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Abstract: Mittag-Leffler functions and their variations are a popular topic of study at the present
time, mostly due to their applications in fractional calculus and fractional differential equations.
Here we propose a modification of the usual Mittag-Leffler functions of one, two, or three parameters,
which is ideally suited for extending certain fractional-calculus operators into the complex plane.
Complex analysis has been underused in combination with fractional calculus, especially with newly
developed operators like those with Mittag-Leffler kernels. Here we show the natural analytic
continuations of these operators using the modified Mittag-Leffler functions defined in this paper.
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1. Introduction

The study of special functions has been a significant subfield of mathematical analysis for decades,
connecting with other areas such as differential equations, fractional calculus, and mathematical
physics [1–3]. One important class of special functions consists of the so-called Mittag-Leffler function
and its extensions. These have been intensively studied, with at least one whole textbook dedicated to
them [4], along with many book chapters and important research papers [5–8]. They are particularly
useful due to their connections with fractional calculus, having been called "fractional exponential
functions" and arising naturally in solutions to various fractional differential equations [7,9,10],
including some which are useful in applications such as viscoelasticity and evolution processes [11,12].

The original Mittag-Leffler function Eα(z) depends on one variable z and one parameter α, and it
is defined by [13]

Eα(z) =
∞

∑
n=0

zn

Γ(nα + 1)
, (1)

where the series is locally uniformly convergent for any z ∈ C and any α ∈ C with Re(α) > 0.
This definition has been extended in various ways. The best-known extensions are the functions

Eα,β(z) and Eγ
α,β(z), depending on one variable z and two or three parameters α, β, and γ. These are

defined as follows [4,14]:
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Eα,β(z) =
∞

∑
n=0

zn

Γ(nα + β)
, (2)

Eγ
α,β(z) =

∞

∑
n=0

(
−γ

n

)
· (−z)n

Γ(nα + β)
=

∞

∑
n=0

Γ(γ + n)
Γ(γ)Γ(nα + β)

· zn

n!
, (3)

where again both series are locally uniformly convergent for any z ∈ C and any α, β, γ ∈ C with
Re(α) > 0. Other extensions involve even more than three parameters, or replacing the single variable
z by multiple variables [10,15–17].

In fractional calculus—the study of the integral and derivative operators of calculus taken
to non-integer orders [18–20]—most studies take place only in the real line. The standard
Riemann–Liouville definition of a fractional integral to order α is

RL
a Iα

x f (x) =
1

Γ(α)

∫ x

a
(x− ξ)α−1 f (ξ)dξ,

where f (x) is a function defined on a real interval x ∈ [a, b] but α is permitted to be complex
(with positive real part). The fractional derivative is then defined as an extension of this, by means of
the following formula for Re(α) ≥ 0:

RL
aDα

x f (x) =
dm

dxm
RL

a Im−α
x f (x), m := bRe(α)c+ 1.

By treating the parameter α as an independent complex variable, it can be shown that RL
aD−α

x f (x) =
RL

a Iα
x f (x) is an analytic extension of RL

a Iα
x f (x) from the right half-plane to the left one.

For analytic complex-valued functions f , there is another formula equivalent to
Riemann–Liouville which is more useful in the context of complex analysis [19,21]. Namely,
the fractional differintegral (valid for all α ∈ C\Z−) of f (z) is

C
aDα

z f (z) =
Γ(α + 1)

2iπ

∫
Hz

a

(ζ − z)−α−1 f (ζ)dζ, (4)

where the complex contour of integration Hz
a is the Hankel-type contour which starts above a on the

branch cut from z, wraps around z in a counterclockwise sense, and returns to a.
There are many other ways to define fractional integrals and fractional derivatives, often inspired

by or related to the Riemann–Liouville definition. Some of these are discussed in [22–24], with reference
to some general classes into which such operators can be classified. In pure mathematics, ideally we
consider the most general possible setting in which a particular result or behaviour can be proved.
In applications, of course it is necessary to consider specific types of fractional calculus for the modelling
of a given real-world problem.

We have already mentioned how Mittag-Leffler functions emerge naturally from the study of
fractional calculus and fractional differential equations. They also appear frequently as the kernels of
fractional integral and derivative operators. Many such operators are special cases of the Prabhakar
fractional calculus [14,25], which is based on the 3-parameter Mittag-Leffler function (3), and which
itself can be seen as a special case of some even more general operators [17,26].

Some of these special cases were defined without realising them as special cases, and hence they
were given their own names independently. Among the most intensively used types of fractional
calculus in the last few years are the so-called Atangana–Baleanu operators, defined in [27] using the
1-parameter Mittag-Leffler function (1). Although integral operators using 1-parameter Mittag-Leffler
kernels were already considered years earlier [28–33], the so-called AB operators have become very
popular with over 350 papers published on them between 2016 and April 2020 [34]. One mathematical
development in this setting has been, in [35], the extension of complex contour integral formulae
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like (4) to other types of fractional calculus. Doing this for AB derivatives involved the introduction of
a modified Mittag-Leffler function, related but different to the original function defined by (1).

