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Abstract: The approach based on fractional advection–diffusion equations provides an effective and
meaningful tool to describe the dispersive transport of charge carriers in disordered semiconductors.
A fractional generalization of Fick’s law containing the Riemann–Liouville fractional derivative is
related to the well-known fractional Fokker–Planck equation, and it is consistent with the universal
characteristics of dispersive transport observed in the time-of-flight experiment (ToF). In the present
paper, we consider the generalized Fick laws containing other forms of fractional time operators with
singular and non-singular kernels and find out features of ToF transient currents that can indicate
the presence of such fractional dynamics. Solutions of the corresponding fractional Fokker–Planck
equations are expressed through solutions of integer-order equation in terms of an integral with
the subordinating function. This representation is used to calculate the ToF transient current curves.
The physical reasons leading to the considered fractional generalizations are elucidated and discussed.

Keywords: anomalous diffusion; fractional equation; dispersive transport; time-of-flight experiment

1. Introduction

Fractional advection–diffusion equations provide effective and meaningful approach to
description of dispersive charge carrier transport in disordered semiconductors [1–5]. The fractional
generalization of the Fokker–Planck (FFP) equation was obtained using the Continuous Time Random
Walk (CTRW) model [2,6]. Significantly earlier, in 1975, the CTRW model successfully explained the
basic laws of dispersive transport in amorphous semiconductors observed by the ToF method [7].
The FFP equation is related to the fractional generalization of Fick’s law [8]. The mentioned works
operate with time fractional derivatives of the Riemann–Liouville and Caputo type. An extended
system of fractional equations for dispersive transport was obtained later, and it takes into account
recombination, bipolar diffusion for various transport mechanisms, and densities of localized states
[4,5,9]. Waiting time distribution for localized carriers plays a central role in the statistical models of
dispersive transport [10].

The time-of-flight (ToF) experiment is an important method for studying electron transfer in
low-conductivity semiconductors. The statistical theory of dispersive transport was developed
precisely from the analysis of ToF experimental data for amorphous semiconductors [7,11]. The ToF
method is still widely used. Particularly, it has been recently utilized to study the features of charge
transport in perovskite solar cells [12] and organic bulk heterojunction cells [13]. In the ToF method,
the photocurrent response is studied after the injection of nonequilibrium charge carriers by a short

Fractal Fract. 2020, 4, 42; doi:10.3390/fractalfract4030042 www.mdpi.com/journal/fractalfract

http://www.mdpi.com/journal/fractalfract
http://www.mdpi.com
https://orcid.org/0000-0001-7382-7082
https://orcid.org/0000-0002-5517-5057
http://www.mdpi.com/2504-3110/4/3/42?type=check_update&version=1
http://dx.doi.org/10.3390/fractalfract4030042
http://www.mdpi.com/journal/fractalfract


Fractal Fract. 2020, 4, 42 2 of 11

laser pulse from the side of the transparent electrode. Typically, a strong electric field (>105 V/cm)
close to the dielectric breakdown conditions is applied to the sample in order to eliminate the effects
of space charge and reduce the contribution of carrier diffusion to the observed response. The ToF
method is commonly used in sandwich geometry, which may not be suitable for some nanostructured
systems. Figure 1 shows schematic of the ToF experiment in coplanar geometry for studying charge
carrier transport in thin films. This geometry is more appropriate to measure transient currents in
organic nanocomposites, bulk heterojunctions, and perovskite solar cells. The correct interpretation
of the ToF measurements in inhomogeneous structures remains relevant. Different physical features
influence the observed kinetics. Among them are the density of localized states, morphology of the
percolation regions, the presence of defective layers, inhomogeneity of the electric field, recombination,
etc. [14–17].

Substrate

h�

Figure 1. Schematic of the time-of-flight method in coplanar geometry.

The transient current curves I(t) measured by ToF method for amorphous semiconductors are
often characterized by similarity of the shape in the log I − log t plot [7]. These curves essentially differ
from the step-wise plot typical for the normal drift-diffusion. For dispersive transport, current decays
as power laws: I(t) ∝ t−1+α for t < tT , and I(t) ∝ t−1−α for t > tT . The dispersion parameter α ∈ (0, 1)
corresponds to the order of fractional time Riemann–Liouville derivative in the FFP equation (see [2]).
In Ref. [18], it is shown that the universality of the transient current curves I(t) and the power-law
dependence of the transient time tT on the sample thickness L, observed in the ToF experiment,
unambiguously indicate the fractional-differential kinetics of dispersive transport of nonequilibrium
charge carriers.

