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Abstract: This paper concerns cascaded, shifted, fractional-order, lead compensators made by the
serial connection of two stages introducing their respective phase leads in shifted adjacent frequency
ranges. Adding up leads in these intervals gives a flat phase in a wide frequency range. Moreover,
the simple elements of the cascade can be easily realized by rational transfer functions. On this basis,
a method is proposed in order to design a robust controller for a class of benchmark plants that are
difficult to compensate due to monotonically increasing lags. The simulation experiments show the
efficiency, performance and robustness of the approach.

Keywords: fractional-order lead compensators; cascaded compensators; frequency-domain design;
robust controller; set-point response

1. Introduction

Fractional calculus is an old field of science that, based on the initial idea of generalizing
derivatives with integer order to derivatives with non-integer order, has given rise to many results in
the pure field of mathematics [1–4]. However, today the field has tremendously grown and has many
and various applications in science and engineering [5–8], such that even modeling, analysis, and
control of complex systems requiring a multi-disciplinary approach [9,10] can be approached by
fractional calculus tools [11–13].

In the specific field of automatic control, it is now more than two decades since the influential
book [14] reported that the 95% of the control loops worldwide were of Proportional-Integral-Derivative
(PID) type. Today, the technological trends and the increasing demand of better tuning make it clear
that the PID controllers are still a subject of intensive research. Hence, following the boost to innovation
in the late twentieth century, the fractional-order controllers (FOCs) are also proposed for industrial
applications [15–22].

The first attempt to classify the FOCs used in process applications mentioned four types [23]: the
TID controller [24], the CRONE controller [25,26], the PIλDµ controller [27], and the fractional lead-lag
compensator [28]. All share the same idea of using irrational compensators ensuring flat phase in
Bode plots. Namely, if the phase derivative with respect to the frequency is zero (or nearly zero),
then robustness to gain variations and iso-damping behavior of the step response is achieved. Hence,
ensuring flat phase property is a main reason justifying the interest for FOCs.

In the years following the publication of [23], a great effort has been made to develop efficient
FOC tuning procedures in both the frequency and time domain. A noticeable, present-day research
direction in tuning approaches opts for optimization techniques with constraints that are expressed
by time-domain specifications (rise time, settling time, percentage overshoot, error indices, etc.) or
by frequency-domain specifications (phase/gain margin, crossover frequency, bandwidth, sensitivity
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magnitudes, etc.). For example, the tuning of a fractional-order PID (FPID) controlling a first-order plus
delay-time process is converted into an optimization problem [17,29]. In other cases, the tuning is based
on parameter searching in a multidimensional space [30]. In addition, as regards the time-domain
optimization approaches, many authors employed evolutionary algorithms for tuning FPID controllers.
For example, they applied Particular Swarm Optimization (PSO) or Genetic Algorithms to minimize
the Integral Time Absolute Error (ITAE) [31,32] or a combination of the ITAE and the Integral Square
Error (ISE) [33] or the integral absolute error (IAE) [34] or a combination of the integral gain and
closed-loop system bandwidth [35]. Additionally, a combination of differential evolution and PSO was
proposed to design and realize FOC based on time-domain performance specifications [36].

Clearly, the drawback of all the optimization-based tuning procedures is that they should be
repeated for any specific model that one takes into account. However, in practice, control engineers
need easy-to-apply, efficient tuning rules. For this reason, some attempts generalized the Ziegler
and Nychols rules to FPID tuning [37,38]. New formulas also extended the Symmetrical Optimum
approach [14] to tune the fractional-order PI (FPI), also named PIα controller, in positions control of a
class of electromechanical systems [39]. To overcome the difficulties, the research on FPIDs developed
empirical tuning rules and some auto-tuning approaches [17,39–48]. Whatever tuning approach is
chosen, the practical implementation of FPID is a critical issue. Namely, the fractional-order transfer
functions (TFs) of the FOC frequently require to be approximated by high-order rational TFs.

On the basis of the above considerations, this paper considers the Cascaded, Shifted,
Fractional-order, LEad Compensators (CS-FLECs), a new class of compensators enjoying the
following characteristics:

(A) The CS-FLECs are multistage compensators, in which each stage is in its turn a fractional-order
lead compensator (FLEC). Each FLEC stage is frequency-scaled with respect to the previous one,
so that it provides phase lead values with a nearly flat phase on an adjacent interval. When
compared with a cascade of identical FLECs that are superposed on the same frequency interval,
a CS-FLEC exhibits a nearly flat phase in a much larger frequency interval. This is a direct result
of the serial structure of the shifted stages.

(B) To implement a CS-FLEC, each stage needs a rational TF approximation. As the paper shows, a
second-order TF provides a satisfactory approximation in the frequency interval of each stage
of the cascade. The values of the coefficients in each second-order TF ensure low sensitivity in
both analogue and digital realizations.

(C) The paper shows how to apply CS-FLEC structures to compensate a class of plants that are
notoriously difficult to control [49,50]. The approach is especially suited for plants that are
characterized by monotonically increasing lags. The fundamental ideas underlying the design
pattern are simple and refer to formulas based on the properties of the CS-FLEC. The paper also
brings out the limits of the CS-FLEC in controlling the chosen benchmarks.