In the current work, we seek to extend the notion of this modified 1-parameter Mittag-Leffler
function to define similarly modified Mittag-Leffler functions with two and three parameters. We shall
perform a rigorous analysis of these modified Mittag-Leffler functions, their domains and convergence
properties, and use them to extend the Atangana–Baleanu and Prabhakar fractional-calculus operators
into the setting of complex variables.

Specifically, the organisation of this paper is as follows. Section 2 introduces the modified
Mittag-Leffler functions, firstly re-checking the 1-parameter function in Section 2.1 and then defining
the 2-parameter and 3-parameter extensions in Section 2.2. Section 3 examines how they may be used in
fractional calculus, firstly for the Prabhakar operators in Section 3.1 and then for the Atangana–Baleanu
operators in Section 3.2, with some further related remarks about extensions of fractional-calculus
operators in Section 3.3. Finally, Section 4 concludes the paper.

2. Modified Mittag-Leffler Functions

2.1. A Rigorous Recap of the 1-Parameter Case

In this section, we re-analyse the 1-parameter modified Mittag-Leffler function defined in [35]. It is
necessary to do this because there were some omissions in the work of [35]: specifically, the problems
arising from the n = 0 term. In fact, the function cannot actually be defined in exactly the way it was
in [35], because Γ(−nα) is not defined at n = 0. Therefore, we consider here a slightly different version
which starts from n = 1.

Definition 1 ([35]). The modified Mittag-Leffler function Eα(z) is defined by the following series for all z ∈ C
and α ∈ C\R with Re(α) > 0:

Eα(z) =
∞

∑
n=1

Γ(−nα)zn, (5)

and by analytic continuation for all α ∈ C\R.

The reason for defining and studying this function is only to demonstrate the convergence
principles and methods which will then be used for the 2-parameter and 3-parameter modified
Mittag-Leffler functions in Section 2.2 below. In itself, this function may not be important, because
of the missing n = 0 term, but we can see it as a practice “toy” case for establishing the ideas to be
used later.

Of course, changing the definition of the modified 1-parameter Mittag-Leffler function will affect
the results of [35] on the Atangana–Baleanu fractional derivatives. We resolve this issue in Section 3
below by finding new complex contour formulae for the Atangana–Baleanu fractional derivatives.

The following result was already proved in [35]. We reproduce the proof here, with a little more
detail, and also give an alternative method of proof which will be useful later in this paper.

Proposition 1 ([35]). The infinite power series (5) is locally uniformly convergent for all z ∈ C, for any fixed
α ∈ C\R with Re(α) > 0.

Proof using reflection formula [35]. We rewrite the power series (5) using the reflection formula for
the gamma function:

Eα(z) =
∞

∑
n=1

π

sin(−πnα)
· 1

Γ(nα + 1)
zn

= 2πi
∞

∑
n=1

1
exp(−iπnα)− exp(iπnα)

· zn

Γ(nα + 1)
.
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The latter series is identical to the original Mittag-Leffler function (1) except for the extra factor
1

exp(−iπnα)−exp(iπnα)
. We split into two cases to consider the behaviour of this factor:

• If Im(α) > 0, then exp(−iπnα) − exp(iπnα) ∼ exp(−iπnα) and so 1
exp(−iπnα)−exp(iπnα)

∼
exp(iπnα) has exponential decay.

• If Im(α) < 0, then exp(−iπnα) − exp(iπnα) ∼ exp(iπnα) and so 1
exp(−iπnα)−exp(iπnα)

∼
exp(−iπnα) has exponential decay.

Either way, for Re(α) > 0 and α 6∈ R, the series converges absolutely and locally uniformly, just like
the original series (1).

Proof using ratio test and Stirling’s formula. This is a more elementary way to prove convergence
of a power series, going back to basics with the ratio test instead of relying on knowledge of the series
for the original Mittag-Leffler function. We use Stirling’s formula for the asymptotics of the gamma
functions for large n; the ratio between consecutive terms is

an+1

an
=

Γ(−nα− α)

Γ(−nα)
z

∼

√
2π

−nα−α

(−nα−α
e
)−nα−α√

2π
−nα

(−nα
e
)−nα

z

∼
(

n + 1
n

)−nα (−α

e

)−α

(n + 1)−αz ∼
(
− α(n + 1)

)−α
z

as n → ∞. The limit is zero if Re(α) > 0, so in this case the series converges absolutely and locally
uniformly as required. We still require the assumption α 6∈ R to avoid having any zero terms.

