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Abstract: Our present investigation is mainly based on the k-hypergeometric functions which are
constructed by making use of the Pochhammer k-symbol in Diaz et al. 2007, which are one of the
vital generalizations of hypergeometric functions. In this study, we focus on the k-analogue of F1

Appell function introduced by Mubeen et al. 2015 and the k-generalizations of F2 and F3 Appell
functions indicated in Kıymaz et al. 2017. We present some important transformation formulas and
some reduction formulas which show close relation not only with k-Appell functions but also with
k-hypergeometric functions. Employing the theory of Riemann–Liouville k-fractional derivative from
Rahman et al. 2020, and using the relations which we consider in this paper, we acquire linear and
bilinear generating relations for k-analogue of hypergeometric functions and Appell functions.

Keywords: k-gamma function; k-beta function; Pochhammer symbol; hypergeometric function;
Appell functions; integral representation; reduction and transformation formula; fractional derivative;
generating function

1. Introduction

Special functions, with their diverse sub-branches, provide a very wide field of study that appears
not only in various fields of mathematics, but also in the solutions of important problems in many
disciplines of science such as physics, chemistry, and biology. This subject is powerful enough to make
sense of uncertain questions especially in physical problems, so it encourages many people for notable
improvements on this matter. As in other sciences, remarkable problems are still discussed in many
disciplines, and more general results are attempted to be obtained.

Generalized hypergeometric functions, which are some of these studies in special functions [1,2],
are defined by

pFq

[
α1, α2, ..., αp

β1, β2, ..., βq
; x

]
=

∞

∑
n=0

(α1)n (α2)n ...
(
αp
)

n
(β1)n (β2)n ...

(
βq
)

n

xn

n!
, (1)

where α1, α2, ...., αp, β1, β2, ..., βq, x ∈ C and β1, β2, ..., βq are neither zero nor negative integers.
Here, (λ)n is the Pochhammer symbol defined by

(λ)n =

{
λ (λ + 1) ... (λ + n− 1) ; n ≥ 1,

1 ; n = 0, λ 6= 0.
(2)
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For the special case that corresponds to p = 2 and q = 1 in (1), we can obtain 2F1 Gauss
hypergeometric function [1,2],

2F1

[
α , β

γ
; x

]
=

∞

∑
n=0

(α)n (β)n
(γ)n

xn

n!
, |x| < 1, (3)

where α, β, γ, x ∈ C and γ is neither zero nor a negative integer.
Many elementary functions can be expressed in terms of hypergeometric functions.

Moreover, non-elementary functions that occur in physics and mathematics have a representation with
hypergeometric series. Therefore, generalizing hypergeometric functions have many applications in
mathematics and the other disciplines. For instance, in quantum field theory, hypergeometric functions
appear in the calculation of the Feynmann integrals, and the analytic results can be expressed in terms
of these functions [3,4]. In engineering, analytic forms of the fractional order derivatives of sinusoidal
functions are represented with hypergeometric functions [5]. In biochemistry, for the analysis of a
simple gene expression model, a hypergeometric probability distribution is considered [6], and they
also appear in the connection and linearization problems in mathematics [7–9]. Generalization of
hypergeometric function can be made by increasing the number of parameters in the hypergeometric
function or by increasing the number of variables. Appell, based on the idea that the number of
variables can be increased, has defined Appell hypergeometric functions obtained by multiplying two
hypergeometric functions. These are the four elemanter functions defined in [1,2]

F1
(
α, β, β′; γ; x, y

)
=

∞

∑
m,n=0

(α)m+n (β)m (β′)n
(γ)m+n

xm

m!
yn

n!
, (4)

F2
(
α, β, β′; γ, γ′; x, y

)
=

∞

∑
m,n=0

(α)m+n (β)m (β′)n
(γ)m (γ′)n

xm

m!
yn

n!
, (5)

F3
(
α, α′, β, β′; γ; x, y

)
=

∞

∑
m,n=0

(α)m (α′)n (β)m (β′)n
(γ)m+n

xm

m!
yn

n!
, (6)

F4
(
α, β; γ, γ′; x, y

)
=

∞

∑
m,n=0

(α)m+n (β)m+n
(γ)m (γ′)n

xm

m!
yn

n!
, (7)

where |x| < 1, |y| < 1; |x|+ |y| < 1; |x| < 1, |y| < 1;
√
|x|+

√
|y| < 1, respectively. Appell functions

can be found in the study of autoionization of atoms [10], separability of Hamilton–Jacobi equations
in classical mechanics [11], representation of Feynmann integral in quantum field theory [3,4], and
expression of Nordsieck integral in atomic collisions physics [12].

Another generalization of hypergeometric functions is the hypergeometric k -function, defined
by the Pochhammer k-symbol studied by Diaz et al. [13]. This paper includes the k-analogue of the
Pochhammer symbol and hypergeometric function, as well as the k-generalization of gamma, beta,
and zeta functions with their integral representations and some identities provided by classical ones.
It should be noted that, taking k = 1 in these generalizations, the k-extensions of the functions reduce
to the classical ones.

Let k ∈ R+ and n ∈ N+. Hypergeometric k-function is defined in [13] as

2F1,k

[
α , β

γ
; x

]
:= 2F1,k

[
(α, k) , (β, k)

(γ, k)
; x

]
=

∞

∑
n=0

(α)n,k (β)n,k

(γ)n,k

xn

n!
, (8)

where α, β, γ, x ∈ C and γ neither zero nor a negative integer and (λ)n,k is the Pochhammer k-symbol
defined in [13] as

(λ)n,k =

{
λ (λ + k) (λ + 2k) ... (λ + (n− 1) k) ; n ≥ 1,

1 ; n = 0, λ 6= 0.
. (9)
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Based on this generalization, Kokologiannaki [14] obtained different inequalities and properties
for the generalizations of Gamma, Beta, and Zeta functions. Some limits with the help
of asymptotic properties of k-gamma and k-beta functions were discussed by Krasniqi [15].
Mubeen et al. [16] established integral representations of the k-confluent hypergeometric function and
k-hypergeometric function and, in another paper [17], proved the k-analogue of the Kummer’s first
formulation using these integral representations. In [18], some families of multilinear and multilateral
generating functions for the k-analogue of the hypergeometric functions were obtained. Studies on
this subject are not limited to these papers; for details, see [19–22].