The organization of the paper is the following. Section 2 introduces the CS-FLEC controller
and illustrates its properties. Section 3 provides a new and easy method for implementing rational,
low-order TF of these controllers. Section 4 describes the procedure to design a CS-FLEC. Section 5
presents and discusses two case-studies that show how CS-FLECs control classes of processes,
reported as benchmarks by the technical literature. Section 6 provides the conclusions.

2. Cascaded, Shifted, Fractional-Order Lead Compensator

This section describes the CS-FLEC that is composed by two elements, indicated by H1(s) and
H2(s), which are defined in shifted, partially overlapping, intervals of the frequency axis.
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2.1. The First Compensator Stage

The basic element of the proposed CS-FLEC is the first compensator, that is described as

H1(s) =
(

1+ τ s
1+ τ ∆ s

)ν1

, (1)

with 0 < ν1 < 1 and 0 < ∆ < 1 when considering a fractional-order lead compensator (FLEC) [40].
The symbols τ and ν1 represent the time constant and the fractional order, respectively. Now, put s = jω
to recall the frequency key features of a FLEC. It is well known that the maximum phase lead ϕm1 of
H1(s) is obtained at the geometric mean of 1/τ and 1/(τ∆) [27,51]:

ωm1 =
1

τ ∆0.5 . (2)

In this frequency, the magnitude, say Mm1 = |H1(jωm1)|, and the phase, ϕm1 = ∠H1(jωm1), are:

Mm1 = (∆)−0.5 ν1 , (3)

ϕm1 = ν1

[
arctan

(
1√
∆

)
− arctan

(√
∆
)]

= ν1 arctan
(

1− ∆
2
√

∆

)
. (4)

Figures 1 and 2 show, in solid lines, the magnitude and phase plots of the normalized frequency
response of the compensator H1(j u), where u = τ ω is a normalized frequency, for ν1 = 0.3, 0.5, 0.7,
and ∆ = 0.1. The circles represent the pairs (ωm1, Mm1) and (ωm1, ϕm1) corresponding to the assigned
values of ν1.

Higher values of ν1 provide higher phase leads while the lower ones lead to a flatter behavior of
the phase plots.

By Equation (4), the maximum phase lead ϕm1 depends on ν1 and ∆, whose values dictate the
amount of the introduced phase lead. For integer-order compensators (ν1 = 1), many authors usually
consider values of ∆ in the range between 0.05 and 0.2 [52], in particular ∆ ≥ 0.1. Subsequently,
with ∆ = 0.1, the Equation (4) gives ϕm1 ≈ ν1 55◦. Accordingly, integer-order compensators
consisting of a series of two stages with the same zero-pole pair provide greater phase leads. In this
conventional structures, the serial stages have equal characteristics and, at each frequency, provide
equal contributions to the resulting phase lead.
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Figure 1. Bode magnitude diagrams of the FLECs H1(ju) (solid lines) and of the second-order
realizations GCH1(ju) (dashed lines) for ν1 = 0.3, 0.5, 0.7.
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Figure 2. Bode phase diagrams of the FLECs H1(ju) (solid lines) and of the second-order realizations
GCH1(ju) (dashed lines) for ν1 = 0.3, 0.5, 0.7.

2.2. The Second Compensator Stage

The proposed structure differs from the conventional one. A CS-FLEC, indeed, is a cascade of
two FLECs with the same Bode plots, but the position on the ω-axis of the second stage is shifted with
respect to the first one. The shifting amount is established to make the phase of each FLEC element
dominate on its nearly flat phase frequency interval. The resulting lead network, i.e., the CS-FLEC,
has a relatively low order and enjoys the flat phase property in a large frequency band. In details,
once the parameters of H1(s) have been chosen, the second FLEC, say H2(s), is obtained by using ν2 in
place of ν1 and by scaling H1(s) with the substitution s→ ∆ s, where ∆ is used as scaling factor:

H2(s) =
(

1 + τ ∆ s
1 + τ ∆2 s

)ν2

. (5)

In this way, the frequencies delimiting the flatness interval of the CS-FLEC can be fixed in terms
of the features of the two stages in the series. Namely, it is easy to show that H2(s) gives its maximum
phase lead ϕm2 at the frequency

ωm2 =
1

τ∆1.5 (6)

and
Mm2 = |H2(jωm2)| = (∆)−0.5 ν2 (7)

ϕm2 = ∠H2(jωm2) = ν2 arctan
(

1− ∆
2
√

∆

)
. (8)

Moreover, comparing Equations (3), (4), (7), and (8), and using ν2 = ν1 yields: Mm2 = Mm1,
ϕm2 = ϕm1 and, for any frequency ω, H1(jω∆) = H2(jω). Figures 3 and 4 show the magnitude and
phase plots for the analogue compensators H1 and H2 (see dashed and dash-dotted lines, respectively).
For clarity reasons, these figures only use the values ν2 = ν1 = 0.3, 0.5, 0.7. The curves assume
∆ = 0.1 and they are drawn in terms of the nondimensional frequency u = τ ω, so that um1 = 1

∆0.5 and
um2 = 1

∆1.5 correspond to the maximum leads the two stages respectively provide.
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Figure 3. Bode magnitude diagrams of H1(ju) (dashed lines), H2(ju) (dash-dotted lines) and H12(ju)
(solid lines) for ν = ν1 = ν2 = 0.3 (curves a1, a2 and a12), 0.5 (curves b1, b2 and b12), 0.7 (curves
c1, c2 and c12).
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Figure 4. Bode phase diagrams of H1(ju) (dashed lines), H2(ju) (dash-dotted lines) and H12(ju)
(solid lines) for ν = ν1 = ν2 = 0.3 (curves a1, a2 and a12), 0.5 (curves b1, b2 and b12), 0.7 (curves
c1, c2 and c12).