The following result was stated in [35], but the proof was only outlined. We present here the
complete proof.

Proposition 2 ([35]). The modified Mittag-Leffler function Eα(z), defined for Re(α) > 0 by Definition 1,
has an analytic continuation to all α ∈ C\R given by the following complex integral:

Eα(z) =
1
−2i

∫
H

ett−1Sα

(
zt−α

)
dt,

where H is the standard Hankel contour (starting and ending at negative real infinity and wrapping
counterclockwise around the origin) and Sα is the function defined by

Sα(x) =
∞

∑
n=1

xn

sin(πnα)
, x ∈ R, α ∈ C\R.

Proof. We follow the method of [36], and proceed as follows using the standard contour integral
representation of the inverse gamma function:

Eα(z) =
∞

∑
n=1

π

sin(−πnα)
· zn

Γ(nα + 1)

=
∞

∑
n=1

πzn

sin(−πnα)
· 1

2πi

∫
H

ett−nα−1 dt

=
1
−2i

∞

∑
n=1

∫
H

ett−nα−1 zn

sin(πnα)
dt

=
1
−2i

∫
H

ett−1
∞

∑
n=1

(
zt−α

)n

sin(πnα)
dt,
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where the interchange of summation and integration is permitted by locally uniform convergence of
the series. Note that locally uniform convergence of the series for Sα is guaranteed by the ratio test
combined with an exponential-decay argument for dividing by a sine function similar to that in the
first proof of Proposition 1 above.

2.2. Extension to the 2-Parameter and 3-Parameter Cases

The original Mittag-Leffler function (1) has been modified, using the functional equation for
the gamma function, as described in Definition 1 and the subsequent discussion. This modified
Mittag-Leffler function Eα(z) depends on one variable z and one parameter α, just like the original
Mittag-Leffler function Eα(z).

In a similar way, it is also possible to modify the 2-parameter Mittag-Leffler function (2) and the
3-parameter Mittag-Leffler function (3), thereby obtaining modified Mittag-Leffler functions with two
and three parameters. We start with the 2-parameter version.

Definition 2. The modified 2-parameter Mittag-Leffler function Eα,β(z) is defined by the following series for
all z ∈ C and α, β ∈ C satisfying Re(α) > 0 and α, β not both real and nα + β 6∈ N for any n ∈ N:

Eα,β(z) =
∞

∑
n=0

Γ(1− nα− β)zn (6)

and by analytic continuation for all α, β ∈ C satisfying α, β not both real and nα + β 6∈ N for any n ∈ N.

Theorem 1. The infinite power series (6) is locally uniformly convergent for all z ∈ C, for any fixed α, β ∈ C
satisfying Re(α) > 0 and α, β not both real and nα + β 6∈ N for any n ∈ N.

Proof using reflection formula. This follows similar lines as the first proof of Proposition 1:

Eα,β(z) =
∞

∑
n=0

π

sin(π(nα + β))
· zn

Γ(nα + β)

= 2πi
∞

∑
n=0

1
exp(iπ(nα + β))− exp(−iπ(nα + β))

· zn

Γ(nα + β)
,

where this series is identical to the original Mittag-Leffler function (2) except for the extra factor
involving two exponential functions in the denominator. We split into three cases to consider the
behaviour of this factor:

• If Im(α) > 0, then exp(iπ(nα + β)) − exp(−iπ(nα + β)) ∼ exp(−iπ(nα + β)) for sufficiently
large n, and so

1
exp(iπ(nα + β))− exp(−iπ(nα + β))

∼ exp(iπ(nα + β))

has exponential decay as n→ ∞.
• If Im(α) < 0, then exp(iπ(nα + β))− exp(−iπ(nα + β)) ∼ exp(iπ(nα + β)) for sufficiently large

n, and so
1

exp(iπ(nα + β))− exp(−iπ(nα + β))
∼ exp(−iπ(nα + β))

has exponential decay as n→ ∞.
• If Im(α) = 0, then Im(β) 6= 0 by assumption. The extra term is bounded by a constant as n→ ∞,

namely, either

1
exp(πImβ)− exp(−πImβ)

or
1

exp(−πImβ)− exp(πImβ)
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according to the sign of Im(β).

In any case, provided Re(α) > 0 so that the original series (2) converges, the new series (6) also
converges absolutely and locally uniformly. We assume throughout that the bottom never cancels out
exactly to zero; i.e., that nα + β is never an integer for any n.