Often the picture differs from both the stepwise one, characteristic of normal transport, and from
the universal one, which is characteristic of dispersive transport in amorphous semiconductors.
In this paper, we consider how the choice of fractional operator in fractional Fick’s law is related
to the observed transient current curves. Additionally, we try to identify the physical reasons
leading to the fractional generalizations under consideration. The fractional generalizations that
are used in this work were motivated by the studies of anomalous diffusion reported in Refs. [19–24].
Tateishi et al. [19] studied fractional diffusion equation with other forms of fractional time operators
instead of the Riemann–Liouville derivative. They obtained the expressions for kernels and for waiting
time distributions in case of anomalous diffusion described by equation with the Caputo–Fabrizio
and Atangana–Baleanu operators. They considered anomalous diffusion without external forces
in an unbounded region. Sene and Abdelmalek [23], dos Santos and Gomez [24] considered
generalizations of the diffusion equation in terms of a non-singular fractional temporal operator.
Note that representations of fractional diffusion equations with the indicated operators in [19] and
in [23,24] are different. We study dispersive transport in a sample of finite width, and try to find out
features of ToF transient currents that can indicate the generalized fractional dynamics. Solutions of
the corresponding FFP equations are presented in terms of an integral with the subordinating function,
and used to calculate the ToF characteristics. The physical reasons leading to the considered fractional
generalizations are discussed.
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2. Fractional Fokker-Planck Equation

Anomalous diffusion in complex media can be caused by different specific mechanisms [25].
The dispersive transport of nonequilibrium charge carriers is observed in many disordered materials
differing in their microscopic structure, and can be caused by multiple trapping into the band tail
states, by hopping via spatially distributed localized states, or by percolation over cluster with dead
ends. The statistical features of anomalous diffusion are often described within the CTRW model.
Considering CTRW with space dependent jump probabilities, Barkai et al. [2] derived a time-fractional
Fokker–Planck equation for the case, when the mean waiting time diverges. FFP equation describes
anomalous diffusion in an external force field; it is derived in the form [6,26],

∂p(x, t)
∂t

= 0D1−α
t K

∂

∂x

[
∂p(x, t)

∂x
+

p(x, t)
kT

∂V
∂x

]
, (1)

where p(x, t) is particle concentration, V(x) is an external potential, K is a generalized diffusion
coefficient, and kT is the thermal energy.

Here,

0D1−α
t p(x, t) =

1
Γ(α)

∂

∂t

∫ t

0

p(x, τ)

(t− τ)1−α
dτ, 0 < α ≤ 1, (2)

is the Riemann–Liouville derivative of fractional order 1− α [27]. Fundamental solutions to Equation (1)
can be found in [26,28,29].

We consider the following generalization of the Fokker–Planck equation

∂

∂t
p(x, t) =

∂

∂t

t∫
0

dt′ K(t− t′) LFP p(x, t′). (3)

Here, p(x, t) is the concentration of non-equilibrium charge carriers, LFP denotes the following spatial
(time-independent) operator

LFP p(x, t) =
∂

∂x

[
D(x)

∂p(x, t)
∂x

− A(x)p(x, t)
]

, (4)

where D(x) and A(x) are the anomalous diffusion and advection coefficients.
Kernel K(t) will be specified below, it will be related to certain types of fractional operators.

To represent this generalization in the form similar to the known fractional Fokker–Planck equation [6],
we rewrite it, as follows

∂

∂t
p(x, t) = D1−α

t LFP p(x, t), (5)

where integro-differential operator

D1−α
t p(x, t) =

∂

∂t

∫ t

0
K(t− t′) p(x, t′) dt′ (6)

will correspond to a certain type of fractional derivative of order 1 − α with α ∈ (0, 1].
Further, we consider four types of time fractional operators D1−α

t (6). To define D1−α
t , we need to

choose certain type of integral kernel in (6). The names of these time fractional operators, corresponding
memory kernels, and their Laplace transforms are listed below.

