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Abstract: We study the existence of solutions for a new class of boundary value problems of
arbitrary order fractional differential equations and inclusions, supplemented with integro-multistrip-
multipoint boundary conditions. Suitable fixed point theorems are applied to prove some new
existence results. The inclusion problem is discussed for convex valued as well as non-convex
valued multi-valued map. Examples are also constructed to illustrate the main results. The results
presented in this paper are not only new in the given configuration but also provide some interesting
special cases.

Keywords: differential equation and inclusion; boundary value problem; fractional derivative;
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1. Introduction

Fractional calculus, regarded as a generalization of classical calculus, deals with differential and
integral operators of arbitrary non-integer orders. In the last few decades, the tools of fractional
calculus considerably improved the mathematical modeling of many real-world phenomena occurring
in applied and technical sciences. Examples include co-infection of malaria and HIV/AIDS [1],
HIV-immune system with memory [2], chaotic synchronization [3], dynamical networks [4], continuum
mechanics [5], financial economics [6], etc. In view of the nonlocal nature of fractional order operators,
mathematical models based on such operators are found to be more adequate and informative than
their integer order counterparts.

Influenced by application of fractional calculus, there has been shown a significant interest in
the investigation of fractional differential equations and inclusions in the recent years. For theory
and applications of fractional differential equations, for instance, see the text [7], while the details
about Hadamard-type fractional differential equations, inclusions and inequalities can be found in the
monograph [8]. In [9], the authors discussed the existence and multiplicity of positive solutions for a
singular fractional boundary value problem. Details about variable order integral operators can be
found in [10]. In [11], a coupled system of neutral fractional integro-differential equations with infinite
delay was studied. For some recent works on fractional differential equations supplemented with
multi-point and integral boundary conditions, for instance, see [12–16].

Differential inclusions play a key role in the study of several processes like queueing networks,
climate control, optimization of financial issues, for details, see the text [17]. Other applications
include synchronization of fractional order systems [18], control systems [19], dynamics of wheeled
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vehicles [20], Navier–Stokes delay differential inclusions [21], etc. Keeping in mind the importance
of differential inclusions, several researchers turned to the topic of fractional differential inclusions
and obtained a variety of results. In [22,23], the authors investigated semilinear fractional order
differential and integro-differential inclusions, respectively. Some existence results for coupled systems
of fractional differential inclusions were derived in [24–26], while some recent works on fractional
differential inclusions with nonlocal boundary conditions can be found in [27–29]. Oscillation and
nonoscillation criteria for Caputo–Hadamard impulsive fractional differential inclusions are presented
in [30]. Existence of infinitely many solutions for a fractional differential inclusion with oscillatory
potential is discussed in [31]. In a recent paper [32], the existence of solutions for an inclusions problem
involving both Caputo and Hadamard fractional derivatives was studied.

Recently, in [33], the authors discussed the existence and uniqueness of solutions for a Caputo
type fractional differential equation

cDqx(t) = f (t, x(t)), n− 1 < q ≤ n, t ∈ J := [0, 1], (1)

equipped with the boundary conditions
x(0) = 0, x′(0) = 0, x′′(0) = 0, . . . , x(n−2)(0) = 0,

x(1) = a
∫ ξ

0
x(s)ds + b

m−2

∑
i=1

αix(ηi), 0 < ξ < η1 < η2 < . . . < ηm−2 < 1,
(2)

where cDq denotes the Caputo fractional derivative of order q, f : J ×R→ R is a continuous function,
a and b are real constants and αi, i = 1, . . . , m− 2, are positive real constants.

In this paper, we are concerned with existence of solutions for a nonlinear fractional differential
equation of the form:

Dσx(t) = f (t, x(t)), t ∈ J := [0, 1], (3)

subject to integro-multistrip-multipoint boundary conditions:

x(i)(0) = 0, i = 0, 1, 2, . . . , n− 2,
∫ 1

0
x(s)ds =

p

∑
i=2

βi−1

∫ ηi

ηi−1

x(s)ds +
q

∑
j=1

γj x(ρj), (4)

where Dσ is the standard Riemann-Liouville fractional derivative of order σ satisfying n− 1 < σ ≤ n
with n ≥ 3, f : J ×R→ R is a continuous function, 0 < η1 < η2 < . . . < ηp < ρ1 < ρ2 < . . . < ρq < 1,
and βi, γi > 0, i = 2, 3, . . . , p with p, q ∈ N.

Here we remark that the last condition in (4) implies that the sum of the values of the unknown
function due to finite many strips and points within the interval [0, 1] balances the the average value of
the unknown function on the whole interval [0, 1].

Existence and uniqueness results are proved for the boundary value problems (3) and (4) by using
Krasnoselskii and Banach fixed point theorems.

We also cover the multi-valued case of the problems (3) and (4) by considering the following
inclusion problem:

Dσx(t) ∈ F(t, x(t)), t ∈ J := [0, 1],

x(i)(0) = 0, i = 0, 1, 2, . . . , n− 2,
∫ 1

0
x(s)ds =

p

∑
i=2

βi−1

∫ ηi

ηi−1

x(s)ds +
q

∑
j=1

γj x(ρj),
(5)

where F : J ×R→ P(R) is a multi-valued map (P(R) is the family of all nonempty subsets of R).
The motivation of the present work is to investigate solvability criteria for fractional differential

equations and inclusions of arbitrary order subject to a new kind of integro-multistrip-multipoint
boundary conditions. The obtained results are not only new in the given configuration but also yield
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several interesting special cases associated with the particular values of the parameters involved in the
given problem, including the “zero” average value case (for details, see Conclusions section).