Proof using ratio test and Stirling’s formula. Again the calculations here are similar to those in the
second proof of Proposition 1:

an+1

an
=

Γ(1− (n + 1)α− β)

Γ(1− nα− β)

∼

(
−(n+1)α−β

e

)−(n+1)α−β√
2π(−(n + 1)α− β)(

−nα−β
e

)−nα−β√
2π(−nα− β)

∼
(
−(n + 1)α− β

e

)−α(
(n + 1)α + β

nα + β

)−β(
(n + 1)α + β

nα + β

)−nα

∼ eα

(−(n + 1)α− β)α

(
nα + β

(n + 1)α + β

)nα

∼ 1(
− (n + 1)α− β

)α

as n → ∞. The limit is zero if Re(α) > 0, so in this case the series converges absolutely and locally
uniformly as required. We still require the assumption nα + β 6∈ N to avoid having any zero terms.

Theorem 2 (Complex integral representation of modified 2-parameter Mittag-Leffler function).
The modified 2-parameter Mittag-Leffler function, defined above under the assumption Re(α) > 0, has an
analytic continuation to α, β ∈ C satisfying α, β not both real and nα + β 6∈ N for any n ∈ N, given by the
following complex integral:

Eα,β(z) =
1
2i

∫
H

ett−βSα,β
(
zt−α

)
dt,

where H is the standard Hankel contour (starting and ending at negative real infinity and wrapping
counterclockwise around the origin) and Sα,β is the function defined by

Sα,β(x) =
∞

∑
n=0

xn

sin
(
π(nα + β)

) , α, β not both real, nα + β 6∈ N ∀n.

Proof. Similarly to Proposition 2, we use the contour integral representation of the inverse
gamma function:

Eα,β(z) =
∞

∑
n=0

Γ(1− nα− β)zn

=
∞

∑
n=0

π

sin(π(nα + β))

zn

Γ(nα + β)

=
∞

∑
n=0

πzn

sin(π(nα + β))
· 1

2πi

∫
H

ett−nα−β dt

=
1
2i

∫
H

ett−β

[ ∞

∑
n=0

(zt−α)n

sin(π(nα + β))

]
dt

=
1
2i

∫
H

ett−βSα,β
(
zt−α

)
dt,
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as required, where the interchange of summation and integration is permitted by locally uniform
convergence of the series. Note that, as before, locally uniform convergence of the series for Sα,β is
guaranteed by the ratio test combined with an exponential-decay argument for dividing by a sine
function similar to that in the first proof of Theorem 1 above.

Definition 3. The modified 3-parameter Mittag-Leffler function Eα,β
γ (z) is defined by the following series for

all z ∈ C and α, β, γ ∈ C satisfying Re(α) > 0 and α, β not both real and nα + β 6∈ N for any n ∈ N:

Eα,β
γ (z) =

∞

∑
n=0

(γ)n

n!
Γ(1− nα− β)zn =

∞

∑
n=0

Γ(γ + n)
Γ(γ)n!

Γ(1− nα− β)zn (7)

and by analytic continuation for all α, β, γ ∈ C satisfying α, β not both real and nα + β 6∈ N for any n ∈ N.

Theorem 3. The infinite power series (7) is locally uniformly convergent for all z ∈ C, for any fixed α, β, γ ∈ C
satisfying Re(α) > 0 and α, β not both real and nα + β 6∈ N for any n ∈ N.

Proof. This follows almost directly from the result of Theorem 1, either by the first method (reflection
formula) or by the second method (ratio test).

Using the reflection formula, we find

Eα,β
γ (z) = 2πi

∞

∑
n=0

1
exp(iπ(nα + β))− exp(−iπ(nα + β))

· Γ(γ + n)zn

Γ(γ)Γ(nα + β)n!

which is identical to the original 3-parameter Mittag-Leffler series (3) except for the extra factor which
is exactly the same as in Theorem 1 and therefore gives the same convergence properties under the
same conditions.

Using the ratio test, we find

an+1

an
=

(γ + n)Γ(1− (n + 1)α− β)

(n + 1)Γ(1− nα− β)
∼ Γ(1− (n + 1)α− β)

Γ(1− nα− β)
,

which is exactly the same as in Theorem 1 and therefore gives the same convergence properties under
the same conditions.

Theorem 4 (Complex integral representation of modified 3-parameter Mittag-Leffler function).
The modified 3-parameter Mittag-Leffler function, defined above under the assumption Re(α) > 0, has an
analytic continuation to α, β, γ ∈ C satisfying α, β not both real and nα + β 6∈ N for any n ∈ N, given by the
following complex integral:

Eα,β
γ (z) =

1
2i

∫
H

ett−βS
γ
α,β

(
zt−α

)
dt,

where H is the standard Hankel contour (starting and ending at negative real infinity and wrapping
counterclockwise around the origin) and S

γ
α,β is the function defined by

S
γ
α,β(x) =

∞

∑
n=0

Γ(γ + n)xn

Γ(γ)n! sin
(
π(nα + β)

) , α, β not both real, nα + β 6∈ N ∀n.
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Proof. Similarly to Proposition 2 and Theorem 2, we use the contour integral representation of the
inverse gamma function:

Eα,β
γ (z) =

∞

∑
n=0

Γ(γ + n)
Γ(γ)n!