In [23], Mubeen adapted the k-generalization to the Riemann–Liouville fractional integral by using
k-gamma function. In [24], k-Riemann–Liouville fractional derivative was studied and new properties
were obtained with the help of Fourier and Laplace transforms. In [25], Rahman et al. applied the
newly k-fractional derivative operator to k-analogue of hypergeometric and Appell functions and
obtained new relations satisfied between them. Furthermore, k-fractional derivative operator was
applied to the k-Mittag–Leffler function and the Wright function.

Our present investigation is motivated by the fact that generalizations of hypergeometric functions
have considerable importance due to their applications in many disciplines from different perspectives.
Therefore, our study is generally based on the k-extension of hypergeometric functions. The structure
of the paper is organized as follows: In Section 2, we briefly give some definitions and preliminary
results which are essential in the following sections as noted in [13,23,26,27]. In Section 3, we prove
some main properties such as transformation formulas, and some reduction formulas which enable us
to have relations for k-hypergeometric functions and k-Appell functions. In the last part of the paper,
applying the theory of Riemann–Liouville k-fractional derivative [25] and using the relations which
we consider in the previous sections, we gain linear and bilinear generating relations for k-analogue of
hypergeometric functions and k-Appell functions.

2. Some Definitions and Preliminary Results

For the sake of completeness, it will be better to examine the preliminary section in three
subsections by the reason of the number of theorems and definitions. In these subsections, we
will present some definitions, properties, and results which we need in our investigation in further
sections. We begin by introducing k-gamma, k-beta, and k-analogue of hypergeometric function and
we continue definitions of k-generalized F1, F2 and F3 which are the classical Appell functions. We
conclude this section with recalling Riemann–Liouville fractional derivative, k-generalization of this
fractional derivative, and some important theorems which will be required in our studies.

Through this paper, we denote by C, R, R+, N and N+ the sets of complex numbers, real numbers,
real and positive numbers, and positive integers with zero and positive integers, respectively.

2.1. k-Generalizations of Gamma, Beta, and Hypergeometric Functions

In this subsection, the definitions of k-gamma and k-beta functions are presented and some
elemental relations provided by these functions are introduced by Diaz et al. [13] and Mubeen et al. [22].
Furthermore, we continue the definition of k-hypergeometric function and we present integral
representation and some formulas satisfied from this generalization [16,17].

Definition 1. For x ∈ C and k ∈ R+, the integral representation of k-gamma function Γk is defined by

Γk (x) =
∞∫

0

tx−1e−
tk
k dt, (10)

where < (x) > 0 [13,22].
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Definition 2. For x, y ∈ C and k ∈ R+, the k-beta function Bk is defined by

Bk (x, y) =
1
k

1∫
0

t
x
k−1 (1− t)

y
k−1 dt, (11)

where < (x) > 0 and < (y) > 0 [13].

Proposition 1. Let k ∈ R+, a ∈ R, n ∈ N+. The k-gamma function Γk and the k-beta function Bk satisfy the
following properties [13,22],

Γk (x + k) = xΓk (x) , (12)

Γk (x) = k
x
k−1Γ

( x
k

)
, (13)

Bk (x, y) =
Γk (x) Γk (y)
Γk (x + y)

, (14)

Bk (x, y) =
1
k

B
( x

k
,

y
k

)
. (15)

Definition 3. Let x ∈ C, k ∈ R+ and n ∈ N+. Then, the Pochhammer k-symbol is defined in [13,22] by

(x)n,k = x (x + k) (x + 2k) ... (x + (n− 1) k) . (16)

In particular, we denote (x)0,k := 1.

Proposition 2. If α ∈ C and m, n ∈ N+ then for k ∈ R+, we have

(α)n,k =
Γk (α + nk)

Γk (α)
, (17)

(α)n,k = kn
(α

k

)
n

, (18)

(α)m+n,k = (α)m,k (α + mk)n,k , (19)

where (α)n and (α)n,k denote the Pochhammer symbol and Pochhammer k-symbol, respectively [13,22].

Proposition 3. For any α ∈ C and k ∈ R+, the following identity holds

∞

∑
n=0

(α)n,k
xn

n!
= (1− kx)−

α
k , (20)

where |x| < 1
k [13,22].

Theorem 1. Assume that x ∈ C, k ∈ R+ and < (γ) > < (β) > 0, then the integral representation of the
k-hypergeometric function is defined in [16] as

2F1,k

[
α , β

γ
; x

]
=

Γk (γ)

kΓk (β) Γk (γ− β)

1∫
0

t
β
k−1 (1− t)

γ−β
k −1 (1− kxt)−

α
k dt. (21)

For the following theorem, 2F1,k

[
(α, 1) , (β, k)

(γ, k)
; x

]
is the expression of the following form [17],

2F∗1,k

[
α , β

γ
; x

]
:= 2F1,k

[
(α, 1) , (β, k)

(γ, k)
; x

]
=

∞

∑
n=0

(α)n (β)n,k

(γ)n,k

xn

n!
. (22)



Fractal Fract. 2020, 4, 48 5 of 19

Theorem 2. In [17], assume that x ∈ C, k ∈ R+ and Re (γ− β) > 0, then

2F1,k

[
(α, 1) , (β, k)