We prove the existence results for the inclusion boundary value problem (5) by using a variety of
fixed point theorems sush as Bohnenblust–Karlin fixed point theorem, Martelli fixed point theorem,
Leray–Schauder nonlinear alternative, and Covitz–Nadler fixed point theorem.

This paper is organized as follows. In Section 2, we set forth some preliminaries. Section 3 contains
existence and uniqueness results for the boundary value problems (3) and (4), while Section 4 deals
with the existence of solutions for the inclusion boundary value problem (5). Illustrative examples are
also presented.

2. Preliminaries

In this section, we recall some definitions from fractional calculus.

Definition 1 ([7]). The Riemann–Liouville fractional integral Is
a f of order s > 0 for a function f ∈

L1[a, b],−∞ < a < b < ∞, existing almost everywhere on [a, b], is defined by

Is
a f (t) =

1
Γ(s)

t∫
a

(t− τ)s−1 f (τ)dτ,

where Γ denotes the Euler gamma function.

Remark 1. Let f ∈ Lp[a, b], 1 ≤ p < ∞ and q1, q2 > 0. Then the following relation holds almost everywhere
on [a, b] :

Iq1
a Iq2

a f (t) = Iq1+q2
a f (t).

Of course, if f ∈ C[a, b] or q1 + q2 > 1, then the above relation holds for each t ∈ [a, b].

Definition 2 ([7]). Let f , f (m) ∈ L1[a, b]. Then the Riemann–Liouville fractional derivative Ds
a f of order

s ∈ (m− 1, m], m ∈ N, existing almost everywhere on [a, b], is defined as

Ds
a f (t) =

dm

dtm Im−s
a f (t) =

1
Γ(m− s)

dm

dtm

t∫
a

(t− τ)m−1−s f (s)ds.

The following lemma is of great importance in the proof of our main results.

Lemma 1. Let g ∈ C(J,R) and

ρ =
1
σ

(
1 +

p

∑
i=2

βi−1(η
σ
i − ησ

i−1) +
q

∑
j=1

γjρ
σ−1
j

)
6= 0. (6)

Then the linear boundary value problem

Dσx(t) = g(t), t ∈ J := [0, 1], (7)

x(i)(0) = 0, i = 0, 1, 2, . . . , n− 2,
∫ 1

0
x(s)ds =

p

∑
i=2

βi−1

∫ ηi

ηi−1

x(s)ds +
q

∑
j=1

γj x(ρj), (8)

has a unique solution given by

x(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1g(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σg(s)ds
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+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1g(u)du ds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1g(s)ds

}
.

Proof. As argued in [7], the general solution of the equation Dσx(t) = g(t), n− 1 < σ < n can be
written as

x(t) = b1tσ−1 + b2tσ−2 + · · ·+ bntσ−n +
1

Γ(σ)

∫ t

0
(t− s)σ−1g(s)ds, (9)

where bi (i = 1, 2, . . . , n) are arbitrary constants. Using the conditions x(i)(0) = 0, i = 0, 1, 2, . . . , n− 2
from (8) into (9), we find that b2 = b3 = · · · = bn = 0 and consequently, (9) takes the form:

x(t) = b1tσ−1 +
1

Γ(σ)

∫ t

0
(t− s)σ−1g(s)ds. (10)

Using the last condition of (8) in (10) and solving the resulting equation for b1 together with the
notation (6), we obtain

b1 =
1
ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σg(s)ds +

p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1g(u)du ds

+
q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1g(s)ds

}
.

Inserting the above values in (9) leads to the solution (9). The converse can be proven by direct
computation. The proof is finished.

3. Existence and Uniqueness Results for Problems (3) and (4)

By C(J,R) we denote the Banach space of all continuous functions from J into R endowed with the
sup-norm ‖u‖ = sup{|u(t)| : t ∈ J}. By L1(J,R) we denote the Banach space of Lebesgue integrable
functions u : J −→ R normed by

‖u‖L1 =
∫ 1

0
|u(t)|dt.

In this section we present existence and uniqueness results for the problems (3) and (4). In relation
to the problems (3) and (4), we introduce an operator G : C(J,R)→ C(J,R) via Lemma 1 as follows

(Gx)(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1 f (s, x(s))ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ f (s, x(s))ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1 f (u, x(u))du ds

+
q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1 f (s, x(s))ds

}
, (11)

such that the the problems (3) and (4) is equivalent to the fixed point problem: x = Gx. So the existence
of a fixed point of the operator G will imply the existence of a solution for the problems (3) and (4).

3.1. Existence Result via Krasnoselskii’s Fixed Point Theorem

Lemma 2. (Krasnoselskii’s fixed point theorem [34]). Let X be a bounded, closed, convex, and nonempty
subset of a Banach space Y . Let ϕ1, ϕ2 be the operators such that (i) ϕ1x1 + ϕ2x2 ∈ X whenever x1, x2 ∈ X ;
(ii) ϕ1 is compact and continuous; (iii) ϕ2 is a contraction mapping. Then there exists x3 ∈ X such that
x3 = ϕ1x3 + ϕ2x3.
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In the sequel, we use the notations:

Λ =
1

Γ(σ + 1)
+

1
ρ

[
1

Γ(σ + 2)
+

p

∑
i=2
|βi−1|

ησ+1
i − ησ+1

i−1
Γ(σ + 2)

+
q

∑
j=1
|γj|

ρσ
j

Γ(σ + 1)

]
, (12)

and
Λ1 = Λ− 1

Γ(σ + 1)
. (13)

Theorem 1. Let f : J ×R→ R be a continuous function satisfying the conditions:

(A1) | f (t, x) − f (t, y)| ≤ L|x − y|, for all t ∈ J, L > 0, x, y ∈ R, with L < 1/Λ1, where Λ1 is given
by (13);

(A2) | f (t, x)| ≤ µ(t) for all (t, x) ∈ J ×R, µ ∈ C(J,R+).

