
h
√

s
] . (26b)

The question on the FATD in the h× h square is open for the continuous macroscopic consideration.
Nonetheless, it also follows from Equations (25), (26a) and (26b) that subdiffusion in the bounded



Fractal Fract. 2020, 4, 52 8 of 12

backbone and opened fingers [16] is an efficient way to arrive at the sink. In this case when h → ∞,
the solutions (25) and (26) yield (not tempered) the Lévy–Smirnov distribution (23) for the first passage
probability and the escape probability is E = ℘̂fa(s = 0) = 1. Since the current is a continuous value it
can be associated with the FATD ℘fa(t) as well.
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Appendix A. A Brief Survey on Fractional Integration

Extended reviews of fractional calculus can be found elsewhere (e.g., [24,33,34]).
Fractional integration of the order of α is defined by the operator

Iα
a x f (x) =

1
Γ(α)

∫ x

a
f (y)(x− y)α−1dy , (A1)

where α > 0, x > a and Γ(z) is the Gamma function. Fractional derivation was developed as a
generalization of integer order derivatives and is defined as the inverse operation to the fractional
integral. Therefore, the fractional derivative is defined as the inverse operator to Iα

a x, namely
Dα

a x f (x) = I−α
a x f (x) and Iα

a x = D−α
a x . Its explicit form is

Dα
a x f (x) =

1
Γ(−α)

∫ x

a
f (y)(x− y)−1−αdy . (A2)

This integral diverges for arbitrary α > 0, and a regularization procedure is introduced with
two alternative definitions of Dα

a x. For an integer n defined as n − 1 < α < n, we obtain the
Riemann–Liouville fractional derivative,

DRL α
a x f (x) ≡ Dα

a x f (x) =
dn

dxn I
n−α

a x f (x) , (A3)

and the Caputo fractional derivative,

DC α
a x f (x) = In−α

a x
dn

dxn f (x) . (A4)

There is no constraint on the lower limit a. For example, when a = 0, one has

DRL α
0 xxβ =

xβ−αΓ(β + 1)
Γ(β + 1− α)

.

This fractional derivation with the fixed low limit is also called the left fractional derivative.
However, one can introduce the right fractional derivative, where the upper limit a is fixed and a > x.
For example, the right fractional integral is

Iα
x a f (x) =

1
Γ(α)

∫ a

x
(y− x)α−1 f (y)dy . (A5)

Another important property is Dα Iβ = Iβ−α, where subscripts are omitted for brevity. Note that
the inverse combination is not valid. In general, IβDα 6= Iβ−α, since it depends on the lower limits of
the integrations [33]. We also use here a convolution rule for the Laplace transform for 0 < α < 1

L[Iα
x f (x)] = s−α f̃ (s) . (A6)
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Note that for arbitrary α > 1 the treatment of the Caputo fractional derivative by the Laplace
transformation is more convenient than that of the Riemann–Liouville one.

Note that the solutions considered here can be obtained in the form of the Mittag–Leffler function
by the Laplace inversion [28,33,35]

E(ν,β)(zrν) =
r1−β

2πi

∫
C

sν−βesr

sν − z
ds , (A7)

where C is a suitable contour of integration, starting and finishing at −∞ and encompassing a circle
|s| ≤ |z| 1ν in the positive direction, and ν, β > 0.

Appendix B. Fractional Fokker–Planck Equation

Integration with respect to y leads to a equation for the marginal distribution
P1(x, t) =

∫ ∞
−∞ P(x, y, t)dy:

∂

∂t
P1(x, t) = Dx

∂2

∂x2 P(x, y = 0, t), (A8)

where P̂(x, y = 0, s) = f (x, s). To obtain this equation in closed form, we return to Equation (3) in
(x, y)-space,

P̂(x, y, s) = P̂(x, y = 0, s) exp
[
−
√

s/Dy|y|
]

, (A9)

and integrate it with respect to y. This yields the relation P̂(x, y = 0, s) =
√

s/4Dy P̂1(x, s). Using this
relation and Laplace transforming Equation (A8), we find

s
1
2 P̂1(x, s)− δ(x)s−

1
2 =

Dx

2
√

Dy

∂2

∂x2 P̂1(x, s). (A10)

Performing the Laplace inversion, we obtain the integro-differential equation

DC 1
2

0 t P1(x, t) =
Dx

2
√

Dy

∂2

∂x2 P1(x, t). (A11)

The integro-differential operator DC α
0 t ≡ DC α

t is the so-called Caputo fractional derivative,

DC α
t P1(t) =

1
Γ(1− α)

∫ t

0

1
(t− t′)α

d P1(t′)
d t′

dt′, 0 < α < 1, (A12)

while Equation (A11) is called the fractional Fokker–Planck equation (FFPE). Instead of the Caputo
derivative, it is possible to employ the Riemann–Liouville fractional derivative,