(γ, k)
; x

]
: =

Γk (γ) Γk (γ− β− kα)

Γk (γ− β) Γk (γ− kα)
. (23)

For the special case α = −n,

2F1,k

[
(−n, 1) , (β, k)

(γ, k)
; x

]
=

(γ− β)n,k

(γ)n,k
. (24)

2.2. k-Generalizations of the Appell Functions F1, F2 and F3

In 2015, k-generalization of F1 Appell function was introduced and contiguous function relations
and integral representation of this function were shown by using the fundamental relations of the
Pochhammer k-symbol [26]. In 2017, k-analogues of the F2, F3, and F4 were explored by Kıymaz et al.
in [27] and also in that study, they provided the relations between k-analogues of Appell functions and
the classical ones. Here, we remind the definitions of k-analogue of F1, F2 and F3 which are the Appell
functions, and integral representations which are satisfied by them [26,27].

Definition 4. In [26], let k ∈ R+, x, y ∈ C, α, β, β′, γ ∈ C and n ∈ N+. Then, the F1,k function with the
parameters α, β, β′, γ is given by

F1,k
(
α, β, β′; γ; x, y

)
=

∞

∑
m,n=0

(α)m+n,k (β)m,k (β′)n,k

(γ)m+n,k

xm

m!
yn

n!
, (25)

where γ 6= 0,−1,−2, ... and |x| < 1
k , |y| < 1

k .

Definition 5. In [27], let k ∈ R+, x, y ∈ C, α, β, β′, γ, γ′ ∈ C and m, n ∈ N+. Then, the Appell k-functions
are defined by

F2,k
(
α, β, β′; γ, γ′; x, y

)
=

∞

∑
m,n=0

(α)m+n,k (β)m,k (β′)n,k

(γ)m,k (γ
′)n,k

xm

m!
yn

n!
, (26)

F3,k
(
α, α′, β, β′; γ; x, y

)
=

∞

∑
m,n=0

(α)m,k (α
′)n,k (β)m,k (β′)n,k

(γ)m+n,k

xm

m!
yn

n!
, (27)

F4,k
(
α, β; γ, γ′; x, y

)
=

∞

∑
m,n=0

(α)m+n,k (β)m+n,k

(γ)m,k (γ
′)n,k

xm

m!
yn

n!
, (28)

where |x|+ |y| < 1
k ; |x| < 1

k , |y| < 1
k ;
√
|x|+

√
|y| < 1√

k
, respectively, and denominators are neither zero

nor negative integers.

Theorem 3. In [26], assume that k ∈ R+, x, y ∈ C, < (γ) > < (α) > 0, then the integral representation of
the k-hypergeometric function is as follows:

F1,k
(
α, β, β′; γ; x, y

)
= Γk(γ)

kΓk(α)Γk(γ−α)

1∫
0

t
α
k−1 (1− t)

γ−α
k −1 (1− kxt)−

β
k (1− kyt)−

β′
k dt. (29)
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Theorem 4. In [27], let k ∈ R+. Integral representations of F2,k and F3,k have the forms of

F2,k
(
α, β, β′; γ, γ′; x, y

)
=

1
k2Bk (β, γ− β) Bk (β′, γ′ − β′)

×
1∫

0

1∫
0

t
β
k−1s

β′
k −1 (1− t)

γ−β
k −1 (1− s)

γ′−β′
k −1

(1− kxt− kys)
α
k

dtds, (30)

F3,k
(
α, α′, β, β′; γ; x, y

)
=

Γk (γ)

k2Γk (β) Γk (β′) Γk (γ− β− β′)

×
∫∫
D

t
β
k−1s

β′
k −1 (1− kxt)−

α
k (1− kys)−

α′
k

(1− t− s)1− γ−β−β′
k

dtds, (31)

where < (γ) > < (β) > 0, < (γ′) > < (β′) > 0 and D = {t ≥ 0, s ≥ 0, t + s ≤ 1} .

2.3. The Riemann–Liouville k-Fractional Derivative Operator

Fractional calculus and its applications have been intensively investigated for a long time by many
researchers in numerous disciplines and attention to this subject has grown tremendously. By making
use of the concept of the fractional derivatives and integrals, various extensions of them have been
introduced [28–31], and authors have gained different perspectives in many areas such as engineering,
physics, economics, biology, statistics [32,33]. One of the generalizations of fractional derivatives
is Riemann–Liouville k-fractional derivative operator studied in [24,25,34]. Here, we remind the
definition of Riemann–Liouville fractional derivative and its k-generalization and also some theorems
which will be used in the further section, are displayed.

Definition 6. In [2], the well-known Riemann–Liouville fractional derivative of order µ is described,
for a function f , as follows:

Dµ
z { f (z)} = 1

Γ (−µ)

z∫
0

f (t) (z− t)−µ−1 dt, (32)

where < (µ) < 0.
In particular, for the case m− 1 < < (µ) < m, where m = 1, 2, ... (32) is written by

Dµ
z { f (z)} =

dm

dzmD
µ−m
z { f (z)} (33)

=
dm

dzm

 1
Γ (−µ + m)

x∫
0

f (t) (z− t)−µ+m−1 dt

 .

Definition 7. In [25], the k-analogue of Riemann–Liouville fractional derivative of order µ is defined by

kD
µ
z { f (z)} = 1

kΓk (−µ)

z∫
0

f (t) (z− t)−
µ
k−1 dt, (34)

where < (µ) < 0 and k ∈ R+.
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In particular, for the case m− 1 < < (µ) < m, where m = 1, 2, ..., (34) is written by

kD
µ
z { f (z)} =

dm

dzm kD
µ−mk
z { f (z)} (35)

=
dm

dzm

 1
kΓk (−µ + mk)

z∫
0

f (t) (z− t)−
µ
k +m−1 dt

 .