Then the boundary value problems (3) and (4) has at least one solution on J.

Proof. We fix r ≥ Λ‖µ‖ and consider the closed ball Br = {x ∈ C : ‖x‖ ≤ r}. We define two operators
G1 and G2 on Br as

(G1x)(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1 f (s, x(s))ds, t ∈ J,

(G2x)(t) =
tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ f (s, x(s))ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1 f (u, x(u))du ds

+
q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1 f (s, x(s))ds

}
.

Notice that G = G1 + G2. For x, y ∈ Br, we find that

‖G1x + G2y‖ = sup
t∈J
|(G1x)(t) + (G2y)(t)|

≤ ‖µ‖
{

1
Γ(σ)

∫ t

0
(t− s)σ−1| f (s, x(s))|ds

+
tσ−1

ρ

{
1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1| f (s, y(s))|ds

+
p

∑
i=2

|βi−1|
Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1| f (u, y(u))|duds

+
q

∑
j=1

|γj|
Γ(σ)

∫ ρj

0
(ρj − s)σ−1| f (s, y(s))|ds

}

≤ ‖µ‖
{

1
Γ(σ + 1)

+
1
ρ

[
1

Γ(σ + 2)
+

p

∑
i=2
|βi−1|

ησ+1
i − ησ+1

i−1
Γ(σ + 2)

+
q

∑
j=1
|γj|

ρσ
j

Γ(σ + 1)

]}
= ‖µ‖Λ ≤ r.
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This shows that G1x + G2y ∈ Br. In the next step we prove that G2 is a contraction mapping.
For each t ∈ J and each x, y ∈ C(J,R), we have

‖G2x− G2y‖ ≤ sup
t∈J

[
tσ−1

ρ

{
1

Γ(σ + 1)

∫ 1

0
(1− s)σ| f (s, x(s))− f (s, y(s))|ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1| f (u, x(u))− f (u, y(u))|du ds

+
q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1| f (s, x(s))− f (s, y(s))|ds

}]

≤ L
ρ

[
1

Γ(σ + 2)
+

p

∑
i=2
|βi−1|

ησ+1
i − ησ+1

i−1
Γ(σ + 2)

+
q

∑
j=1
|γj|

ρσ
j

Γ(σ + 1)

]
‖x− y‖

≤ LΛ1‖x− y‖,

which is a contraction mapping by assumption LΛ1 < 1 (Λ1 is given by (13)).
The operator G1 is continuous, by the continuity of f . Moreover, since

‖G1x‖ ≤ ‖µ‖ 1
Γ(q + 1)

,

the operator G1 is uniformly bounded on Br.
The compactness of the operator G1 will be proved now. We define sup(t,x)∈J×Br

| f (t, x)| = f .
Consequently, for 0 ≤ t1 < t2 ≤ 1, we have

|G1x(t2)− G1x(t1)| ≤
1

Γ(σ)

∣∣∣∣∣
∫ t1

0
[(t2 − s)σ−1 − (t1 − s)σ−1] f (s, x(s))ds

+
∫ t2

t1

(t2 − s)σ−1 f (s, x(s))ds

∣∣∣∣∣
≤ f

Γ(σ + 1)
[|tσ

2 − tσ
1 |+ 2(t1 − t2)

σ]→ 0,

as t1 − t2 → 0, independent of x, which means that G1 is relatively compact on Br. Consequently,
by the Arzelá–Ascoli theorem, G1 is compact on Br. Hence we deduce by the conclusion of Lemma 2
that the problems (3) and (4) has at least one solution on J.

3.2. Uniqueness Result

Theorem 2. Assume that f : J ×R→ R is a continuous function satisfying the assumption (A1). Then the
problems (3) and (4) has a unique solution on J if LΛ < 1, where Λ is given by (12).

Proof. Let us first show that GBr ⊂ Br, where G is the operator defined by (11) and r ≥ MΛ/(1− LΛ)

with M = supt∈J | f (t, 0)|. Then, in view of the assumption (A3), we have

| f (t, x)| = | f (t, x)− f (t, 0) + f (t, 0)| ≤ | f (t, x)− f (t, 0)|+ | f (t, 0)|
≤ L‖x‖+ M ≤ Lr + M.

For any x ∈ Br, we have

‖Gx‖ = sup
t∈J
|Gx(t)|
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≤ (Lr + M)

{
1

Γ(σ + 1)
+

1
ρ

[
1

Γ(σ + 2)
+

p

∑
i=2
|βi−1|

ησ+1
i − ησ+1

i−1
Γ(σ + 2)

+
q

∑
j=1
|γj|

ρσ
j

Γ(σ + 1)

]}
= (Lr + M)Λ ≤ r,

which implies that GBr ⊂ Br. Next, for x, y ∈ C(J,R) and for each t ∈ J, we obtain

‖Gx− Gy‖ ≤ sup
t∈J

{
1

Γ(σ)

∫ t

0
(t− s)σ−1| f (s, x(s))− f (s, y(s))|ds

+

[
tσ−1

ρ

{
1

Γ(σ + 1)

∫ 1

0
(1− s)σ| f (s, x(s))− f (s, y(s))|ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1| f (u, x(u))− f (u, y(u))|du ds

+
q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1| f (s, x(s))− f (s, y(s))|ds

}]

≤ L

{
1

Γ(σ + 1)
+

L
ρ

[
1

Γ(σ + 2)
+

p

∑
i=2
|βi−1|

ησ+1
i − ησ+1

i−1
Γ(σ + 2)

+
q

∑
j=1
|γj|

ρσ
j

Γ(σ + 1)

]}
‖x− y‖

≤ LΛ‖x− y‖.