2.3. The Serial Compensator

With the chosen parameters and ν = ν1 = ν2, the series connection of the two compensators is
equivalent to a single unit:

H12(s) = H1(s) H2(s) =
(

1 + τ s
1 + τ ∆2 s

)ν

. (9)

By using u = τ ω, it follows

H12(j u) = H1(j u) H2(j u) =
(

1 + j u
1 + j u ∆2

)ν

(10)
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and, by Equations (2) and (9), the maximum phase lead ϕm12 is obtained at the geometric mean of the
new break-away frequencies:

ωm12 =
1

τ ∆
. (11)

At um12 = 1
∆ , the magnitude is

Mm12 = |H12(jum12)| = (∆)−ν (12)

and the maximum phase lead is

ϕm12 = ∠H12(jum12) = ν arctan
(

1− ∆2

2 ∆

)
. (13)

The frequencies um1 = 1
∆0.5 and um2 = 1

∆1.5 define the interval (um1, um2), where the phase is
nearly flat (see Figure 4) and where the magnitude characteristic of H12(jω) follows a nearly straight
pattern (solid lines in Figure 3). Beyond this range, the magnitude plot tends to a horizontal line and
the CS-FLEC provides the maximum magnitude for each value of ν.

Figures 5 and 6 compare the Bode diagrams of the CS-FLEC specified by H12(jω) with the
Bode diagrams of the conventional series of two identical FLECs, specified by [H1(jω)]2. The cases
with ν = {0.3, 0.5, 0.7} and ∆ = 0.1 are considered. Compensators H12 and H2

1 provide the same
high-frequency gain, even if the magnitude of the former increases more gradually than the magnitude
of the latter. Finally, by Equations (4) and (13), the maximum phase lead given by H2

1 is 2 ϕm1 ≈ ν 110◦

that is greater than ϕm12 = ν 79◦, which is provided by H12. However, the phase characteristics of H12

are flatter than those of H2
1 . Moreover, the slopes of the plots of ∠H12(ju) and ∠H2

1(ju), evaluated on
the right (or left) of um12 and um1, respectively, are measures of the flatness of the phase. Because the
decreasing of ∠H2

1(ju) around um1 is more rapid than the falling of ∠H12(ju) around um12, the latter
plot is flatter than the former one.
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Figure 5. Bode magnitude diagrams of H2
1 (dashed lines) and of the Cascaded, Shifted, Fractional-order,

LEad Compensators (CS-FLEC) H12 (solid lines) for ν = ν1 = ν2 = 0.3 (curves a3, b3),
0.5 (curves a5, b5), 0.7 (curves a7, b7).
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1 (dashed lines) and of the CS-FLEC H12 (solid lines) for

ν = ν1 = ν2 = 0.3 (curves a3, b3), 0.5 (curves a5, b5), 0.7 (curves a7, b7).

3. Realization

Because the CS-FLEC is an irrational function, its implementation needs a rational integer-order
TF approximation. Literature shows many frequency domain approaches to approximate irrational
operators and functions, starting with early contributions like [53–55]. The most referred methods
are the Oustaloup recursive approximation (ORA) [56] and the modified Oustaloup technique [57].
They employ popular formulas to alternate zeros and poles of the rational transfer function in the
frequency interval of practical interest, but they often determine approximations of very high order.
Methods that are based on continued fraction expansions (CFE), interpolation, and curve-fitting
methods are also important [58,59], and even the Matsuda approach, which is one of the best known,
combines CFE and a fitting technique [55]. Moreover, CFE-based methods are preferred to those using
power series expansions, because better convergence properties imply less coefficients to obtain a good
approximation [58]. A good review of the basic approaches and techniques was given by [60].

In recent years, researchers proposed several other techniques, among which one may
consider [61–67]. Namely, it was pointed out that fractional-order lead compensators found difficult
application in industry, because it is difficult to obtain the desired functions with the commercially
available electronic components, such that special methods that are based on operational amplifiers and
field programmable analog arrays should be used [61]. In [63], the authors design two fractional-order
lead-lag compensators to control a benchmark refrigeration system (the PID2018 benchmark challenge)
such that a more aggressive response is obtained. In this case, approximation is simply performed
via the Matlab command fitmagfrd from the Robust Control Toolbox. Other peculiar techniques
could take advantage from orthonormal rational basis functions, which can be used to improve fitting
and approximation of frequency response, as shown in [64]. Some other authors proposed curve
fitting techniques (with built-in Matlab functions) that use frequency response data of fractional-order
operators to improve the ORA, the modified ORA, or the Matsuda approximation [65]. A Scilab Based
Toolbox is also available for fractional-order operators, transfer functions, filters, and controllers [66].
Finally, the recent work presented in [67] implements fractional-order lead/lag compensators using
Operational Transconductance Amplifiers as active blocks. To this aim, the authors consider a Padé
approximation proposed in [68] and obtain the same form of realization for the two types of fractional
transfer functions, which allows them to use the same active core and to electronically tune the
characteristics of the compensators. Contributions for the discretization and digital implementation of
fractional functions are many and beyond the scope of this paper.
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Here, each stage of the CS-FLEC is approximated by a second-order rational TF, which gives
sufficient accuracy in the frequency range of interest. Note that a low-order implementation is
advantageous, because the changes of the coefficients due to passive component tolerances (analogue
implementation) or to the limitations of microprocessor words and the quantization effects (digital
implementation) are quite contained [69,70], such that a low sensitivity to parameter variations
is obtained.