Dα
t P1(t) ≡ DRL α

0 t P1(t) =
1

Γ(1− α)

d
d t

∫ t

0

P1(t′)dt′

(t− t′)α
, 0 < α < 1, (A13)

which leads to a different form of the FFPE [36],

∂

∂t
P1(x, t) =

Dx

2
√

Dy
D1−α

t
∂2

∂x2 P1(x, t) , (A14)

where α = 1/2. For arbitrary 0 < α < 1, this equation is a general form of the FFPE with the
solution (A24)

P1(x, t) =
1√

Dαtα
H1,0

1,1

[
x2

Dαtα

∣∣∣∣∣ (1− α
2 , α)

(0, 2)

]
. (A15)

In that case, the diffusion coefficient must be generalized as well, Dx/(2
√

Dy) = D 1
2
→ Dα.
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Solution in the Form of the Fox Function

The Fox H function is defined in terms of the Mellin–Barnes integral [28,29],

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣∣ (a1, A1) , . . . , (ap, Ap)

(b1, B1) , . . . , (bq, Bq)

]
=

1
2πi

∫
Ω

Θ(s)z−sds , (A16)

where

Θ(s) =

{
∏m

j=1 Γ(bj + sBj)
}{

∏n
j=1 Γ(1− aj − sAj)

}
{

∏
q
j=m+1 Γ(1− bj − sBj)

}{
∏

p
j=n+1 Γ(aj + sAj)

} , (A17)

with 0 ≤ n ≤ p, 1 ≤ m ≤ q and ai , bj ∈ C, while Ai , Bj ∈ R+, for i = 1 , . . . , p and j = 1 , . . . , q.
The contour Ω starting at σ− i∞ and ending at σ + i∞ separates the poles of the functions Γ(bj + sBj),
j = 1 , . . . , m from those of the function Γ(1− ai − sAi), i = 1 , . . . , n.

Now, let us solve FFPEs (A11) and (A14) in terms of the Fox H functions. Performing Fourier and
Laplace transformations, we obtain the Montroll–Weiss equation in the form

¯̃P1(k, s) ≡ P(k, s) =
sα−1

sα + Dαk2 , (A18)

where we take ¯̃P0(k, s) = 1. Then, employing formula (A7) for the Mittag–Leffler function [28,33,35],
one obtains

P(k, t) ≡ P̄1(k, t) = E(α,1)
(
− Dαk2tα

)
. (A19)

The two parameter Mittag–Leffler function (A7) is a special case of the Fox H-function, which can
be represented by means of the Mellin–Barnes integral (A16)

E(α,β)(−z) =
1

2πi
∫

Ω
Γ(s)Γ(1− s)

Γ(β− αs)
z−sds = H1,1

1,2

[
z

∣∣∣∣∣ (0, 1)
(0, 1), (1− β, α)

]

= 1
δ H1,1

1,2

[
z1/δ

∣∣∣∣∣ (0, 1/δ)

(0, 1/δ), (1− β, α/δ)

]
.

(A20)

Fourier-cosine transformation of Equations (A19) and (A20) yields [10,28]

Pρ(x, t) =
1

2π

∫ ∞
0 dkkρ−1 cos(kx)H1,1

1,2

[
√

Dαtα|k|
∣∣∣∣∣ (0, 1/2)
(0, 1), (0, α/2)

]

=
1
|x|ρ H2,1

3,3

[
x2

Dαtα

∣∣∣∣∣ (1, 1), (1, α), ( 1+ρ
2 , 1)

(1, 2), (1, 1), ( 1+ρ
2 , 1)

]
.

(A21)

For ρ = 1, we obtain the solution of Equation (A18). Taking into account the properties of the Fox
H function, we obtain

1
|x|H

2,1
3,3

[
x2

Dαtα

∣∣∣∣∣ (1, 1), (1, α), (1, 1)
(1, 2), (1, 1), (1, 1)

]
=

1
|x|H

2,0
2,2

[
x2

Dαtα

∣∣∣∣∣ (1, α), (1, 1)
(1, 2), (1, 1)

]
. (A22)

Use of property xδHm,n
p,q

[
x

∣∣∣∣∣ (ap, Ap)

(bq, Bq)

]
= Hm,n

p,q

[
x

∣∣∣∣∣ (ap + δAp, Ap)

(bq + δBq, Bq)

]
reduces Equation (A21) to

P1(x, t) ≡ P(x, t) =
1√

Dαtα
H2,0

2,2

[
x2

Dαtα

∣∣∣∣∣ (1− α
2 , α), ( 1

2 , 1)
(0, 2), ( 1

2 , 1)

]
. (A23)
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Using property of Equation (A22), we obtain

P1(x, t) =
1√

Dαtα
H1,0

1,1

[
x2

Dαtα

∣∣∣∣∣ (1− α
2 , α)

(0, 2)

]
. (A24)
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