1. Riemann–Liouville derivative

K(t) =
tα−1

Γ(α)
,

[
K̃ (s)

]−1
= sα. (7)
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2. Tempered fractional operator

K(t) = e−γttα−1Eα,α
(
(γt)α) ,

[
K̃ (s)

]−1
= (s + γ)α − γα. (8)

3. Caputo–Fabrizio operator

K(t) = bα exp (−t (1− α)/α) ,
[
K̃ (s)

]−1
= b−1

α [s + (1− α)/α] . (9)

4. Atangana–Baleanu operator

K(t) = bα E1−α

(
−t1−α(1− α)/α

)
,

[
K̃ (s)

]−1
= b−1

α [s + sα(1− α)/α] . (10)

Here 0 < α ≤ 1 is a fractional order corresponding to the dispersion parameter, γ is a truncation
parameter, bα is a normalization constant, Eα(t) and Eα,β(t) are one-parameter and two-parameter
Mittag-Leffler functions, respectively.

When α = 1, operator D1−α
t becomes the identity operator, and we deal with the standard Fick

law and Fokker-Planck equation. Note that, in Ref. [19], the authors use notation F α
t , and that operator

turns to the identity operator, when α→ 0. The authors of [19] do not meet contradictions because the
main numerical results in [19] are presented for the case α = 1/2.

From the continuity equation and Equation (5), one can write the expression for flux

j(x, t) = −D1−α
t

[
D

∂p(x, t)
∂x

− A(x)p(x, t)
]

. (11)

This is a generalized fractional Fick law (FFL). For indicated cases of fractional operators we distinguish
FFL with the Riemann-Liouville operator (RL-FFL, case 1), the truncated operator (T-FFL, case 2),
the Caputo–Fabrizio operator (CF-FFL, case 3), and Atangana–Baleanu operator (AB-FFL, case 4).

The solution of the FFP equation with time-independent operator LFP can be written in terms of
an integral with the subordinating function

p(x, t) =
∫ ∞

0
ρ(x, τ) q(τ, t) dτ. (12)

Here, ρ(x, t) is a solution of the standard Fokker-Planck equation (without operator D1−α
t ) with the

same initial condition. In many cases, τ can be considered as an operational time that is defined by a
certain stochastic process Tt. Laplace transform of function q(τ, t) is of the form

q̃(τ, s) =
1

sK̃(s)
exp

(
− τ

K̃(s)

)
.

Let us show that solution (12) satisfies the generalized Fokker–Planck equation. The Laplace
image of function (12) is

p̃(x, s) =
∫ ∞

0
ρ(x, τ) q̃(τ, s) dτ =

∫ ∞

0
ρ(x, τ)

e−τ/K̃(s)

sK̃(s)
dτ =

1
sK̃(s)

ρ̃
(

x,
[
K̃(s)

]−1
)

. (13)

Substituting it into the Laplace transformation of Equation (5) with time-independent
operator LFP,

s p̃(x, s)− p(x, 0) = sK̃(s) LFP p(x, s), (14)

we arrive at the following relation[
K̃(s)

]−1
ρ̃
(

x,
[
K̃(s)

]−1
)
− p(x, 0) = LFP ρ̃

(
x,
[
K̃(s)

]−1
)

,
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which, after change of variable u = 1/K̃(s), represents the Laplace transform of the ordinary
Fokker–Planck equation:

u ρ̃(x, u)− ρ(x, 0) = LFP ρ̃(x, u), ρ(x, 0) = p(x, 0).

3. Physical Interpretations with the Multiple Trapping Model

Further, we will use the multiple trapping model [3,11,14] to interpret the resulting fractional
equations. Note, however, that the discussed fractional dynamics can be a consequence of the hopping
mechanism, diffusion in a percolation cluster, and other mechanisms. The multiple trapping model
considers the transport of delocalized charge carriers controlled by trapping-detrapping events in
localized states with distributed energy.

Assume that, for delocalized carriers in the absence of traps, the standard Fokker–Planck equation
is valid. In the case of the multiple trapping, we have

∂pd(x, t)
∂t

+
∂ptr(x, t)

∂t
= LFP,d pd(x, t). (15)

The latter equation should be supplemented by the trapping and release equation

∂ptr(x, t)
∂t

= λpd(x, t)− νptr(x, t), (16)

where pd is the delocalized carrier density, ptr is the trapped carrier density, λ and ν are the trapping
and delocalization rates. From the latter equation, the relationship follows

ptr(x, t) = λ
∫ t

0
e−ν(t−τ)pd(x, τ)dτ. (17)

Delocalization rate ν is defined by activation energy ε according to the Arrhenius equation

ν = ν0 e−ε/kT ,

where ν0 is a constant prefactor, and kT is the Boltzmann temperature. After averaging over random
activation energy, the relationship (17) turns into

ptr(x, t) = λ
∫ t

0
Q(t− τ) pd(x, τ)dτ, (18)

where kernel Q is determined via the distribution of localized state energy,

Q(t) =
∞∫

0

exp
(
−ν0 t e−ε/kT

)
ρ(ε) dε.