Consequently, the operator G is a contraction, since LΛ < 1. By Banach contraction mapping
principle the operator G has a unique fixed point, which means that the problems (3) and (4) has a
unique solution for on J.

3.3. Examples

Consider the nonlinear fractional boundary value problem

D7/2x(t) =
√

t2 + 1 + a tan−1 x(t) + e−t sin x(t), t ∈ J := [0, 1], (14)

x(0) = 0, x′(0) = 0,
∫ 1

0
x(s)ds =

3
4

∫ 1/6

1/7
x(s)ds +

∫ 1/5

1/6
x(s)ds +

3
2

x(1/4) + x(1/3), (15)

where σ = 7/2, β1 = 3/4, β2 = 1, γ1 = 3/2, γ2 = 1, η1 = 1/7, η2 = 1/6, η3 = 1/5, ρ1 = 1/4, ρ2 = 1/3
and a is a positive real number. Using the given values, we find that ρ ≈ 0.318087, Λ ≈ 0.155011 and
Λ1 ≈ 0.069039. It is easy to check that µ(t) =

√
t2 + 1+ πa/2+ e−t, L = a + 1 and that LΛ1 < 1 holds

for a < 13.484567. As all the conditions of Theorem 1 are satisfied, so the conclusion of Theorem 1
applies to problems (14) and (15). Moreover, LΛ < 1 is satisfied for a < 5.451155. Thus, by Theorem 2,
problems (14) and (15) has a unique solution on J.

4. Existence Results for the Problem (5)

In the following we use the notations, Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) = {Y ∈
P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and Pcp,c(X) = {Y ∈ P(X) :
Y is compact and convex}. We refer the interested reader to the books by Aubin and Cellina [35],
Castaing and Valadier [36], and Deimling [37] for details on multi-valued maps.



Fractal Fract. 2020, 4, 31 8 of 20

Before stating and proving our main existence results for problem (5), we will give the definition
of its solution.

Definition 3. A function x ∈ AC(n−1)(J,R) is said to be a solution of problem (5) if there exists a function
v ∈ L1(J,R) with v(t) ∈ F(t, x) a.e. on J such that x satisfies the differential equation Dσx(t) = v(t) on J
and the boundary condition (4).

4.1. The Upper Semicontinuous Case

Consider first the case when F has convex values. Our first result is based on Bohnenblust–Karlin
fixed point theorem and closed graph operator theorem, which are stated below.

Lemma 3. (Bohnenblust–Karlin) [38] Let X be a Banach space, D a nonempty subset of X, witch is bounded,
closed and convex. Suppose G : J ×R→ P(R) is u.s.c. with closed, convex values, and G(D) ⊂ D and G(D)

is compact. Then G has a fixed point.

Lemma 4 ([39]). Let X be a separable Banach space. Let F : J × X → Pcp,c(X) be measurable with respect
to t for each y ∈ X and upper semi-continuous with respect to y for almost all t ∈ J and SF,y 6= ∅, for any
y ∈ C(J, X), and let Θ be a linear continuous mapping from L1(J, X) to C(J, X). Then the operator

Θ ◦ SF : C(J, X)→ Pcp,c(C(J, X)), y 7→ (Θ ◦ SF)(y) = Θ(SF,y)

is a closed graph operator in C(J, X)× C(J, X).

Theorem 3. Assume that:

(H1) F : J ×R→ Pcp,c(R) is Carathéodory , i.e.:

(i) t 7−→ F(t, y) is measurable for each y ∈ R;
(ii) y 7−→ F(t, y) is u.s.c. for almost all t ∈ J;

(H2) for each r > 0, there exists φr ∈ L1(J,R+) such that

‖F(t, x)‖ = sup{|v| : v ∈ F(t, x} ≤ φr(t)

for all x ∈ R with ‖x‖ ≤ r and for a.e. t ∈ J,

lim inf
r→∞

1
r

∫ 1

0
φr(t)dt = µ. (16)

Then, if {
1

Γ(σ)
+

1
ρ

[
1

Γ(σ + 1)
+

1
Γ(σ + 1)

p

∑
i=2
|βi−1|+

q

∑
j=1
|γj|

ρσ−1
i

Γ(σ)

]}
µ < 1, (17)

the boundary problem (5) has at least one solution on J.
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Proof. We consider the multi-valued map: N : C(J,R)→ P(C(J,R)) defined by

N(x) =



h ∈ C(J,R) :

h(t) =



1
Γ(σ)

∫ t

0
(t− s)σ−1v(s)ds

+
tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1v(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1v(u)du ds

+
q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1v(s)ds

}
, v ∈ SF,x.


Note that problem (5) is transformed into a fixed point problem, for which the fixed points of

N are solutions of problem (5). We will show that the operator N satisfies all condition of Lemma 3.
The proof is constructed in several steps.

Step 1. N(x) is convex for each x ∈ C(J,R).

Let h1, h2 in N(x). Then, there exist v1, v2 ∈ SF,x such that

hi(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1vi(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1vi(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1vi(u)duds

+
q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1vi(s)ds

}
, i = 1, 2, t ∈ J.

Let 0 ≤ θ ≤ 1. Then for each t ∈ J, we have

[θh1 + (1− θ)h2](t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1[θv1(s) + (1− θ)v2(s)]ds

+
tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1[θv1(s) + (1− θ)v2(s)]ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1[θv1(s) + (1− θ)v2(u)]duds

+
q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1[θv1(s) + (1− θ)v2(s)]ds

}
.