The realization method leads to the following expression of the approximated FLEC (see Appendix A)(
1 + τ s

1 + τ ∆ s

)ν

≈ GC(s) =
∑2

k=0 B2−k sk

∑2
k=0 A2−k sk

, (14)

with

A2−k =
2

∑
i=0

a2−i LC
ki, B2−k =

2

∑
i=0

b2−i LC
ki, (15)

where b2 = a0 = (1− ν) (2− ν), b1 = a1 = 2 (2− ν) (2 + ν), b0 = a2 = (1 + ν) (2 + ν) [71] and

LC
ki =

µ2

∑
j=µ1

(
i
j

)(
2− i
k− j

)
∆k−j τk k = 0, 1, 2, (16)

where µ1 = max{0, k + i− 2}, µ2 = min{i, k}.
Figures 1 and 2 show in dashed lines magnitude and phase plots of a second-order realization

GC(s) of the FLEC. The approximation accuracy is satisfactory in the frequency range of interest for
the single (irrational) stage FLEC. The plots in Figures 1 and 2 show that both the magnitude and the
phase practically coincide with the plots representing the irrational FLEC in the frequency interval
u ∈ (10−1, um1), which is important for compensation. Instead, for u > um1, the approximation gets
worse. On the other hand, for practical purpose, it can be easily verified that higher-order, rational
TFs do not significantly improve the approximation in the frequency range where a nearly flat phase
is achieved.

Now, consider the rational TFs indicated by GCH1(s) and GCH2(s), respectively representing the
second-order realizations of H1(s) and H2(s). Subsequently, the cascade GCH12(s) = GCH1(s) ·GCH2(s)
provides a fourth-order realization of H12(s).

4. The Design Method

To achieve robustness to gain variations, the phase margin PM must be nearly constant in a
frequency interval around the gain crossover frequency of the compensated system, ωgc. That is,
the tangent line to the curve of the phase angle of the open-loop TF should have a small slope in a
given range around ωgc. Even if this curve is not completely flat, the robustness can be ensured if PM
is greater than an established minimum value for a wide frequency spread around ωgc. The width of
the range is also important to guarantee robustness.

Hence, let HOL(s) = H(s) Gp(s) be the open-loop TF, including the controller H(s) = Kc H12(s) =
Kc H1(s) H2(s) and the plant Gp(s). To introduce the design method, the following essential facts
clarify the objectives, specify the assumptions, and provide some advice.

a. The features of the CS-FLEC are suitable for controlling plants with phase lags which are
monotonic increasing with the frequency ω. Afterwards, putting ϕp(ω) = ∠Gp(jω), the
phase margin PMp of the plant at its gain crossover frequency ωpgc, PMp = π + ϕp(ωpgc),
is often negative.

b. The compensator will introduce a phase lead compensating the lag of the plant so as to obtain
the flattest possible phase trend in the range surrounding ωgc, i.e., the gain crossover frequency
of HOL(jω). However, the CS-FLEC shifts ωgc to the right of ωpgc. Accordingly, if ∠Gp(jω) and
|Gp(jω)| decrease sharply beyond ωpgc, H(jω) cannot introduce leads balancing the greater lags
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(see the plant phase diagrams in Figures 7 and 8). For this reason, the value of gain Kc must be
properly adjusted to make ωgc ≈ ωpgc or even ωgc < ωpgc if these frequencies are not too far
from each other.

c. To satisfy the previous requirements, H12(s) = Kc H1(s) H2(s) is chosen by composing H1(s) and
H2(s), having phase plots in shifted frequency ranges. More precisely

H1(s) =
(

1 + τ s
1 + τ ∆ s

)ν1

and H2(s) =
(

1 + τ ∆ s
1 + τ ∆2 s

)ν2

, (17)

where ν1 > ν2 and ∆ is the scaling factor. The strategy is that H1(s) introduces the larger lead
amount, while H2(s) improves the flatness. It holds ∆ = 0.1.

d. The compensated system must show an adequate phase margin (e.g., PM ≥ 55◦) with a phase
decay rate beyond ωgc that is less than that of the corresponding plant. Finally, ωgc from HOL(jω)

must be ωgc ≈ ωpgc, without excessively reducing the system bandwidth.

e. Let ϕOL(ω) = ∠HOL(jω) and define the slope sl(ω) =
∣∣∣ dϕOL(ω)

d log(ω)

∣∣∣. Afterwards, to improve
the robustness to gain variations in a frequency range around ωgc, the slope sl(ωgc) must
decrease as much as possible. Since the value of sl(ωgc) estimates the robustness to gain
variations, some approaches are proposed for evaluating this parameter [43]. In the present
case, simple calculations give (see Appendix B)

sl(ωgc)=

∣∣∣∣ dϕp(ω)
dω

∣∣∣
ωgc

+ ν1τ
1+(ωgcτ)2−

(ν1−ν2)τ∆
1+(ωgcτ∆)2− ν2τ∆2

1+(ωgcτ∆2)2

∣∣∣∣ ωgc 2.30. (18)

It can be verified that ν1, ν2, and τ make sl(ωgc) < slp(ωpgc), where slp(ωpgc) =

∣∣∣∣ dϕp(ω)
dω

∣∣∣
ωpgc

∣∣∣∣
provides the plant slope.