For exponential distribution of localized state energy

ρ(ε) =
1
ε0

exp
(
− ε

ε0

)
, ε > 0, (19)

after change of variables ξ = ν0 t e−ε/kT , we obtain the power law kernel

Q(t) =
kT

ε0(ν0t)kT/ε0

ν0 t∫
0

e−ξ ξkT/ε0−1 dξ ∼ Cα

Γ(1− α)
t−α, t→ ∞.
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Here, fractional index and constant Cα are defined as

α =
kT
ε0

, Cα =
πα

sin(πα)
ν−α

0 .

Consequently, we have the following relationship

ptr(x, t) =
λCα

Γ(1− α)

t∫
0

pd(x, τ)

(t− τ)α dτ = λCα 0 I1−α
t pd(x, τ).

This expression leads to the fractional advection–diffusion equation

∂pd(x, t)
∂t

+ λCα 0Dα
t pd(x, t) = LFP,d pd(x, t), 0 < α ≤ 1. (20)

When α < 1, for t� (λCα)1/(1−α), p(x, t) ≈ ptr(x, t), the term with the first-order derivative can
be neglected, and we have,

∂p(x, t)
∂t

= 0D1−α
t LFP p(x, t) + δ(t)p(x, 0), (21)

or

0Dα
t p(x, t) = LFP p(x, t) +

t−α

Γ(1− α)
p(x, 0), (22)

where LFP = LFP,d/(λCα). For other (non-exponential) distribution of localized state energy,
other forms of kernel Q(t) can be obtained.

Consider FFP equations that correspond to the generalized Fick law with different fractional
time derivative operators and discuss the physical meaning of these equations within the multiple
trapping model of dispersive transport. Note that names listed in the previous section for fractional
derivative operators correspond to D1−α

t that arises in the fractional Fick law (11). Derivatives arising
in FFP-equation corresponding to inverse transformation of expression

[
K̃(s)

]−1
[

p̃(x, s)− p(x, 0)
s

]
= LFP p̃(x, s) (23)

can be of different types.

1. For the case of the generalized Fick law containing the Riemann–Liouville derivative (RL-FFL),
we have the following FFP-equation,

sα p̃(x, s) = LFP p̃(x, s) + sα−1δ(x) → 0Dα
t p(x, t) = LFP p(x, t) +

t−α

Γ(1− α)
δ(x). (24)

This case is well known (see [2,4,6,8]). The presence of fractional time derivative is related to
localization events that are characterized by waiting times distributed according to fractional
exponential law (with ‘heavy’ tails). The random number of delocalization events at time t is
described by the fractional Poisson process. Features of physical mechanisms leading to such
waiting time distributions are discussed in many works (see references in [4]). Among popular
models leading to such kinetics are the multiple trapping into the band tail states, hopping via
spatially distributed localized states, and comb model of percolation over cluster with dead ends
(see [21,22], and references therein). Equation (24) is equivalent to (22) with p(x, 0) = δ(x) for the
ToF method.
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2. In the second case, the Fick law with tempered fractional operator (T-FFL) leads to the
following equation

[
(s + γ)α − γα

] [
p̃(x, s)− δ(x)

s

]
= LFP p̃(x, s) → 0Dα,γ

t [p(x, t)− δ(x)] = LFP p(x, t).

Here, 0Dα,γ
t is a tempered fractional derivative defined as

0Dα,γ
t p(x, t) = e−γt

0Dα
t eγt p(x, t)− γα p(x, t).

This case can be derived from the CTRW model, when tempered fractional exponential function
is used for waiting time density (see [21,22,30,31]). In terms of the multiple trapping model,
the tempered power law can arise due to special case of localized state energy distribution [20],
particularly due to the truncation of exponential density of states ρ(ε).