Since F has convex values, that is, SF,x is convex, we have

θh1 + (1− θ)h2 ∈ N(x).

Step 2. N(x) maps bounded sets into bounded sets in C(J,R).

Let Br = {x ∈ C(J,R) : ‖x‖ ≤ r}, r > 0 be a bounded ball in C(J,R). We shall prove that there
exists a positive number r′ such that N(Br′) ⊆ Br. If this is not true, for each r > 0, there exists a
function xr(·) ∈ Br, with ‖N(xr)‖ > r for some t ∈ J and
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hr(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1vr(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1vr(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1vr(u)duds

+
q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1vr(s)ds

}
,

for some vr ∈ SF,xr . However, on the other hand, we have:

r < ‖N(xr)‖

≤ 1
Γ(σ)

∫ t

0
(t− s)σ−1|vr(s)|ds +

tσ−1

ρ

{
1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1|vr(s)|ds

+
p

∑
i=2

|βi−1|
Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1|vr(u)|duds +

q

∑
j=1

|γj|
Γ(σ)

∫ ρj

0
(ρj − s)σ−1|vr(s)|ds

}

≤
{

1
Γ(σ)

+
1
ρ

[
1

Γ(σ + 1)
+

(p− 1)
Γ(σ + 1)

p

∑
i=2
|βi−1|+

q

∑
j=1
|γj|

ρσ−1
i

Γ(σ)

]} ∫ 1

0
φr(s)ds.

Dividing both sides by r and taking the lower limit as r → ∞, we get:

1 ≤ µ

{
1

Γ(σ)
+

1
ρ

[
1

Γ(σ + 1)
+

1
Γ(σ + 1)

p

∑
i=2
|βi−1|+

q

∑
j=1

γj|
ρσ−1

i
Γ(σ)

]}
,

which contradicts (17). Hence there exists a positive number r such that N(Br) ⊆ Br.

Step 3. N(x) maps bounded sets into equicontinuous sets of C(J,R).

Let x ∈ Br and h ∈ N(x). Then there exists v ∈ SF,x such that

h(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1v(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1v(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1v(u)du ds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1v(s)ds

}
, t ∈ J.

Let t1, t2 ∈ J, t1 < t2. Thus

|h(t2)− h(t1)|

≤ 1
Γ(σ)

∣∣∣∣∣
∫ t1

0
[(t2 − s)σ−1 − (t1 − s)σ−1]v(s)ds +

∫ t2

t1

(t2 − s)σ−1v(s)ds

∣∣∣∣∣
+
|tσ−1

2 − tσ−1
1 |

ρ

{
1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1|v(s)|ds

+
p

∑
i=2

|βi−1|
Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1|v(u)|duds +

q

∑
j=1

|γj|
Γ(σ)

∫ ρj

0
(ρj − s)σ−1|v(s)|ds

}

≤ 1
Γ(σ)

∣∣∣∣∣
∫ t1

0
[(t2 − s)σ−1 − (t1 − s)σ−1]φr(s)ds +

∫ t2

t1

(t2 − s)σ−1φr(s)ds

∣∣∣∣∣
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+
|tσ−1

2 − tσ−1
1 |

ρ

{
1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1φr(s)ds

+
p

∑
i=2

|βi−1|
Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1φr(u)duds +

q

∑
j=1

|γj|
Γ(σ)

∫ ρj

0
(ρj − s)σ−1φr(s)ds

}
,

which tends to zero independently of x ∈ Br as t1 → t2. As a consequence of Steps 1–3, by using
Arzelá–Ascoli theorem, the operator N : C(J,R)→ P(C(J,R)) is completely continuous.

Step 4. N(x) is closed for each x ∈ C(J,R).

Let {un}n≥0 ∈ N(x) be such that un → u (n→ ∞) in C(J,R). Then u ∈ C(J,R) and there exists
vn ∈ SF,xn such that

un(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1vn(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1vn(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1vn(u)duds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1vn(s)ds

}
, t ∈ J.

Since F has compact values, we can pass onto a subsequence (if necessary) to obtain that vn

converges to v in L1(J,R). Thus v ∈ SF,x and we have

un(t)→ v(t)

=
1

Γ(σ)

∫ t

0
(t− s)σ−1v(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1v(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1v(u)du ds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1v(s)ds

}
, t ∈ J.

Hence, u ∈ N(x).
Next we show that the operator N is upper semicontinuous. In order to do so, by Proposition 1.2

in [37], we know that it will be upper semicontinuous has a closed graph. This will be shown in the
next step.

Step 5. N has a closed graph.

Let xn → x∗, hn ∈ N(xn) and hn → h∗. We will show that h∗ ∈ N(x∗). Now hn ∈ N(xn) implies
that there exists vn ∈ SF,xn such that

hn(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1vn(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1vn(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1vn(u)duds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1vn(s)ds

}
, t ∈ J.

We must show that there exists v∗ ∈ SF,x∗ such that for each t ∈ J,

h∗(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1v∗(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1v∗(s)ds
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+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1v∗(u)duds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1v∗(s)ds

}
.

Consider the continuous linear operator Θ : L1(J,R)→ C(J) by

v→ Θ(v)(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1vn(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1vn(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1vn(u)duds

+
q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1vn(s)ds

}
.

Observe that ‖hn(t)− h∗(t)‖ → 0 as n→ ∞, and thus, it follows from a closed graph Lemma ([39]),
that Θ ◦ SF,x is a closed graph operator. Moreover, we have

hn ∈ Θ(SF,xn).