Theorem 5. In [25], let k ∈ R+, < (µ) < 0. Then, we have

kD
µ
z

{
z

η
k

}
=

z
η−µ

k

Γk (−µ)
Bk (η + k,−µ) . (36)

Theorem 6. In [25], let Re (µ) > 0 and suppose that the function f (z) is analytic at the origin with its
Maclaurin expansion has the power series expansion

f (z) =
∞

∑
n=0

anzn, (37)

where |z| < ρ, ρ ∈ R+. Then,

kD
µ
z { f (z)} =

∞

∑
n=0

an kD
µ
z {zn} . (38)

Theorem 7. In [25], let k ∈ R+, < (µ) > < (η) > 0 . Then, the following result holds true:

kD
η−µ
z

{
z

η
k−1 (1− kz)−

β
k

}
=

Γk (η)

Γk (µ)
z

µ
k−1

2F1,k

[
β , η

µ
; z

]
, (39)

where |z| < 1
k .

Theorem 8. In [25], let k ∈ R+. We have the following result:

kD
η−µ
z

{
z

η
k−1 (1− kaz)−

α
k (1− kbz)−

β
k

}
=

Γk (η)

Γk (µ)
z

µ
k−1F1,k (η, α, β; µ; az, bz) , (40)

where < (µ) > < (η) > 0, < (α) > 0,< (β) > 0 and max {|az| , |bz|} < 1
k .

3. Transformation Formulas of k-Generalized Appell Functions

In this section, we derive some linear transformations of k-generalized Appell functions and
give some reduction formulas involving the 2F1,k hypergeometric function which provide us with an
opportunity to generalize widely used identities for Appell hypergeometric functions.

Theorem 9. For k ∈ R+, F1,k has the following relation:

F1,k
(
α, β, β′; γ; x, y

)
= (1− kx)−

β
k (1− ky)−

β′
k F1,k

(
γ− α, β, β′; γ;− x

1− kx
,− y

1− ky

)
, (41)

where < (γ) > < (α) > 0 and
∣∣∣ x

1−kx

∣∣∣ < 1
k ,
∣∣∣ y

1−ky

∣∣∣ < 1
k , |x| < 1

k , |y| < 1
k .
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Proof. In [26], the integral representation of F1,k is given by

F1,k
(
α, β, β′; γ; x, y

)
=

1
kBk (α, γ− a)

1∫
0

t
α
k−1 (1− t)

γ−α
k −1 (1− kxt)−

β
k (1− kyt)−

β′
k dt.

If we make use of the substitution t = 1− t1 in the above integral, then we can write

F1,k
(
α, β, β′; γ; x, y

)
=

1
kBk (α, γ− a)

×
1∫

0

t
γ−α

k −1
1 (1− t1)

α
k−1 (1− kx (1− t1))

− β
k (1− ky (1− t1))

− β′
k dt1

=
1

kBk (α, γ− a)
(1− kx)−

β
k (1− ky)−

β′
k

×
1∫

0

t
γ−α

k −1
1 (1− t1)

α
k−1

(
1 +

kxt1

1− kx

)− β
k
(

1 +
kyt1

1− ky

)− β′
k

dt1

= (1− kx)−
β
k (1− ky)−

β′
k F1,k

(
γ− α, β, β′; γ;− x

1− kx
,− y

1− ky

)
.

Thus, we get the desired result.

Theorem 10. For k ∈ R+, we have

F1,k
(
α, β, β′; γ; x, y

)
= (1− kx)−

α
k F1,k

(
α, γ− β− β′, β′; γ;− x

1−kx ,− x−y
1−kx

)
, (42)

and

F1,k
(
α, β, β′; γ; x, y

)
= (1− ky)−

α
k F1,k

(
α, β, γ− β− β′; γ;− y−x

1−ky ,− y
1−ky

)
. (43)

Proof. By a change of variables t = t1
1−kx+kt1x in the integral representation of F1,k, we have that

F1,k
(
α, β, β′; γ; x, y

)
=

1
kBk (α, γ− α)

×
1∫

0

t
α
k−1 (1− t)

γ−α
k −1 (1− kxt)−

β
k (1− kyt)−

β′
k dt

=
1

kBk (α, γ− α)
(1− kx)

γ−α−β
k

×
1∫

0

t
α
k−1
1 (1− t1)

γ−α
k −1 (1− kx + kxt1)

β+β′−γ
k (1− kx + kxt1 − kyt1)

− β′
k dt1

=
1

kBk (α, γ− α)
(1− kx)−

α
k

×
1∫

0

t
α
k−1
1 (1− t1)

γ−α
k −1

(
1 +

kxt1

1− kx

) β+β′−γ
k

(
1 +

kxt1 − kyt1

1− kx

)− β′
k

dt1

= (1− kx)−
α
k F1,k

(
α, γ− β− β′, β′; γ;− x

1− kx
,− x− y

1− kx

)
.
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In the above integral, we note that using a similar argument with t = t1
1−ky−kt1y , one can

easily obtain

F1,k
(
α, β, β′; γ; x, y

)
= (1− ky)−

α
k F1,k

(
α, β, γ− β− β′; γ;− y− x

1− ky
,− y

1− ky

)
.