3. For the Fick law with the Caputo–Fabrizio operator (CF-FFL), we arrive at the integer-order
Fokker–Planck equation containing recombination and generation terms,

sp̃(x, s) +
1− α

α
p̃(x, s) = bαLFP p̃(x, s) + δ(x) +

1− α

α

δ(x)
s

,

∂ p(x, t)
∂t

= bαLFP p(x, t)− 1− α

α
p(x, t) +

1− α

α
δ(x) + δ(x)δ(t). (25)

The case of the Caputo–Fabrizio operator is interpreted in [19] in terms of diffusive process
with stochastic resetting. Interpreting Equation (25), we see that it is an ordinary Fokker–Planck
equation with the first-order time derivative, the recombination and constant generation terms.
However, the recombination and generation of charge carriers are balanced in a special way,
which really leads to an effect that can be associated with a stochastic resetting. However, such a
balance in the ToF experiment requires special tuning. Additionally, it seems to us that there is no
need to use to the fractional Fick law with the Caputo–Fabrizio derivative and it is sufficient to
use the classical equation with more general generation and recombination terms.

4. For the Fick law with the Atangana–Baleanu operator (AB-FFL), we arrive at the simple
distributed-order FFP equation. From the Laplace transform of the expression

sp̃(x, s) +
1− α

α
sα p̃(x, s) = bαLFP p̃(x, s) + δ(x) +

1− α

α
sα−1δ(x),

we obtain the following equation

∂ p(x, t)
∂t

+
1− α

α
0Dα

t p(x, t) = bαLFP p(x, t) + δ(t)δ(x) +
1− α

α

t−α

Γ(1− α)
δ(x). (26)

The equation similar to this is obtained in [9] (see Equation (19) and solution (14) in [9]). It is
related to the multiple trapping model with a separation of carriers into trapped and delocalized
groups (see Equation (20)). On the other hand, Equation (26) can be considered as a simple
example of FFP equation for a mixture of waiting time distributions [4].

4. Transient Current of the Time-of-Flight Method

Using the presented solutions, it is possible to study different characteristics of anomalous
diffusion described by Equation (5). Tateishi et al. [19] calculated mean square displacements and
found crossovers between ordinary and confined diffusion, and between usual and subdiffusion.
Here, we calculate the transient current in the ToF experiment to find out features indicating the
generalized fractional dynamics.
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In the ToF method, nonequilibrium charge carriers are generated near the electrode by a short
laser pulse. Typically, a strong electric field is applied to the sample in order to eliminate the effects of
space charge and reduce the contribution of carrier diffusion to the observed response. The transient
current in the ToF method is a displacement current that can be found via the following formula

I(t) =
1
L

∫ L

0
j(x, t)dx =

eN
L

d
dt

∫ L

0
(x− L)p(x, t)dx, (27)

where L is a distance between electrodes.
Substituting distribution (13) into the Laplace transform of the latter expression

Ĩ(s) =
eN
L

s
∫ L

0
(x− L) p̃(x, s)dx− q0; q0 =

eN
L

∫ L

0
(x− L)p(x, 0)dx

we arrive at the following

Ĩ(s) =
eN
L

s
∫ L

0
dx (x− L)

∫ ∞

0
dτ ρ(x, τ)

e−τ/K̃(s)

sK̃(s)
− q0

=
eN
L

L∫
0

dx (x− L)

{−ρ(x, τ) e−τ/K̃(s)
}τ→∞

τ→0
+

∞∫
0

∂ρ(x, τ)

∂τ
e−τ/K̃(s) dτ

− q0

=

∞∫
0

dτ e−τ/K̃(s)

 eN
L

∂

∂τ

L∫
0

dx (x− L)ρ(x, τ)

 =

∞∫
0

dτ e−τ/K̃(s) INT(τ) = ĨNT

[(
K̃(s)

)−1
]

, (28)

where INT(t) is a transient current for normal transport, which can be found by solving the standard
Fokker–Planck equation, ĨNT(s) is its Laplace transform.

The function w(t, τ) that is defined by its Laplace transform e−τ/K̃(s) is related to q(τ, t) by the
following relation:

q(τ, t) = − ∂

∂τ

∫ t

0
w(t, τ) dt, w̃(s, τ) = e−τ/K̃(s). (29)

Further, to identify the main features of transient currents for indicated cases of fractional
operators, we only consider one-sided motion. Under conditions of the time-of-flight experiment,
assuming homogeneous strong electric field inside the sample (F = const), one can neglect
by influence of diffusion term. In this case, for normal drift we have the step-wise current
INT(t) = vL−1[1− H(t− L/v)], and its Laplace image is

ĨNT(s) = vL−1s−1[1− exp(−sL/v)].