Γ(1− nα− β)zn

=
∞

∑
n=0

π

sin(π(nα + β))

Γ(γ + n)zn

Γ(γ)Γ(nα + β)n!

=
∞

∑
n=0

πΓ(γ + n)zn

Γ(γ)n! sin(π(nα + β))

1
2πi

∫
H

ett−nα−β dt

=
1
2i

∫
H

ett−β

[ ∞

∑
n=0

Γ(γ + n)(zt−α)n

Γ(γ)n! sin(π(nα + β))

]
dt

=
1
2i

∫
H

ett−βS
γ
α,β

(
zt−α

)
dt,

where the interchange of summation and integration is permitted by locally uniform convergence
of the series. Note that locally uniform convergence of the series for Sγ

α,β is guaranteed by the same
property of Sα,β, since the ratio test gives almost exactly the same expression for both.

Remark 1. The condition required in the above definitions and theorems, that nα + β 6∈ N for any n ∈ N,
may at first seem to be very restrictive. However, this is simply the requirement that all the terms of the series
itself are well-defined. If we ever have nα + β ∈ N for some n, then Γ(1− nα− β) is not defined for this value
of n, and so the series itself makes no sense. This condition is added simply to ensure that our definitions can
actually make sense, even before convergence considerations.

3. Extensions of Fractional Operators

3.1. Contour Integral Formulae for Prabhakar Fractional Operators

Definition 4 ([14,25,37]). The Prabhakar fractional integral of a function f ∈ L1[a, b], with parameters
α, β, γ, δ ∈ C satisfying Re(α) > 0 and Re(β) > 0, is defined as

P
a Iα,β,γ,δ

x f (x) =
∫ x

a
(x− ξ)β−1Eγ

α,β

(
δ(x− ξ)α

)
f (ξ)dξ, (8)

using the 3-parameter Mittag-Leffler function (3) as a kernel function. This operator can also be written as an
infinite series of Riemann–Liouville fractional integrals, as follows:

P
a Iα,β,γ,δ

x f (x) =
∞

∑
n=0

(γ)nδn

n!
RL

a Inα+β
x f (x). (9)

The Prabhakar fractional derivative of a smooth function f (x), with parameters α, β, γ, δ ∈ C satisfying
Re(α) > 0 and Re(β) ≥ 0, is defined as

P
aDα,β,γ,δ

x f (x) =
dm

dxm
P
a Iα,m−β,−γ,δ

x f (x), m := bRe(β)c+ 1. (10)

Using composition properties of Riemann–Liouville derivatives and integrals, this operator can be written as an
infinite series similar to (9):

P
aDα,β,γ,δ

x f (x) =
∞

∑
n=0

(−γ)nδn

n!
RL

a Inα−β
x f (x), (11)
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where the operator denoted by RL
a Inα−β

x is either a Riemann–Liouville integral or a Riemann–Liouville derivative
depending on the sign of Re(nα− β).

Note that the variable x in the above definition is assumed to be real, in the fixed interval [a, b].
In the previous paper [35], the Atangana–Baleanu fractional operators were extended from the real
line to the complex plane, using a complex contour integral approach and the modified 1-parameter
Mittag-Leffler function (5). Now we seek to do the same for the Prabhakar fractional operators,
using the modified 3-parameter Mittag-Leffler function which we have defined in this paper.

Theorem 5. The analytic continuation of the Prabhakar fractional integral is given by

P
a Iα,β,γ,δ

z f (z) =
1

2πi

∫
Hz

a

(ζ − z)β−1Eα,β
γ

(
δ(ζ − z)α

)
f (ζ)dζ, (12)

where Eα,β
γ (x) is the modified 3-parameter Mittag-Leffler function defined by (7) above, and the complex contour

of integration Hz
a is the Hankel-type contour which starts above a on the branch cut from z, wraps around z in a

counterclockwise sense, and returns to a.
This formula (12) also covers Prabhakar fractional differentiation, under the convention (following from the

semigroup property and series formula) that P
aDα,β,γ,δ

x f (x) = P
a Iα,−β,−γ,δ

x f (x). In other words, we have

P
aDα,β,γ,δ

z f (z) =
1

2πi

∫
Hz

a

(ζ − z)β−1Eα,−β
−γ

(
δ(ζ − z)α

)
f (ζ)dζ.

The assumption on the parameters α, β, γ, δ for this Theorem is that α, β not both real and nα + β 6∈ N for any
n ∈ N.