To sum up, the parameters of the compensator to be determined are τ, ν1, ν2, and Kc, while ωpgc

and ∆ are known from the start. The procedure to set the parameters is specified, as follows.

I. By Equation (2), the time constant τ can be easily determined in terms of ωm1, the frequency
where ϕm1 occurs. However, due to the lead contribution of H2(s), the controller H(s) reaches
the maximum phase lead at frequency ωm12 > ωm1. Hence, to put ωm12 ≈ ωpgc, ωm1 is chosen,
so that ωm1 ≈ h ωpgc with 0.5 ≤ h ≤ 0.9. The parameter h can be determined by few successive
attempts. A first one can be h = 1.

II. To set ν1 and ν2, the phase margin specification PM on HOL(s) is considered. Hence, since ωgc ≈ ωpgc

and ωpgc ≈ ωm1, the following approximate relation can be used:

PM=PMp +∠H1(jωm1) +∠H2(jωm1)=PMp + ν1 55◦ + ν2 16◦ (19)

where ∠H1(jωm1) ≈ ν1 55◦ by Equation (4) and ∠H2(jωm1) ≈ ν2 16◦ is computed by Equation (5).
Note that, if the plant shows a phase lag rapidly increasing with the frequency, PMp can be
negative. Moreover, it is suitable to choose ν1 > ν2, otherwise large values for ν2 would increase
the magnitude of H2(jω), that shifts the crossover of HOL(jω) too far beyond ωpgc. A rule of
thumb, which is tested by numerical experiments, indicates ν1 ≈ 3 ν2. Moreover, Equation (19)
shows that values of ν2 ∈ (0.3, 0.5) allow to compensate PMp < 0 in order to obtain PM ≥ 55◦

and achieve a right compromise between robustness and dynamic response.
III. Kc is set, so that Kc ≤ 1

|H12(jωpgc)| . The gain crossover frequency ωgc, indeed, can also assume
values that are less than ωpgc. This choice is convenient if a greater phase margin is required and
if sl(ωgc) decreases. However, ωgc must be quite close (to the left) to ωpgc.

IV. The performance is verified. If specifications are not met, then the procedure must be repeated by
going back to step I. (or III.), decreasing ωm1 (or Kc), then changing τ and so on.
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Figure 7. Frequency response by the first plant Gp1 (dash-dotted lines), the compensator H with the
CS-FLEC (dashed lines) and the compensated system HOL (solid lines).
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Figure 8. Frequency response by the second plant Gp2 (dash-dotted lines), the compensator H with the
CS-FLEC (dashed lines) and the compensated system HOL (solid lines).

Note that the design pattern refers to the irrational TF H(s) = Kc H12(s). Usually, the step
response characterizes the system performance in terms of rise time (tr), maximum overshoot (om),
and settling time ts (if necessary). To establish a total reliance on computer simulation, H12(s) is
replaced by its rational approximation GCH12(s) according to the approach presented in Section 3,
thus providing a rational approximation GCH(s) for H(s).

Finally, for comparison purpose, one can design a cascade of two identical FLECs, namely
[H1(jω)]2, where H1 is specified by Equation (1). In this case, the maximum phase lead is 2 ϕm1 at ωm1.
By using the same values of ωpgc, PMp, and ∆, a procedure that is similar to that for the CS-FLEC can
be followed. At step I, by putting ωm1 ≈ h ωpgc with 0.5 ≤ h ≤ 0.9 (e.g., h = 1) and using Equation (2),
the time constant τ is determined in terms of ωm1 and ∆. At step II, the relation PM = PMp + ν1 110◦

provides ν1. At step III, Kc is set so that Kc ≤ 1
|H2

1 (jωpgc)|
. At step IV, performance is verified.

5. Two Illustrative Benchmark Examples

The design approach is illustrated by two meaningful and demonstrative benchmarks taken from
the literature.
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5.1. First Example

Consider the plant model

Gp1(s) =
1

s (1 + s)3 (20)

that is a benchmark proposed by [50]. In Figure 7, the Bode diagrams give ωpgc = 0.62 rad/s with
∠Gp1(jωpgc) = −185◦ then PMp = −5◦ and slp(ωpgc) = 3.09.

The design method is applied with ∆ = 0.1. The specifications are a phase margin PM ≥ 55◦ to
ensure stability, despite plant gain and parameter variations. The overshoot in the unit step response
of the closed-loop system should not be much higher than 20%.