For the dispersive transient current, we have

Ĩ (s) =
v K̃(s)

L

[
1− exp

(
− L

vK̃(s)

)]
=

1
L

∫ L

0
exp

(
− x

vK̃(s)

)
dx ⇒

I(t) =
v
L

∫ L/v

0
w(t, τ) dτ. (30)

Comparing the latter formula with expression (27), we find that j(x, t) = w(t, x/v).
To calculate p(x, t) and I(t), we need to know function q(τ, t) or related function w(t, τ)

(see Formula (29)). For the considered cases (7)–(10) of fractional operators, transform
w̃(s, τ) = exp

(
−τ/K̃(s)

)
and its inverse are as follows.

1. w̃(s, τ) = exp (−τsα) ⇒ w(t, τ) = τ−1/αg(α)
(

τ−1/αt
)

;
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2. w̃(s, τ) = exp
(
−τ
[
(s + γ)α − γα

])
⇒ w(t, τ) = τ−1/α exp

(
−γt− γα x

v
)

g(α)
(

τ−1/αt
)

;

3. w̃(s, τ) = exp
(
− τs

b
)

exp
(
− τ(1−α)

bα

)
⇒ w(t, τ) = exp

(
− τ(1−α)

bα

)
δ
(
t− τ

b
)
;

4. w̃(s, τ) = exp
(
− τs

b
)

exp
(
− τ(1−α)

bα sα
)
⇒ w(t, τ) =

[
τ(1−α)

bα

]− 1
α g(α)

([
τ(1−α)

bα

]− 1
α (t− τ

b
))

.

Here, g(α)(t) is the one-sided Lévy stable density with characteristic exponent α ∈ (0, 1].
Substituting obtained functions w(t, τ) into Formula (30), we calculate the transient current for

dispersive transport described by drift-diffusion equations with different fractional time-derivative
operators defined by kernels (7)–(10). The results of these calculations are presented in Figure 2.
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Figure 2. Transient current for dispersive transport described by drift-diffusion equations with
different fractional time-derivative operators. The curves are calculated by using Formula (30).
(a) Riemann-Liouville derivative, (b) tempered fractional operator, (c) Caputo-Fabrizio operator,
(d) Atangana-Baleanu derivative. Here, α is an order of fractional operators, γ truncation parameter,
v drift velocity, L interelectrode distance.

The transient current curves corresponding to RL-FFL are shown in Figure 2a. The current decays
as power laws: I(t) ∝ t−1+α for t < tT , and I(t) ∝ t−1−α for t > tT . This behavior is typical for
dispersive transport and it is described in the Introduction. For the second case (T-FFL, Figure 2b),
when γ > 0 the tail of I(t) is smoothly truncated. Transition to the normal case can be controlled not
only by dispersion parameter α, but also by truncation parameter γ. The statistical explanation of such
a transition can be found in [20]. In the third case, CF-FFL, we observe unusual behavior of transient
current curves: I(t) decays exponentially, while t < tT , and then goes to zero, in spite of constant
generation of charge carriers near the left electrode. To observe such behavior, the carrier generation in
the ToF method needs special tuning. This generation is compensated by regular recombination (it is
another view on stochastic resetting discussed in [19]). The transient currents (Figure 2d) in the last case
(AB-FFL) are characterized by the presence of plateau in the initial range, and this plateau can suppress
the power law decay I(t) ∝ t−1+α for t < tT . For all cases, we observed transition to the normal
transport case, when α→ 1. Thus, the considered generalizations obey the correspondence principle.
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5. Conclusions

We considered the dispersive transport of charge carriers in disordered semiconductors described
by the generalized Fick laws with different fractional time-derivative operators. Solutions of the
corresponding FFP equations are expressed through the solution of integer-order Fokker-Planck
equation in terms of an integral with the subordinating function. For all cases, we observe transition
to the normal transport case, when α → 1. This is confirmed by calculated transient current curves
for the ToF-method. We shortly discussed the physical reasons leading to the studied generalizations
of dispersive transport equations. We have shown how to calculate the solutions and the transient
current for the generalized Fick law with a convolution type integro-differential operator. Note that
representations (12), (28), and (30) are quite general and they can be used to solve other fractional
generalizations of the diffusion-advection equation. In addition to disordered semiconductors,
electrode materials and electrolytes of supercapacitors [32] and lithium-ion batteries [33] can be
considered as possible applications of the proposed generalizations of Fick’s law and solutions of
FFP equations.
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