Proof. We use the series formula for Prabhakar fractional calculus, noting that both (9) for
integrals and (11) for derivatives become the same formula under the convention P

aDα,β,γ,δ
x f (x) =

P
a Iα,−β,−γ,δ

x f (x). We have

P
a Iα,β,γ,δ

x f (x) =
∞

∑
n=0

(γ)nδn

n!
RL

a Inα+β
x f (x)

=
∞

∑
n=0

(γ)nδn

n!
C
a Inα+β

x f (x)

=
∞

∑
n=0

(γ)nδn

n!
Γ(1− nα− β)

2πi

∫
Hz

a

(ζ − z)nα+β−1 f (ζ)dζ

=
1

2πi

∫
Hz

a

(ζ − z)β−1
[ ∞

∑
n=0

(γ)n

n!
Γ(1− nα− β)

(
δ(ζ − z)α

)n
]

f (ζ)dζ

=
1

2πi

∫
Hz

a

(ζ − z)β−1Eα,β
γ

(
δ(ζ − z)α

)
f (ζ)dζ.

The above manipulation is valid provided that Re(α) > 0. Note that we do not need any assumption on
Re(β) since the case Re(β) > 0 is covered by the Prabhakar fractional integral and the case Re(β) ≤ 0
by the Prabhakar fractional derivative.

The final formula, however—the right-hand side of Equation (12)—is well-defined and analytic for
any α, β, γ, δ satisfying α, β not both real and nα + β 6∈ N for any n ∈ N, by the analytic continuation of
Eα,β

γ given in Theorem 4. Therefore, (12) provides the analytic continuation of the Prabhakar fractional
integral and derivative, even to the cases where Re(α) > 0 no longer applies.
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3.2. Contour Integral Formulae for Atangana–Baleanu Fractional Operators

Definition 5 ([27,38]). The Atangana–Baleanu fractional integral of a function f ∈ L1[a, b], with parameter
α ∈ (0, 1), is defined as

AB
a Iα

x f (x) =
1− α

B(α)
f (x) +

α

B(α)
RL

a Iα
x f (x), (13)

The Atangana–Baleanu fractional derivatives of a function f ∈ C1[a, b], with parameter α ∈ (0, 1),
of Riemann–Liouville and Caputo types respectively, are defined as:

ABR
aDα

x f (x) =
B(α)
1− α

· d
dx

∫ x

a
Eα

(
−α

1− α
(x− ξ)α

)
f (ξ)dξ, (14)

ABC
aDα

x f (x) =
B(α)
1− α

∫ x

a
Eα

(
−α

1− α
(x− ξ)α

)
f ′(ξ)dξ, (15)

using the 1-parameter Mittag-Leffler function (1) as a kernel function. These operators can also be written as
infinite series of Riemann–Liouville fractional integrals, as follows:

ABR
aDα

x f (x) =
B(α)
1− α

· d
dx

∞

∑
n=0

(
−α

1− α

)n
RL

a Inα+1
x f (x) (16)

=
B(α)
1− α

∞

∑
n=0

(
−α

1− α

)n
RL

a Inα
x f (x), (17)

ABC
aDα

x f (x) =
B(α)
1− α

∞

∑
n=0

(
−α

1− α

)n
RL

a Inα+1
x f ′(x). (18)

In the paper [35], these definitions were extended beyond α ∈ (0, 1) to complex values of α.
The Atangana–Baleanu (AB) integral is easy to extend to complex α and complex x, just using the
well-known extension of the Riemann–Liouville integral:

AB
a Iα

z f (z) =
1

2πiB(α)

∫
Hz

a

(
1− α

ζ − z
+

αΓ(1− α)

(ζ − z)1−α

)
f (ζ)dζ.

For the AB derivatives (of both types), the complex contour formulae written in [35] were as follows:

ABR
aDα

z f (z) =
B(α)

2πi(1− α)
· d

dz

∫
Hz

a

Eα

(
−α

1− α
ζ − z)α

)
f (ζ)dζ,

ABC
aDα

z f (z) =
B(α)

2πi(1− α)

∫
Hz

a

Eα

(
−α

1− α
ζ − z)α

)
f ′(ζ)dζ,

where here the notation Eα refers to the incorrectly defined function from [35],

Eα(z) =
∞

∑
n=0

Γ(−nα)zn,

this being incorrect because of the n = 0 term.
The correct version of these formulae is given by slightly modifying them as follows:

ABR
aDα

z f (z) =
B(α)

2πi(1− α)
· d

dz

∫
Hz

a

[
1

ζ − z
+ Eα

(
−α

1− α
ζ − z)α

)]
f (ζ)dζ,

ABC
aDα

z f (z) =
B(α)

2πi(1− α)

∫
Hz

a

[
1

ζ − z
+ Eα

(
−α

1− α
ζ − z)α

)]
f ′(ζ)dζ − f (a),

where this time the notation Eα refers to the well-defined function from (5) above. These formulae
are obtained by treating the n = 0 term separately, starting from the series formulae (16) and (18),
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and in the Caputo case using the fact that RL
a I1

x f ′(x) = f (x)− f (a). However, we can obtain more
elegant formulae by considering instead the series formula (17) and using the 2-parameter modified
Mittag-Leffler function defined in Section 2.2 above.