One choice of the CS-FLEC parameter set comes from a first iteration of the design method and is
as follows:

– Step I: ωm1 = ωpgc ⇒ τ = 5.13 s
– Step II: PM = 55◦ ⇒ ν2 = 0.33 and ν1 = 0.99
– Step III: Kc = 1/|H12(jωpgc)| = 0.31
– Step IV: the obtained phase margin is 54.6◦ in ωgc = 0.62 rad/s. The slope of the phase plot is

sl(ωgc) = 2.90. The step response shows a 9.40% overshoot and settling time of 17.80 s.

These results could be satisfactory, however a second iteration gives:

– Step I: ωm1 = ωpgc ⇒ τ = 5.13 s
– Step II: PM = 55◦ ⇒ ν2 = 0.33 and ν1 = 0.99
– Step III: Kc = 0.95/|H12(jωpgc)| = 0.30
– Step IV: the obtained phase margin is 58.9◦ in ωgc = 0.58 rad/s. Moreover, sl(ωgc) = 2.75,

which is a good improvement. The step response shows a 6.55% overshoot and settling time
of 18.50 s.

The controller Kc H1(s) H2(s) is realized, as follows:

GCH(s) = 5.97
(s + 5.29) (s + 2.21) (s + 0.36) (s + 0.20)
(s + 8.90) (s + 2.67) (s + 1.94) (s + 0.35)

.

Table 1 reports the performance indexes when Kc or the plant time constant τp or the fractional
order ν = ν2 change by a ±10% amount with respect to their nominal values Kc = 0.30, τp = 1 s,
and ν = 0.33. ∆ and τ take the values assigned by the design. See Figures 9–11 for the responses.
Note that, here, the rise time tr is required for the response to rise from 0.1 to 0.9 of the steady-state
value. The settling time ts is defined for a ±5% requirement. In all cases, tr is contained and om stays
below 12% and it does not change in a significant way. The settling time has satisfactory values. All of
the responses show undershoots that increase with ν.

To validate an auto-tuning technique, the authors of [43] proposed simulation results referred
to the process (20) controlled by a FPID tuned by an iso-damping approach. The specifications were
the desired “tangent frequency” ωc = 0.4 rad/s and the “tangent phase margin” at ωc, i.e., Φm = 45◦.
Subsequently, the Bode plots in [43] showed a flat phase curve near ωc (at the peak of the phase
plot). Hence, the step responses remained nearly constant with respect to the gain variation, thus
showing robustness. The overshoot was roughly 35%. The design approach proposed here gives
ωgc = 0.58 rad/s with a phase margin of 58.9◦. Moreover, limited changes of the step responses occur
due to the gain (or other parametric) variations and the overshoots are below 12% (see Figures 9–11
and Table 1).
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Table 1. Characteristics of the step response with parameter variations: tr, ts (expressed in seconds),
om (in % values). Changing parameters: Kc, τp, ν. Design values: τp = 1, ν = 0.33, Kc = 0.30 (first
example); D = 1, ν = 0.12, Kc = 0.51 (second example).

Kc τp ν tr om ts

First example

0.9 Kc τp ν 2.46 0.90 21.47
Kc τp ν 2.19 6.55 18.50

1.1 Kc τp ν 2.00 11.90 17.34
Kc 0.9 τp ν 2.04 4.46 21.30
Kc 1.1 τp ν 2.34 8.64 19.29
Kc τp 0.9 ν 2.38 6.68 19.01
Kc τp 1.1 ν 2.01 6.70 21.90

Second example

0.9 Kc – ν 1.03 2.16 10.30
Kc – ν 0.89 10.89 9.40

1.1 Kc – ν 0.78 19.71 9.03
Kc – 0.9 ν 0.95 8.47 9.56
Kc – 1.1 ν 0.82 13.76 11.47
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Figure 9. Unit step response in the first example for different values of Kc.
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Finally, the control variable and the unit step disturbance rejection are illustrated in Figures 12 and 13
for variations of Kc. The results obtained in case τp or ν change do not affect the performance in a
substantially different way. Figure 12 shows that high initial values of the control variable are obtained.
However, the amplitude of the manipulated variable is usually subject to limitations deliberately
placed on actuators for accounting the limited power available to the control system and avoiding
damages to the process [72].
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Figure 12. Control variable in the first example for different values of Kc.
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Figure 13. Step disturbance rejection in the first example for different values of Kc.

The design of two identical FLECs gives the following results:

– Step I: ωm1 = ωpgc ⇒ τ = 5.13 s
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– Step II: PM = 55◦ ⇒ ν1 = 0.55
– Step III: Kc = 0.95/|H2

1(jωpgc)| = 0.51
– Step IV: the obtained phase margin is 56.9◦ in ωgc = 0.60 rad/s.

The controller Kc H2
1(s) is realized, as follows:

GCH(s) = 10.585
(s + 0.461)2 (s + 0.2113)2

(s + 1.1)2 (s + 0.288)2 .

Figure 14 shows the frequency response. Although the specification on phase margin is met and
the crossover is kept the same, the phase diagram is not as flat as with a CS-FLEC. Namely, the slope
in the crossover is sl(ωgc) = 3.05, which is only a bit lower than before compensation. Moreover,
as shown by the same Figure 14, the step response shows a 53.05% overshoot, sustained oscillations,
a long settling time. Finally, variations with the gain are much more significant than with a CS-FLEC:
with a 10% gain reduction, the overshoot is 44.7%, while with a 10% gain increase, the overshoot is
60.9%. All of these considerations explain why the CS-FLEC is preferable to a conventional cascade of
identical FLECs.
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Figure 14. Left: frequency response by the first plant Gp1 (dash-dotted lines), the compensator H with
two identical FLECs (dashed lines), and the compensated system HOL (solid lines). Right: unit step
response for different values of Kc.