Theorem 11. Letting k ∈ R+, then F1,k has the following relations:

F1,k
(
α, β, β′; γ; x, y

)
= (1− kx)

γ−α−β
k (1− ky)−

β′
k F1,k

(
γ− α, γ− β− β′, β′; γ; x,− y−x

1−ky

)
, (44)

and

F1,k
(
α, β, β′; γ; x, y

)
= (1− kx)−

β
k (1− ky)

γ−α−β′
k F1,k

(
γ− α, β, γ− β− β′; γ;− y−x

1−kx , y
)

. (45)

Proof. Using t = t1
1−kx+kxt1

and t1 = 1− t2 in integral representation of F1,k, we obtain

F1,k
(
α, β, β′; γ; x, y

)
=

1
kBk (α, γ− α)

×
1∫

0

t
α
k−1 (1− t)

γ−α
k −1 (1− kxt)−

β
k (1− kyt)−

β′
k dt

=
1

kBk (α, γ− α)

×
1∫

0

t
γ−α

k −1
2 (1− t2)

α
k−1 (1− kx)

γ−α−β
k (1− kxt2)

β+β′−γ
k (1− ky + kyt2 − kxt2)

− β′
k dt2

= (1− kx)
γ−α−β

k (1− ky)−
β′
k

1
kBk (α, γ− α)

×
1∫

0

t
γ−α

k −1
2 (1− t2)

α
k−1 (1− kxt2)

β+β′−γ
k

(
1 +

kyt2 − kxt2

1− ky

)− β′
k

dt2

= (1− kx)
γ−α−β

k (1− ky)−
β′
k F1,k

(
γ− α, γ− β− β′, β′; γ; x,− y−x

1−ky

)
.

Using the same method as above, we can reach (45) easily.
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Theorem 12. Letting k ∈ R+, then the following relations hold:

F2,k
(
α, β, β′; γ, γ′; x, y

)
= (1− kx)−

α
k F2,k

(
α, γ− β, β′; γ, γ′;− x

1− kx
,

y
1− kx

)
, (46)

F2,k
(
α, β, β′; γ, γ′; x, y

)
= (1− ky)−

α
k F2,k

(
α, β, γ′ − β′; γ, γ′;

x
1− ky

,− y
1− ky

)
, (47)

and

F2,k
(
α, β, β′; γ, γ′; x, y

)
= (1− kx− ky)−

α
k F2,k

(
α, γ− β, γ′ − β′; γ, γ′;− x

1−kx−ky ,− y
1−kx−ky

)
. (48)

Proof. By taking for the first relation t = 1− t1, for the second s = 1− s1 and, finally, for the third
t = 1− t1, s = 1− s1 together in the double integral (30), we find (46), (47) and (48), respectively.
These complete the proof.

We continue with some reduction formulas for Appell functions F1,k and F2,k in terms of the 2F1,k
generalized hypergeometric function.

Theorem 13. Let k ∈ R+. Then, the special cases of F1,k and F2,k are as follows:

F1,k
(
α, β, β′; γ; x, y

)
= (1− kx)−

α
k 2F1,k

[
α , β′

β + β′
;− x− y

1− kx

]
, (49)

F1,k
(
α, β, β′; γ; x, y

)
= (1− ky)−

α
k 2F1,k

[
α , β

β + β′
;− y− x

1− ky

]
, (50)

F2,k
(
α, β, β′; γ, γ′; x, y

)
= (1− kx)−

α
k 2F1,k

[
α , β′

γ′
;

y
1− kx

]
, (51)

F2,k
(
α, β, β′; γ, γ′; x, y

)
= (1− ky)−

α
k 2F1,k

[
α , β

γ
;

x
1− ky

]
. (52)

Proof. Specializing (42) and (43) for γ = β + β′ and also if we set γ = β and γ = β′ in (46) and (47),
we obtain desired results, respectively.

In the next lemma, we will prove Euler transformation for 2F1,k hypergeometric function, which
will be used in the next theorem.

Lemma 1. Let x ∈ C, k ∈ R+. Then, we have

2F1,k

[
α , β

γ
; x

]
= (1− kx)−

β
k 2F1,k

[
γ− α , β

γ
;− x

1− kx

]
. (53)
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Proof. From the definition of 2F1,k, one gets

(1− kx)−
β
k 2F1,k

[
γ− α , β

γ
;− x

1− kx

]

= (1− kx)−
β
k

∞

∑
n=0

(γ− α)n,k (β)n,k

(γ)n,k

(−1)n xn

n! (1− kx)n

=
∞

∑
m,n=0

(γ− α)n,k (β)n,k (β + nk)m,k

(γ)n,k

(−1)n xm+n

n!m!

=
∞

∑
m=0

m

∑
n=0

(γ− α)n,k (β)m,k

(γ)n,k

(−1)n xm

n! (m− n)!
. (54)

Using the identity (m− n)! = (−1)nm!
(−m)n

in (54), we thus find that

(1− kx)−
β
k 2F1,k

[
γ− α , β

γ
;− x

1− kx

]

=
∞

∑
m=0

m

∑
n=0

(γ− α)n,k (−m)n

(γ)n,k n!
(β)m,k xm

m!

=
∞

∑
m=0

2F1,k

[
(−m, 1) , (γ− α, k)

(γ, k)
; 1

]
(β)m,k

xm

m!
. (55)

Making use of (24) in (55), we get the desired result.

Theorem 14. Let k ∈ R+. Then, we have

F1,k
(
α, β, β′; γ; x, y

)
= (1− ky)−

β′
k F3,k

(
α, γ− α, β, β′; γ; x,− y

1− ky

)
. (56)

Proof. Using the definition of F1,k defined by (25) and making use of (53), we can write

F1,k
(
α, β, β′; γ; x, y

)
=

∞

∑
m=0

(α)m,k (β)m,k

(γ)m,k
2F1,k

[
α + mk , β′

γ + mk
; y

]
xm

m!

=
∞

∑
m=0

(α)m,k (β)m,k

(γ)m,k
(1− ky)−

β′
k 2F1,k

[
β′, γ− α

γ + mk
;− y

1− ky

]
xm

m!