Theorem 6. The analytic continuation of the AB fractional derivative of Riemann–Liouville type is given by

ABR
aDα

z f (z) =
B(α)

2πi(1− α)

∫
Hz

a

Eα,0
(
−α

1− α
(ζ − z)α

)
f (ζ)

ζ − z
dζ, (19)

where Eα,β(x) is the modified 2-parameter Mittag-Leffler function defined by (6) above, and the complex contour
of integration Hz

a is the Hankel-type contour which starts above a on the branch cut from z, wraps around z in a
counterclockwise sense, and returns to a.

The analytic continuation of the AB fractional derivative of Caputo type can then be deduced using the
relationship between ABR and ABC derivatives given by the fundamental theorem of calculus:

ABC
aDα

z f (z) =
B(α)

2πi(1− α)

∫
Hz

a

Eα,0
(
−α

1− α
(ζ − z)α

)
f (ζ)

ζ − z
dζ − B(α)

1− α
Eα

(
−α

1− α
zα

)
f (a).

The assumption on the parameter α for this Theorem is simply α ∈ C\R.

Proof. We start from the series formula (17) for the ABR fractional derivative, and use the complex
integral representation for the Riemann–Liouville fractional integral:

ABR
aDα

x f (x) =
B(α)
1− α

∞

∑
n=0

(
−α

1− α

)n
RL

a Inα
x f (x)

=
B(α)
1− α

∞

∑
n=0

(
−α

1− α

)n Γ(−nα + 1)
2iπ

∫
Hz

a

(ζ − z)nα−1 f (ζ)dζ.

Note that this substitution is valid for all values of n, since the complex contour formula (4) is valid for
any order of differentiation not in Z−. Here the orders of differentiation are −nα for n ≥ 0, which is
either zero or nonreal. (This is why, when using (16) instead of (17), we needed to treat n = 0 separately:
because in the case of (16), the n = 0 term gives order of differentation −1 which is in Z−).

Continuing, and using the fact that the series formulae for AB derivatives are locally uniformly
convergent [38]:

ABR
aDα

x f (x) =
B(α)
1− α

1
2iπ

∫
Hz

a

f (ζ)
∞

∑
n=0

Γ(−nα + 1)
(
−α

1− α

)n
(ζ − z)nα−1 dζ

=
B(α)
1− α

1
2iπ

∫
Hz

a

f (ζ)
ζ − z

Eα,0
(
−α

1− α
(ζ − z)α

)
dζ,

which is the desired result for ABR derivatives.
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For the case of ABC derivatives, we simply use the following relationship between ABR and ABC
following from the series formulae (16)–(18):

ABC
aDα

x f (x) =
B(α)
1− α

∞

∑
n=0

(
−α

1− α

)n
RL

a Inα
x

(
RL

a I1
x f ′(x)

)
=

B(α)
1− α

∞

∑
n=0

(
−α

1− α

)n
RL

a Inα
x

(
f (x)− f (a)

)
= ABR

aDα
x f (x)− B(α)

1− α

∞

∑
n=0

(
−α

1− α

)n
RL

a Inα
x
(
1
)

f (a)

= ABR
aDα

x f (x)− B(α)
1− α

∞

∑
n=0

(
−α

1− α

)n xnα

Γ(nα + 1)
f (a)

= ABR
aDα

x f (x)− B(α)
1− α

Eα

(
−α

1− α
xα

)
f (a).

The last term here is the initial value term which gives the desired result for ABC derivatives.

Remark 2. Note that using β = 0 in the usual 2-parameter or 3-parameter Mittag-Leffler functions would not
be possible when using them as kernel functions, because it would lead to a non-integrable singularity. However,
in the complex setting, this is fine since 1

ζ−z can be integrated using Cauchy’s integral formula.

Remark 3. It is known that the Atangana–Baleanu fractional operators are special cases of the Prabhakar
fractional calculus. Indeed, this is an obvious fact for the AB derivative, since it (like the Prabhakar operators) is
defined using an integral transform with Mittag-Leffler kernel. The AB integral, on the other hand, is simply the
linear combination of a function with its Riemann–Liouville integral, with no Mittag-Leffler functions involved
in the definition; it was only noticed recently in [39] that it too is a special case of Prabhakar. The relationships
are given by

AB
a Iα

x f (x) =
1− α

B(α)
P
a I

α,0,−1, −α
1−α

x f (x),

ABR
aDα

x f (x) =
1− α

B(α)
P
aD

α,0,−1, −α
1−α

x f (x).