Since xn → x∗, the closed graph Lemma ([39]) implies that

h∗(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1v∗(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1v∗(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1v∗(u)duds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1v∗(s)ds

}
,

for some v∗ ∈ SF,x∗
Hence, we conclude that N is a compact multivalued map, upper semicontinuous with convex

closed values. Consequently by Lemma 3, N has a fixed point which is a solution of the boundary
problem (5). This completes the proof.

Next, we give an existence result based upon the following form of fixed point theorem which is
applicable to completely continuous operators.

Lemma 5. [40] Let E a Banach space, and T : E→ Pb,cl,c(E) be a completely continuous multi-valued map.
If the set Z = {x ∈ E : λx ∈ T(x), λ > 1} is bounded, then T has a fixed point.

Theorem 4. Assume that the following hypotheses hold:

(H3) F : J ×R→ Pb,cl,c(R) is a Carathéodory multi-valued map;
(H4) there exists a function h ∈ C(J,R) such that

‖F(t, x)‖ ≤ h(t), for a.e. t ∈ J and each x ∈ R.

Then problem (5) has at least one solution on J.

Proof. Consider N defined in the proof of Theorem 3. As in Theorem 3, we can show that N is convex
and completely continuous. It remains to show that the set

E = {x ∈ C(J,R) : λx ∈ N(x), λ > 1}
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is bounded. Let x ∈ E , then λx ∈ N(x) for some λ > 1 and there exists a function v ∈ SF,x such that

x(t) =
1
λ

1
Γ(σ)

∫ t

0
(t− s)σ−1v(s)ds +

1
λ

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1v(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1v(u)du ds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1v(s)ds

}
.

For each t ∈ J, we have

|x(t)| ≤ 1
Γ(σ)

∫ t

0
(t− s)σ−1|v(s)|ds +

tσ−1

ρ

{
1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1|v(s)|ds

+
p

∑
i=2

|βi−1|
Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1|v(u)|duds +

q

∑
j=1

|γj|
Γ(σ)

∫ ρj

0
(ρj − s)σ−1|v(s)|ds

}

≤
{

1
Γ(σ + 1)

+
1
ρ

[
1

Γ(σ + 2)
+

p

∑
i=2
|βi−1|

ησ+1
i − ησ+1

i−1
Γ(σ + 2)

+
q

∑
j=1
|γj|

ρσ
j

Γ(σ + 1)

]}
‖h‖.

Taking the supremum for t ∈ J, we get

‖x‖ ≤
{

1
Γ(σ + 1)

+
1
ρ

[
1

Γ(σ + 2)
+

p

∑
i=2
|βi−1|

ησ+1
i − ησ+1

i−1
Γ(σ + 2)

+
q

∑
j=1
|γj|

ρσ
j

Γ(σ + 1)

]}
‖h‖ < ∞.

Hence the set E is bounded. As a consequence of Lemma 5 we deduce that N has at least one
fixed point which implies that problem (5) has a solution on J.

Our final existence result in this subsection is based on Leray–Schauder nonlinear alternative [41].

Theorem 5. Assume that (H1) holds. In addition we suppose that:

(H5) there exist a nondecreasing continuous function Ψ : [0, ∞) → (0, ∞) and a continuous function
φ ∈ C(J,R+) such that ‖F(t, x)‖P := sup{|y| : y ∈ F(t, x)} ≤ φ(t)Ψ(‖x‖) for each (t, x) ∈ J ×R;

(H6) there exists a constant M > 0 such that

M
Ψ(M)‖φ‖Λ > 1.

Then, the boundary value problem (5) has at least one solution on J.

Proof. Let x ∈ λN(x) for some λ ∈ (0, 1), where the operator N is defined in the proof of Theorem 3.
We show there exists an open setW ⊆ C(J,R) with x /∈ N(x) for any λ ∈ (0, 1) and all x ∈ ∂W . Let
λ ∈ (0, 1) and x ∈ λN(x). Then there exists v ∈ L1(J,R) with v ∈ SF,x such that, for t ∈ J, we have

x(t) = λ
1

Γ(σ)

∫ t

0
(t− s)σ−1v(s)ds + λ

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1v(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1v(u)du ds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1v(s)ds

}
.

In view of (H5), we have for each t ∈ J,

|x(t)|
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≤ 1
Γ(σ)

∫ t

0
(t− s)σ−1|v(s)|ds +

tσ−1

ρ

{
1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1|v(s)|ds

+
p

∑
i=2

|βi−1|
Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1|v(u)|duds +

q

∑
j=1

|γj|
Γ(σ)

∫ ρj

0
(ρj − s)σ−1|v(s)|ds

}

≤
{

1
Γ(σ + 1)

+
1
ρ

[
1

Γ(σ + 2)
+

p

∑
i=2
|βi−1|

ησ+1
i − ησ+1

i−1
Γ(σ + 2)

+
q

∑
j=1
|γj|

ρσ
j

Γ(σ + 1)

]}
‖φ‖Ψ(‖x‖).

Consequently, we have
‖x‖

Ψ(‖x‖)‖φ‖Λ ≤ 1.

In view of (H6), there exists M such that ‖x‖ 6= M. Let us set

W = {x ∈ C(J,R) : ‖x‖ < M}.

Proceeding as in the proof of Theorem 3, one can show that the operator N :W → P(C(J, R)) is
a compact, upper semicontinuous multi-valued map with convex closed values. Note that there is no
x ∈ ∂W such that x ∈ λN(x) for some λ ∈ (0, 1), from the choice ofW . Therefore, by the nonlinear
alternative of Leray–Schauder type ([41]), we deduce that N has a fixed point x ∈ W . Obviously this
fixed point is a solution of the boundary value problem (5). The proof is completed.