= (1− ky)−
β′
k

∞

∑
m,n=0

(α)m,k(β)m,k(β′)n,k(γ−α)n,k
(γ)m,k(γ+mk)n,k

xm

m!

(
− y

1−ky

)n

n!

= (1− ky)−
β′
k F3,k

(
α, γ− α, β, β′; γ; x,− y

1− ky

)
.

Thus, we finish the proof.

4. Generating Relations Involving the Generalized Appell Functions

In this section, employing the theory of Riemann–Liouville k-fractional derivative [25] and making
use of the relations which we have considered in the previous sections, we establish linear and bilinear
generating relations for k-analogue of hypergeometric functions and k-Appell functions.
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Theorem 15. We have the generating relation

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
tn = (1− kt)−

λ
k 2F1,k

[
λ, α

β
;

x
1− kt

]
, (57)

where |x| < 1
k min {1, 1− kt} .

Proof. To prove the result, consider the elementary identities given by

(1− kx− kt)−
λ
k = (1− kt)−

λ
k

(
1− kx

1− kt

)− λ
k

, (58)

(1− kx− kt)−
λ
k = (1− kx)−

λ
k

(
1− kt

1− kx

)− λ
k

.

From the series expansion using the definition of the Pochhammer k-symbol [13]

∞

∑
n=0

(α)n,k
zn

n!
= (1− kz)−

α
k ,

We can write

(1− kx− kt)−
λ
k = (1− kx)−

λ
k

∞

∑
n=0

(λ)n,k

n!

(
t

1− kx

)n

= (1− kx)−
λ
k

∞

∑
n=0

(λ)n,k

n!
(1− kx)−n tn

=
∞

∑
n=0

(λ)n,k

n!
(1− kx)−

λ
k −n tn. (59)

From (58) and (59), we have the equality

∞

∑
n=0

(λ)n,k

n!
(1− kx)−

λ
k −n tn = (1− kt)−

λ
k

(
1− kx

1− kt

)− λ
k

, (60)

where |t| < |1− kx| . Multiplying both sides of (60) by x
α
k−1and then applying kDα−β

x to both sides
of (60), we can reach

kDα−β
x

{
∞

∑
n=0

(λ)n,k

n!
x

α
k−1 (1− kx)−

λ
k −n tn

}
=k Dα−β

x

{
(1− kt)−

λ
k x

α
k−1

(
1− kx

1− kt

)− λ
k
}

.

Since <(α) > 0 where |t| < |1− kx|, it is possible to change the order of the summation and
differentiation, we get

∞

∑
n=0

(λ)n,k

n! kDα−β
x

{
x

α
k−1 (1− kx)−

λ
k −n
}

tn (61)

= (1− kt)−
λ
k kDα−β

x

{
x

α
k−1

(
1− kx

1− kt

)− λ
k
}

.
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Finally, using relation (39) in (61), it follows that

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
tn = (1− kt)−

λ
k 2F1,k

[
λ, α

β
;

x
1− kt

]
,

where |x| < 1
k min {1, 1− kt} . Hence, we get the desired result.

Theorem 16. We have the generating relation

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
ρ− nk, α

β
; x

]
tn

= (1− kt)−
λ
k F1,k

[
α, ρ, λ; β; x,− kxt

1− kt

]
, (62)

where |x| < 1
k ,
∣∣∣ kxt

1−kt

∣∣∣ < 1
k .

Proof. Consider the identity

(1− k (1− kx) t)−
λ
k = (1− kt)−

λ
k

(
1 +

k2xt
1− kt

)− λ
k

. (63)

Under the assumption |kt| < |1− kx|−1 ,we can rewrite (63)

∞

∑
n=0

(λ)n,k

n!
(1− kx)n tn = (1− kt)−

λ
k

(
1 +

k2xt
1− kt

)− λ
k

. (64)

Multiplying x
α
k−1 (1− kx)−

ρ
k and taking the kDα−β

x on both sides of (64), we obtain

kDα−β
x

{
∞

∑
n=0

(λ)n,k

n!
x

α
k−1 (1− kx)n− ρ

k tn

}

= kDα−β
x

{
x

α
k−1 (1− kt)−

λ
k (1− kx)−

ρ
k

(
1 + k

kxt
1− kt

)− λ
k
}

.

For <(α) > 0, interchanging the order of the summation and the operator kDα−β
x , we have

∞

∑
n=0

(λ)n,k

n! kDα−β
x

{
x

α
k−1 (1− kx)n− ρ

k
}

tn

= (1− kt)−
λ
k kDα−β

x

{
x

α
k−1 (1− kx)−

ρ
k

(
1 + k

kxt
1− kt

)− λ
k
}

.

Assuming |x| < 1
k and

∣∣∣ kxt
1−kt

∣∣∣ < 1
k and using (39) and (40),

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
ρ− nk, α

β
; x

]
tn = (1− kt)−

λ
k F1,k

[
α, ρ, λ; β; x,− kxt

1− kt

]
,

the theorem is immediate.
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Theorem 17. We have the generating relations

∞

∑
n=0

(β− ρ)n,k

n! 2F1,k

[
ρ− nk, α

β
; x

]
tn

= (1− kt)
α+ρ−β

k
(

1− kt + k2xt
)− α

k
2F1,k

[
α, ρ

β
;

x
1− kt + k2xt

]
, (65)

and
∞

∑
n=0

(β)n,k (γ)n,k

(δ)n,k n! 2F1,k

[
−nk, α

β
; x

]
tn

= F1,k (γ, β− α, α; δ; t, (1− kx) t) . (66)

Proof. We use the result of the previous theorem. Setting λ = β− ρ in (62), we find that

∞

∑
n=0

(β− ρ)n,k

n! 2F1,k

[
ρ− nk, α

β
; x

]
tn = (1− kt)

ρ−β
k F1,k

[
α, ρ, β− ρ; β; x,− kxt

1− kt

]
.