Using this, it is possible to deduce the result of Theorem 6 directly from that of Theorem 5. Note that the
multiplier (ζ − z)β−1 appearing in (12), which is a typical power function multiplier found when dealing with
Mittag-Leffler function kernels, in the AB case becomes simply 1

ζ−z , which is a typical multiplier found in
complex analysis according to Cauchy’s integral formula.

3.3. Series for Negative α

In the paper [36], a series formula is given for the Mittag-Leffler function Eα(z) which is valid
for negative real numbers α, by using a functional equation that emerges from the complex integral
representation. The same functional equation approach works to prove similar series formulae for the
two-parameter Mittag-Leffler function Eα,β(z) and for complex α with Re(α) < 0. We state the general
result as follows.

Proposition 3 ([36]). The analytic continuation of the two-parameter Mittag-Leffler function Eα,β(z),
originally defined by (2), to the domain α, β ∈ C, Re(α) < 0 is given by the following locally uniformly
convergent series:

Eα,β(z) =
∞

∑
n=1

−z−n

Γ(−nα + β)
. (20)
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Proof. From the complex integral representation of the two-parameter Mittag-Leffler function,

Eα,β(z) =
1

2πi

∫
H

tα−βet

tα − z
dt =

1
2πi

∫
H

et

tβ − ztβ−α
dt,

valid for all α, β ∈ C, we use the algebraic identity

1
tβ − ztβ−α

=
1
tβ
− 1

tβ − z−1tα+β
(21)

to obtain

Eα,β(z) =
1

2πi

∫
H

et

tβ
dt− 1

2πi

∫
H

et

tβ − z−1tα+β
dt =

1
Γ(β)

− E−α,β(z−1),

valid for all α, β ∈ C. Then, if Re(α) < 0, we have Re(−α) > 0 and therefore we can use the original
series formula (2) for E−α,β(z−1). Cancelling the n = 0 term, this gives the desired series for Eα,β(z) in
the case of Re(α) < 0.

Remark 4. The same technique cannot be used to give an elegant series representation of the 3-parameter
Mittag-Leffler function Eγ

α,β(z) for negative values of α. This is because the complex integral representation of
this function involves a γth power:

Eγ
α,β(z) =

1
2πi

∫
H

t−βet

(1− zt−α)γ
dt,

and there is no analogue of the identity (21) for reciprocals of γth powers.

Remark 5. Furthermore, the technique of Proposition 3 cannot be applied to our modified Mittag-Leffler
functions either, even in the 1-parameter and 2-parameter cases. The complex integral representations of
Proposition 2 and Theorem 2 have integrands involving the functions Sα and Sα,β which do not have simple
identities like (21) between them.

4. Conclusions and Further Work

This paper serves as a continuation of the work of [35], in which the first modified Mittag-Leffler
function was defined and used to extend Atangana–Baleanu fractional operators into the complex
context. Here we have corrected an omission in [35], in which the issues surrounding the n = 0 term of
the Mittag-Leffler series were overlooked. We have defined modified Mittag-Leffler functions of one,
two, and three parameters, and rigorously checked the convergence issues for the series in each case.

The power of Mittag-Leffler functions and their series in fractional calculus cannot be understated.
Several important operators of fractional calculus are defined using Mittag-Leffler functions, and the
series formulae for these operators have been useful in proving a number of useful properties.
Our modified Mittag-Leffler functions and their series can be used to provide new formulae for
the same operators, which are valid in larger domains than the original ones. We showed how both
the Prabhakar and the Atangana–Baleanu operators can be applied to find fractional derivatives and
integrals of functions of a complex variable as well as real functions.

The work contained in this paper will be useful for ongoing research into these fractional-calculus
operators and their applications. It was already seen, for example, in [12,40,41], that complex integral
representations of Mittag-Leffler functions are useful in finding asymptotic expansions, and therefore
in bounding and approximating the functions. In some cases, complex orders of fractional derivatives
can be vital for modelling [42–44]. The analysis of fractional evolution processes in [12] even used
Mittag-Leffler-type infinite series involving the gamma function at negative parameters, such as
Γ(1− nα), similarly to the functions we have introduced in this paper. Therefore, we expect our
formulae to find applications in the future.
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Furthermore, we investigated another way of extending Mittag-Leffler functions by analytic
continuation, namely the series for negative α. Although this approach does not work directly
on the modified Mittag-Leffler functions defined here, we believe it will be useful in the analysis
of Atangana–Baleanu and Prabhakar fractional operators. Further research in this direction is
currently ongoing.
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