4.2. The Lower Semicontinuous Case

In this subsection we study the lower semicontinuous case, when F is not necessarily convex
valued. Our strategy is to apply the nonlinear alternative of Leray–Schauder type together with the
selection theorem of Bressan and Colombo [42] for lower semi-continuous maps with decomposable
values. The needed preliminaries can be found in [35].

Theorem 6. Assume that (H5), (H6) hold. Moreover, we suppose that:

(H7) F : J ×R → P(R) is a nonempty compact-valued multivalued map such that x 7−→ F(t, x) is lower
semicontinuous for each t ∈ J and (t, x) 7−→ F(t, x) is L⊗ B measurable.

Then the boundary value problem (5) has at least one solution on J.

Proof. From (H5) and (H7), it follows that F is of lower semicontinuous type [43]. Then, by the
selection theorem of Bressan and Colombo [42], there exists a continuous function v : AC1(J,R) →
L1(J,R) such that v(x) ∈ F (x) for all v ∈ C(J, R), where F : C(J ×R)→ P(L1(J,R)) is defined by

F (v) = {ω ∈ L1(J,R) : ω(t) ∈ F(t, v(t)) for a.e. t ∈ J}.

Consider the problem
Dσx(t) = f (x(t)), t ∈ J := [0, 1], (18)

x(i)(0) = 0, i = 0, 1, 2, . . . , n− 2,
∫ 1

0
x(s)ds =

p

∑
i=2

βi−1

∫ ηi

ηi−1

x(s)ds +
q

∑
j=1

γj x(ρj). (19)

Observe that x is a solution to the boundary value problem (5) if x ∈ AC(n−1)(J,R) is a solution
of problems (18) and (19). We define an operator N as

N(x) =
1

Γ(σ)

∫ t

0
(t− s)σ−1 f (x(s))ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1 f (x(s))ds
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+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1 f (x(u))duds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1 f (x(s))ds

}
.

Then the boundary value problems (18) and (19) is transformed into a fixed point problem.
The operator N is continuous and completely continuous. We omit the rest of the proof, since it is
similar to that of Theorem 5. The proof is finished.

4.3. The Lipschitz Case

In this subsection, we consider the boundary value problem (5) with a nonconvex valued right
hand side. By using a fixed point theorem for multivalued maps due to Covitz and Nadler [44] we
prove an existence result.

Lemma 6. (Covitz and Nadler [44]) Let (X, d) be a complete metric space. If N : X → Pcl(X) is a contraction,
then FixN 6= ∅.

Theorem 7. Suppose that:

(H8) F : J ×R→ Pcp(R) is such that F(·, x) : J → Pcp(R) is measurable for each x ∈ R;
(H9) Hd(F(t, x), F(t, z)) ≤ µ(t)|x − z| for almost all t ∈ J and x, z ∈ R with µ ∈ C(J,R+) and

d(0, F(t, 0)) ≤ µ(t) for almost all t ∈ J.

Then, the boundary value problem (5) has at least one solution on J provided that

Λ‖µ‖ < 1.

Proof. Consider the operator N : C(J,R) → P(C(J,R)) defined at the beginning of the proof of
Theorem 3. Then, the boundary value problem (5) is transformed into a fixed point problem. We apply
Lemma 6 in two steps.

Step I. The operator N is closed and nonempty for every v ∈ SF,x.

The set-valued map F(·, x(·)) is measurable by the measurable selection theorem (e.g., [36],
Theorem III.6) and consequently it admits a measurable selection v : J → R. By the assumption (H8),
we have

|v(t)| ≤ µ(t) + µ(t)|x(t)|,

i.e., v ∈ L1(J,R) and hence F is integrably bounded. Therefore, SF,x 6= ∅. Moreover N(x) ∈ Pcl(C(J,
R)) for each x ∈ C(J,R), as proved in Step 4 of Theorem 3.

Step II. Now we show that there exists θ < 1 such that

Hd(N(x), N(x̄)) ≤ θ‖x− z‖ for each x, z ∈ AC(n−1)(J,R).

Let x, x̄ ∈ AC(n−1)(J,R) and h1 ∈ N(x). Then there exists v1(t) ∈ F(t, x(t)) such that, for each
t ∈ J,

h1(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1v1(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1v1(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1v1(u)duds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1v1(s)ds

}
.
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By (H9), we have
Hd(F(t, x), F(t, z)) ≤ µ(t)|x(t)− z(t)|.

Thus, there exists w(t) ∈ F(t, z(t)) such that

|v1(t)− w| ≤ µ(t)|x(t)− z(t)|, t ∈ J.

Define U : J → P(R) by

U(t) = {w ∈ R : |v1(t)− w| ≤ µ(t)|x(t)− z(t)|}.

The multivalued operator U(t) ∩ F(t, z(t)) is measurable (Proposition III.4 [36]). Therefore,
there exists a function v2(t) which is a measurable selection for U. So v2(t) ∈ F(t, z(t)) and |v1(t)−
v2(t)| ≤ µ(t)|x(t)− z(t)| for each t ∈ J.

For each t ∈ J, let us define

h2(t) =
1

Γ(σ)

∫ t

0
(t− s)σ−1v2(s)ds +

tσ−1

ρ

{
− 1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1v2(s)ds

+
p

∑
i=2

βi−1

Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1v2(u)duds +

q

∑
j=1

γj

Γ(σ)

∫ ρj

0
(ρj − s)σ−1v2(s)ds

}
.