If we use the reduction formula for F1,k given by (50), we can easily obtain the desired result
as follows:

∞

∑
n=0

(β− ρ)n,k

n! 2F1,k

[
ρ− nk, α

β
; x

]
tn

= (1− kt)
α+ρ−β

k
(

1− kt + k2xt
)− α

k
2F1,k

[
α, ρ

β
;

x
1− kt + k2xt

]
. (67)

For ρ = 0, (67) gives

∞

∑
n=0

(β)n,k

n! 2F1,k

[
−nk, α

β
; x

]
tn = (1− kt)

α−β
k
(

1− kt + k2xt
)− α

k . (68)

Multiplying both sides of (68) with t
γ
k −1 and operation of the kDγ−δ

t on (68), one can easily obtain

∞

∑
n=0

(β)n,k

n! 2F1,k

[
−nk, α

β
; x

]
kDγ−δ

t

{
tn+ γ

k −1
}

= kDγ−δ
t

{
t

γ
k −1 (1− kt)

α−β
k
(

1− kt + k2xt
)− α

k
}

. (69)

In view of (36) and (40) on the right and left sides of (69), respectively, we can reach

∞

∑
n=0

(β)n,k (γ)n,k

(δ)n,k n! 2F1,k

[
−nk, α

β
; x

]
tn = F1,k (γ, β− α, α; δ; t, (1− kx) t) .

Theorem 18. We have the generating relation

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
2F1,k

[
−nk, γ

δ
; y

]
tn

= (1− kt)−
λ
k F2,k

(
λ, α, γ; β, δ;

x
1− kt

,− kyt
1− kt

)
. (70)
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Proof. Putting (1− ky) t instead of t in (57), we can obtain

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
(1− ky)n tn

= (1− k (1− ky) t)−
λ
k 2F1,k

[
λ, α

β
;

x
1− k (1− ky) t

]
. (71)

Multiplying with y
γ
k −1, employing kDγ−δ

y both sides of (71) and the under the assumption
< (γ) > 0 interchanging differentiation and summation, we can write

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
kDγ−δ

y

{
y

γ
k −1 (1− ky)n

}
tn (72)

= kDγ−δ
y

{
y

γ
k −1 (1− k (1− ky) t)−

λ
k 2F1,k

[
λ, α

β
; x

1−k(1−ky)t

]}
.

Make use of the formula (39), we can easily simplify left side of the (72) as follows:

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
kDγ−δ

y

{
y

γ
k −1 (1− ky)n

}
tn (73)

= Γk(γ)
Γk(δ)

y
δ
k−1

∞

∑
n=0

(λ)n,k
n! 2F1,k

[
λ + nk, α

β
; x

]
2F1,k

[
−nk, γ

δ
; y

]
tn.

For the right side of the (72), using the definition of 2F1,k and the formula (36), one can obtain

kDγ−δ
y

{
y

γ
k −1 (1− k (1− ky) t)−

λ
k 2F1,k

[
λ, α

β
;

x
1− k (1− ky) t

]}

=
Γk (γ)

Γk (δ)
(1− kt)−

λ
k y

δ
k−1F2,k

(
λ, α, γ; β, δ;

x
1− kt

,− kyt
1− kt

)
, (74)

where |x| < 1
k , |y| < 1

k ,
∣∣∣ x

1−kt

∣∣∣ + ∣∣∣ kyt
1−kt

∣∣∣ < 1
k ,
∣∣∣ 1−ky

1−x t
∣∣∣ < 1

k . Combining the relations (73) and (74),
we get desired result.

As a special case of (70), we give the following theorem.

Theorem 19. We have the generating relation

∞

∑
n=0

(β−ρ)n,k
n! 2F1,k

[
ρ− nk, α

β
; x

]
2F1,k

[
−nk, γ

δ
; y

]
tn (75)

= (1− kx)−
α
k (1− kt)

ρ−β
k F2,k

(
β− ρ, α, γ; β, δ;− x

(1−kx)(1−kt) ,− kyt
1−kt

)
.

Proof. For λ = β− ρ in (70), we get

∞

∑
n=0

(β− ρ)n,k

n! 2F1,k

[
β− ρ + nk, α

β
; x

]
2F1,k

[
−nk, γ

δ
; y

]
tn

= (1− kt)
ρ−β

k F2,k

(
β− ρ, α, γ; β, δ;

x
1− kt

,− kyt
1− kt

)
.
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Using Euler transformation given by (53) for 2F1,k

∞

∑
n=0

(β− ρ)n,k

n!
(1− kx)−

α
k 2F1,k

[
ρ− nk, α

β
;− x

1− kx

]
2F1,k

[
−nk, γ

δ
; y

]
tn

= (1− kt)
ρ−β

k F2,k

(
β− ρ, α, γ; β, δ;

x
1− kt

,− kyt
1− kt

)
,

and putting − x
1−kx instead of x, we reach the desired result.

Theorem 20. We have the generating relation

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
2F1,k

[
λ + nk, γ

δ
; y

]
tn

= (1− kt)−
λ
k

∞

∑
n=0

(λ)n,k (α)n,k

(β)n,k n!

(
− kxy

1− kt

)n
(76)

×F2,k

(
λ + nk, α + nk, γ + nk; β + nk, δ + nk;

x
1− kt

,− ky
1− kt

)
.

Proof. Replacing t by t
1−ky and after some simplification in (57), we find that

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
tn

(1− ky)n+ λ
k

= (1− kt)−
λ
k

∞

∑
n=0

(λ)n,k (α)n,k

(β)n,k n!