5.2. Second Example

Whenever it does not compromise the clarity, the same symbols are used as the notations of the
first case-study. Consider a plant that consists of an integrator with a time delay D:

Gp2(s) =
e−D s

s
(21)

that is another common reference model. This case-study has also been considered by [49]. Moreover,
time-delays are important in modeling many physical devices, such as large-scale flexible structures
or electric networks [73]. For this reason, the results shown here were obtained by simulating (21)
without approximating the dead-time element.

For instance, if D = 1 s, Figure 8 shows the Bode diagrams of Gp2 with ωpgc = 1 rad/s,
∠Gp2(jωpgc) = −147◦ then PMp = 33◦ and slp(ωpgc) = 2.30. After few iterations of the step-wise
algorithm, the proposed design pattern, with ∆ = 0.1 and with the specification PM ≥ 55◦, gives:
ωm1 = 0.8 ωpgc ⇒ τ = 3.95 s; ν1 = 0.37 and ν2 = 0.12; Kc = 0.85/|H12(jωpgc)| = 0.51; a phase margin
of 66.8◦ in ωgc = 0.79 rad/s. Moreover, sl(ωgc) = 1.75. The controller is realized by
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GCH(s) = 1.47
(s + 7.94) (s + 3.02) (s + 0.67) (s + 0.28)
(s + 9.62) (s + 3.24) (s + 1.20) (s + 0.35)

.

Figure 8 shows the frequency response of the compensated system and Figure 15 illustrates the
step response, whose characteristics are presented in Table 1. The step response shows a 10.89%
overshoot and settling time of 9.40 s with the designed parameters. However, 10% variations of the
gain Kc induce om ≤ 20% and ts ≤ 11 s. If ν changes, om ≤ 14% and ts ≤ 12 s. Similar considerations
to the first case hold for the control variable and the disturbance rejection.

Note that some rules can be established to guide the controller design.

(a) The initial choice in the design procedure, ωm1 = ωpgc and Kc = 1/|H12(jωpgc)|, is sufficient
for small delays D ≤ 0.6.

(b) The positions ωm1 = ωpgc and Kc = 0.85/|H12(jωpgc)| are applied to delays 0.7 ≤ D ≤ 0.9.
(c) The design choice ωm1 = 0.8 ωpgc and Kc = 0.85/|H12(jωpgc)| can be used to satisfy the

specifications and obtain good performance for delays 1 ≤ D ≤ 1.2 (see Table 2).
(d) The relations ωm1 = 0.8 ωpgc and Kc = 0.8/|H12(jωpgc)| are used for delays 1.3 ≤ D ≤ 1.5 that

are more difficult to compensate.

Subsequently, these rules may help the control engineer and set the limits of application of the
proposed controllers.
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Figure 15. Unit step response in the second example for different fractional orders.

Table 2. Characteristics of the step response for 1.1 ≤ D ≤ 1.2 with parameter variations: tr, ts

(expressed in seconds), om (in % values). Changing parameters: Kc, ν.

Kc ν tr om ts

0.9 Kc ν 1.01 3.01 12.95
D = 1.1 Kc ν 0.87 12.65 12.65

τ = 3.95, ν = 0.16 1.1 Kc ν 0.76 22.38 12.58
Kc = 0.45 Kc 0.9 ν 0.96 8.87 10.15

Kc 1.1 ν 0.78 17.24 12.50

0.9 Kc ν 1.00 4.04 14.12
D = 1.2 Kc ν 0.85 14.54 13.32

τ = 3.95, ν = 0.19 1.1 Kc ν 0.73 25.12 16.29
Kc = 0.40 Kc 0.9 ν 0.96 9.05 13.60

Kc 1.1 ν 0.74 21.23 16.06

6. Conclusions

The introduced CS-FLEC are new types of two-stages fractional-order controllers, whose phase
diagrams are nearly flat in large frequency intervals of the Bode plots. Each stage of the cascade can
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be implemented as a second-order TF, which approximates irrational FLEC elements with sufficient
accuracy. Because it is composed by a series of independent stages, a CS-FLEC is approximated
by cascade of rational low-order TFs with limited coefficients sensitivity to parameter variations.
Different alternatives in choosing the number of stages and their free parameters make these new
controllers flexible and suitable for also solving difficult control problems. The potentiality of the
CS-FLEC has been tested for controlling two plants that often are assumed as benchmark to verify
the design proposals. The introduced design method follows an intuitive, practical pattern based
on the developed formulas. Namely, the main strategy consists in compensating the rapidly and
monotonically increasing phase lag by the lead introduced by the CS-FLEC in the same frequency range.
The two examples show that the CS-FLEC allows for a desired set-point response and the stability
robustness to gain and parameter variations. Finally, the study of the second benchmark identifies the
interval values of the dead-time D, where the CS-FLEC can be used to satisfy strict specifications.
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Abbreviations

The following abbreviations are used in this manuscript:

PID Proportional-Integral-Derivative
FOC Fractional-Order Controller
FPID Fractional-Order PID
FPI Fractional-Order PI
PSO Particle Swarm Optimization
ITAE Integral Time Absolute Error
ISE Integral Square Error
IAE Integral Absolute Error
FLEC Fractional-Order Lead Compensator
CS-FLEC Cascaded Shifted Fractional-Order Lead Compensator
TF Transfer Function
PM Phase Margin

Appendix A. The Approximation Method

The realization of the FLEC is based on a rational second-order TF approximation of the basic
function xν:

xν ≈ G(x) =
∑2

i=0 b2−i xi

∑2
i=0 a2−i xi

x ∈ C. (A1)

The coefficients a2−i, b2−i depend on ν and can be obtained by the general approach proposed
in [71]. Then the variable transformation

x =
1 + τ s

1 + τ ∆ s
x, s ∈ C (A2)

converts Equation (A1) in the rational TF GC(s) approximating the FLEC. Namely, substituting
Equation (A2) in (A1) gives:(

1 + τ s
1 + τ ∆ s

)ν

≈ GC(s) =
∑2

i=0 b2−i (1 + τ s)i (1 + τ ∆ s)2−i

∑2
i=0 a2−i (1 + τ s)i (1 + τ ∆ s)2−i

. (A3)

Now let (i
j) and (2−i

m ) indicate the Binomial Coefficients (BCs for brevity). By the Binomial Theorem
and by the distributive law of the product of sums , it is easy to verify that
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a2−i (1 + τ s)i (1 + τ ∆ s)2−i = a2−i

i

∑
j=0

2−i

∑
m=0

(
i
j

)(
2− i

m

)
(τ s)j+m ∆m. (A4)

Since j and m satisfy j + m = k, in Equation (A4) the lower index m in the BC can be replaced by
(k− j) and the k-th monomial term with power sk is:

a2−i

[
τk

i

∑
j=0

(
i
j

)(
2− i
k− j

)
∆k−j

]
sk (A5)

for k = 0, 1, 2. Now, since the BCs with negative lower index are zero, the inequalities j ≥ µ1 =

max{0, k + i− 2} and j ≤ µ2 = min{i, k} hold. Hence Equation (A5) leads to Equations (15) and (16).

Appendix B. Computation of Slopes in the Bode Phase Diagrams

Here a new closed-formula is provided to analytically compute the slope of the Bode phase plot.
If the open-loop TF including the CS-FLEC is

HOL(s) = Kc

(
1 + τ s

1 + τ ∆ s

)ν1
(

1 + τ ∆ s
1 + τ ∆2 s

)ν2

Gp(s) (A6)

and if ϕOL(ω) = ∠HOL(jω) and ϕp(ω) = ∠Gp(jω), then it easily follows

dϕOL(ω)

dω
=

dϕp(ω)

dω
+

ν1 τ

1 + (ω τ)2 −
(ν1 − ν2) τ ∆
1 + (ω τ ∆)2 −

ν2 τ ∆2

1 + (ω τ ∆2)2 (A7)

that can be computed for ω = ωgc. Then applying the chain rule for derivatives yields Equation (18).
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Daković, M. On the rational representation of fractional order lead compensator using pade approximation.
In Proceedings of the 2018 7th Mediterranean Conference on Embedded Computing (MECO), Budva,
Montenegro, 10–14 June 2018; pp. 1–4.

69. Maione, G. High-speed digital realizations of fractional operators in the delta domain. IEEE Trans.
Autom. Control 2011, 56, 697–702. [CrossRef]

70. Caponetto, R.; Tomasello, V.; Lino, P.; Maione, G. Design and efficient implementation of digital non-integer
order controllers for electro-mechanical systems. J. Vib. Control 2016, 22, 2196–2210. [CrossRef]

71. Maione, G. Continued fractions approximation of the impulse response of fractional order dynamic systems.
IET Control Theory Appl. 2008, 2, 564–572. [CrossRef]

72. Middleton, R.H. Dealing with actuator saturation. In The Control Handbook; Levine, W.S., Ed.; CRC Press:
Boca Raton, FL, USA, 1996; pp. 377–381.

73. Bucolo, M.; Buscarino, A.; Fortuna, L.; Frasca, M. Forward action to make time-delay systems positive-real
or negative-imaginary. Syst. Control Lett. 2019, 131, 104495. [CrossRef]

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1016556604320
http://dx.doi.org/10.1007/s12555-016-0131-6
http://dx.doi.org/10.1021/acs.iecr.9b01854
http://dx.doi.org/10.1016/j.ifacol.2017.08.1026
http://dx.doi.org/10.2478/amcs-2019-0023
http://dx.doi.org/10.1016/j.aeue.2020.153203
http://dx.doi.org/10.1109/TAC.2010.2101134
http://dx.doi.org/10.1177/1077546315614120
http://dx.doi.org/10.1049/iet-cta:20070205
http://dx.doi.org/10.1016/j.sysconle.2019.104495
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Cascaded, Shifted, Fractional-Order Lead Compensator
	The First Compensator Stage
	The Second Compensator Stage
	The Serial Compensator

	Realization
	The Design Method
	Two Illustrative Benchmark Examples
	First Example
	Second Example

	Conclusions
	The Approximation Method
	Computation of Slopes in the Bode Phase Diagrams
	References