Then we have

|h1(t)− h2(t)| ≤
1

Γ(σ)

∫ t

0
(t− s)σ−1|v2(s)− v1(s)|ds

+
tσ−1

ρ

{
1

Γ(σ + 1)

∫ 1

0
(1− s)σ−1|v2(s)− v1(s)|ds

+
p

∑
i=2

|βi−1|
Γ(σ)

∫ ηi

ηi−1

∫ s

0
(s− u)σ−1|v2(u)− v1(u)|duds

+
q

∑
j=1

|γj|
Γ(σ)

∫ ρj

0
(ρj − s)σ−1|v2(s)− v1(s)|ds

}

≤
{

1
Γ(σ + 1)

+
1
ρ

[
1

Γ(σ + 2)
+

p

∑
i=2
|βi−1|

ησ+1
i − ησ+1

i−1
Γ(σ + 2)

+
q

∑
j=1
|γj|

ρσ
j

Γ(σ + 1)

]}
×‖µ‖‖x− z‖.

Hence
‖h1 − h2‖ ≤ Λ‖µ‖‖x− z‖.

Analogously, interchanging the roles of x and z, we obtain

Hd(N(x), N(z)) ≤ Λ‖µ‖‖x− z‖.

Consequently N is a contraction. Then, by Lemma 6, N has a fixed point x which is a solution of
the boundary value (5). The proof is completed.

4.4. Examples

Consider the nonlinear fractional boundary value problem

D7/2x(t) ∈ F(t, x(t)), t ∈ J := [0, 1], (20)
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x(0) = 0, x′(0) = 0,
∫ 1

0
x(s)ds =

3
4

∫ 1/6

1/7
x(s)ds +

∫ 1/5

1/6
x(s)ds +

3
2

x(1/4) + x(1/3). (21)

Here σ = 7/2, β1 = 3/4, β2 = 1, γ1 = 3/2, γ2 = 1, η1 = 1/7, η2 = 1/6, η3 = 1/5, ρ1 = 1/4, ρ2 =

1/3. Consequently we can get ρ = 0.318087.

(a) Let F : J ×R→ P(R) be a multivalued map given by

x → F(t, x) =

[
x2e−x2

x2 + 3
,

t|x| sin |x|
|x|+ 1

+ 1

]
. (22)

For f ∈ F, we have

| f | ≤ max

(
x2e−x2

x2 + 3
,

t|x| sin |x|
|x|+ 1

+ 1

)
≤ t|x|+ 1, x ∈ R.

Thus ‖F(t, x)‖P := sup{|y| : y ∈ F(t, x)} ≤ rt + 1 = φr(t), ‖x‖ ≤ r, and lim inf
r→∞

1
r

∫ 1

0
φr(s)ds =

µ = 1/2. Therefore, all the conditions of Theorem 3 are satisfied. So, problems (20) and (21) with
F(t, x) given by (22) has at least one solution on J since{

1
Γ(σ)

+
1
ρ

[
1

Γ(σ + 1)
+

p

∑
i=2
|βi−1|

1
Γ(σ + 1)

+
q

∑
j=1
|γj|

ρσ−1
j

Γ(σ)

]}
µ ≈ 0.574595 < 1.

(b) If F : J ×R→ P(R) is a multivalued map given by

x → F(t, x) =

[
x4

x4 + 2
+ e−x2

+ t + 2,
|x|
|x|+ 1

+ t2 +
1
2

]
. (23)

For f ∈ F, we have

| f | ≤ max

(
x4

x4 + 2
+ e−x2

+ t + 2,
|x|
|x|+ 1

+ t2 +
1
2

)
≤ 5, x ∈ R.

Thus ‖F(t, x)‖P := sup{|y| : y ∈ F(t, x)} ≤ 5 = φ(t)Ψ(‖x‖), y ∈ R, with φ(t) = 1, Ψ(‖x‖) = 5.
It is easy to verify that M > 0.775057. Then, by Theorem 5, problems (20) and (21) with F(t, x)
given by (23) has at least one solution on J.

(c) Consider the multivalued map F : J ×R→ P(R) given by

x → F(t, x) =
[

0, (t + 1) sin x +
2
3

]
. (24)

Then we have
sup{|u| : u ∈ F(t, x)} ≤ (t + 1) +

2
3

,

and
Hd(F(t, x), F(t, z)) ≤ (t + 1)|x− z|.

Let µ(t) = t+ 1. Then Hd(F(t, x), F(t, z)) ≤ m(t)|x− z|, and ‖µ‖ = 2. By Theorem 7, the problem
(20)–(21) with the F(t, x) given by (24) has at least one solution on J since Λ‖µ‖ ≈ 0.310023 < 1.
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5. Conclusions

In this paper, we have presented the existence-criteria for solutions of arbitrary order fractional
differential equations and inclusions, supplemented with integro-multistrip-multi-point boundary
conditions. For obtaining the existence and uniqueness results for the single valued problem, we
applied fixed-point theorems due to Krasnoselskii and Banach. The inclusions problem is investigated
for convex as well as non-convex valued cases and the obtained results rely on Bohnenblust–Karlin
fixed point theorem, Martelli fixed point theorem, Leray–Schauder nonlinear alternative, and
Covitz–Nadler fixed point theorem. Our results are not only new in the given setting, but also
yield some new ones as special cases. For example, we can obtain the results for integro-multistrip
boundary conditions by fixing γj = 0, ∀j = 1, . . . , q, while the results for integro-multipoint boundary
conditions follow when we take βi−1 = 0, ∀i = 2, . . . , p. Our results reduce to the ones for “zero”
average value condition (

∫ 1
0 u(s)ds = 0) by taking all γj = 0, ∀j = 1, . . . , q and βi−1 = 0, ∀i = 2, . . . , p.
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and editing, B.A. All authors have read and agreed to the published version of the manuscript.
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