(
x (1− ky)

1− kt

)n (
1− ky

1− kt

)−n− λ
k

.

Using the binomial expansion (x + y)n =
n
∑

k=0

(
n
k

)
xkyn−k,

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
tn

(1− ky)n+ λ
k

= (1− kt)−
λ
k

×
∞

∑
n=0

n

∑
k1=0

(λ)n,k (α)n,k

(β)n,k n!

(
n
k1

)
(−1)n−k1

(
x

1− kt

)k1
(

xky
1− kt

)n−k1
(

1− ky
1− kt

)−n− λ
k

= (1− kt)−
λ
k

×
∞

∑
n,k1=0

(λ)n+k1,k (α)n+k1,k

(β)n+k1,k (n + k1)!

(
n + k1

k1

)
(−1)n

(
x

1− kt

)k1
(

xky
1− kt

)n (
1− ky

1− kt

)−n−k1− λ
k

= (1− kt)−
λ
k

×
∞

∑
n=0

(λ)n,k (α)n,k

(β)n,k n!

(
− xky

1− kt

)n (
1− ky

1− kt

)−n− λ
k

2F1,k

[
λ + nk, α + nk

β + nk
;

x
1−kt

1− ky
1−kt

]
.(77)

Multiplying y
γ
k −1, operating kDγ−δ

y and applying (36), (39), and (40) together both sides of

the (77) (in a similar way of proof of the (70)) for |x| < 1
k , |y| < 1

k ,
∣∣∣ x

1−kt

∣∣∣+ ∣∣∣ ky
1−kt

∣∣∣ < 1
k , we complete

the proof.
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Theorem 21. We have the generating relation

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
2F1,k

[
λ + nk, γ

δ
; y

]
tn

= (1− kt)−
λ
k

∞

∑
n=0

(λ)n,k (α)n,k (γ)n,k

(β)n,k (δ)n,k n!

(
k3xyt

(1− kt)2

)n

(78)

× 2F1,k

[
λ + nk, α + nk

β + nk
;

x
1− kt

]
2F1,k

[
λ + nk, γ + nk

δ + nk
;

y
1− kt

]
.

For the special case β = δ = λ , we have

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

λ
; x

]
2F1,k

[
λ + nk, γ

λ
; y

]
tn

= (1− kt)
γ+α−λ

k (1− kt− kx)−
α
k (1− kt− ky)−

γ
k

×2F1,k

[
α, γ

λ
;

k3xyt
(1− kt− kx) (1− kt− ky)

]
. (79)

Proof. From the elementary identity, we find that

((1− kx) (1− ky)− kt)−
λ
k = (1− kt)−

λ
k

((
1− kx

1− kt

)(
1− ky

1− kt

)
− k3xyt

(1− kt)2

)− λ
k

, (80)

for
∣∣∣ kt
(1−kx)(1−ky)

∣∣∣ < 1
k and

∣∣∣ k3xyt
(1−kt−kx)(1−kt−ky)

∣∣∣ < 1
k . Applying (20) to (80), multiplying x

α
k−1y

γ
k −1 and

taking kDα−β
x kDγ−δ

y together both sides of (80), we have

kDα−β
x kDγ−δ

y

{
∞

∑
n=0

(λ)n,k

n!
x

α
k−1 (1− kx)−

λ
k −n y

γ
k −1 (1− ky)−

λ
k −n tn

}
= (1− kt)−

λ
k

×kDα−β
x kDγ−δ

y

{
∞

∑
n=0

(λ)n,k
(
k3t
)n

n! (1− kt)2n x
α
k +n−1

(
1− kx

1− kt

)− λ
k −n

y
γ
k +n−1

(
1− ky

1− kt

)− λ
k −n
}

.

Under the conditions < (α) > 0, < (γ) > 0, |x| < 1
k , |y| < 1

k ,
∣∣∣ x

1−kt

∣∣∣ < 1
k and

∣∣∣ y
1−kt

∣∣∣ < 1
k ,

directly from the properties (36), (39), and (40), we can obtain

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

β
; x

]
2F1,k

[
λ + nk, γ

δ
; y

]
tn

= (1− kt)−
λ
k

∞

∑
n=0

(λ)n,k (α)n,k (γ)n,k

(β)n,k (δ)n,k n!

(
k3xyt

(1− kt)2

)n

×2F1,k

[
λ + nk, α + nk

β + nk
;

x
1− kt

]
2F1,k

[
λ + nk, γ + nk

δ + nk
;

y
1− kt

]
.
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For the special case β = δ = λ in (78), we have

∞

∑
n=0

(λ)n,k

n! 2F1,k

[
λ + nk, α

λ
; x

]
2F1,k

[
λ + nk, γ

λ
; y

]
tn

= (1− kt)−
λ
k

×
∞

∑
n=0

(α)n,k (γ)n,k

(λ)n,k n!

(
k3xyt

(1− kt)2

)n (
1− kx

1− kt

)− α+nk
k
(

1− ky
1− kt

)− γ+nk
k

= (1− kt)
γ+α−λ

k (1− kt− kx)−
α
k (1− kt− ky)−

γ
k

×2F1,k

[
α, γ

λ
;

k3xyt
(1− kt− kx) (1− kt− ky)

]
.

5. Conclusions

Hypergeometric functions play an important role in many disciplines from different perspectives.
Therefore, generalizations of hypergeometric functions have considerable popularity in many fields
of science. This work is generally based on the k-extension of hypergeometric functions. By making
use of the concept of the [26,27], we focus on the generalization of the Appell functions and present
some transformation and reduction formulas. Using the theory of Riemann–Liouville k-fractional
derivative and combining this theory with the Appell functions, we derive some linear and bilinear
generating functions.
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