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Abstract: Since the use of the fractional-differential mathematical model of anomalous geomigration
process based on the MIM (mobile–immoble media) approach in engineering practice significantly
complicates simulations, a corresponding simplified mathematical model is constructed. For this
model, we state a two-dimensional initial-boundary value problem of convective diffusion of soluble
substances under the conditions of vertical steady-state filtration of groundwater with free surface
from a reservoir to a coastal drain. To simplify the domain of simulation, we use the technique of
transition into the domain of complex flow potential through a conformal mapping. In the case of
averaging filtration velocity over the domain of complex flow potential, an analytical solution of the
considered problem is obtained. In the general case of a variable filtration velocity, an algorithm has
been developed to obtain numerical solutions. The results of process simulation using the presented
algorithm shows that the constructed mathematical model can be efficiently used to simplify and
accelerate modeling process.

Keywords: mathematical modeling; migration in porous media; convective diffusion;
fractional diffusion equation; mobile–immobile models; simplified models of geomigration

1. Introduction

We study the problem of mathematical modeling of anomalous dynamics of soluble substances’
convective diffusion under the conditions of vertical steady-state filtration of groundwater.
Such problems arise while solving many problems related to the protection of water resources
from pollution by industrial and domestic wastewater, as well as due to the need for desalination,
leaching of soils during land reclamation, etc. It should be noted that an extensive amount of
literature is devoted to these problems considering them within the framework of classical models of
mass transfer (e.g., [1–5]). Empirical studies of these processes along with their investigation using
differential models are presented in [6–8]. Soft computing techniques are also but rarely used for
their analysis and prediction [9]. Regarding the issues of modeling anomalous migration of soluble
substances in underground filtration flows, several problems have been posed and solved using the
fractional-differential approach ([10–14]) that allows, in particular, taking into account the effects of
memory and spatial correlations [15–17].

We consider the mathematical model of geomigration process based on the MIM (mobile–immobile
media) approach [18–20]. If we take into account immobilization (entrapment of particles by soil’s
skeleton or their penetration into the volume of a bound fluid), then the equation of convective
diffusion takes the form [18–20]

∂C
∂t

+ β
∂CI
∂t

= L(C), (1)
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where C, CI are the volume concentrations of particles in mobile and immobile phases, β = θI/θ, θ, θI
are the porosities in mobile and immobile zones, L(C) = d∆C−~υ∇C, ~υ is the filtration velocity, d is
the convective diffusion coefficient, ∇ is the Hamilton operator, and ∆ is the Laplace operator with
respect to the geometric variables.

According to Shumer et al. [20], the dynamics of particles’ outflow in the immobile phase can be
described by the equation

∂CI
∂t

= CDγ
t C (2)

where CDγ
t is the operator of Caputo–Gerasimov fractional derivative of the order γ(0 < γ < 1) with

respect to the variable t [21,22]. Then, considering Equation (2), Equation (1) of the MIM model takes
the form [18–20]

∂C
∂t

+ βCDγ
t C = L(C) (3)

with the total concentration calculated as Ctot = θC+ θICI . Considering that medium’s memory-related
properties manifest themselves in the process of migration in mobile phase, Equation (3) takes the form

CDα
t C + βCDγ

t C = L(C) (4)

where CDα
t is the operator of Caputo–Gerasimov fractional derivative of the order α(0 < α < 1) with

respect to the variable t.
Let us note, that Equation (4) is formally similar to the equation of water exchange in

mobile–immobile zones of swelling soils obtained in [23].
The use of the mathematical model of anomalous migration process that is based on the

integro-differential Equation (4) in engineering practice with the aim of developing reliable methods
for predicting process dynamics is associated with mathematical difficulties and complicates the
simulation process. In some cases, one of the effective approaches to accelerate and simplify estimative
engineering calculations when studying migration dynamics under the conditions of geofiltration
consists in the simplification of the original mathematical model by an appropriate approximation of
fractional derivatives and transition to a new, simplified mathematical model based on the classical
convective diffusion equation. Thus, approximating the fractional derivatives in Equation (4) using
the relation [24]

CDα
t u(t) ≈ αu′(t) + (1− α) (u(t)− u(0)) (5)

we obtain from Equation (4) the equation of a simplified mathematical model of the considered process
of convective diffusion with particles’ immobilization in the form

aC′t(x, y, t) = L(C)− b (C(x, y, t)− C(x, y, 0)) (6)

where a = α + βγ, b = 1− α + β(1− γ).
Further, within the framework of the simplified mathematical model based on Equation (6),

we state a two-dimensional initial-boundary value problem of convective diffusion of soluble
substances under the conditions of vertical steady-state filtration of groundwater with a free surface
from a reservoir into a coastal drain. In the case of averaged filtration velocity, we obtain an analytical
solution of the considered problem. In the general case of variable filtration velocity, we present an
algorithm for obtaining its numerical solution and the results of simulations.

2. Initial-Boundary Value Problem

We consider the problem of convective diffusion modeling with vertical steady-state filtration of
groundwater from a reservoir to a buried semi-infinite drainage canal.

The filtration scheme corresponding to this problem has been studied quite well. For example,
Lavryk et al. [5] provided a closed-form solution of the initial-boundary value problem obtained by
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conformal mapping of the filtration domain Gz onto the domain Gω in the plane of complex flow
potential ω = ϕ + iψ (where ϕ is the potential of filtration velocity and ψ is the flow function). As a
result of filtration problem’s solution, the characteristic flow function z = f (ω) was found and flow
velocity field was determined. The corresponding relations are given in [5].

Within the framework of the original mathematical model based on Equation (4), the modeling of
fractional-differential dynamics of convective diffusion in accordance with the considered filtration
scheme can be performed finding in the domain Gz × (0, ∞) the solutions of the equation

CDα
t C(x, y, t) + βCDγ

t C(x, y, t) = d
(

∂2C
∂x2 +

∂2C
∂y2

)
− υx

∂C
∂x
− υy

∂C
∂y

, (7)

(0 < α, γ < 1)

with the following initial and boundary conditions:

C|y=0 = C1,
∂C
∂n

∣∣∣∣
γ1,γ2

= 0,
∂C
∂y

∣∣∣∣
y=H

= 0, (8)

C(x, y, 0) = C0(x, y) (9)

where C1 is the given concentration of soluble substances on the filtration inflow y = 0, C0(x, y) is
the given initial distribution function, n is the outer normal to the corresponding curve, γ1, γ2 are the
depression curves, H is the depth of the drainage canal, and υx, υy are the projection of the filtration
velocity vector on the axes Ox and Oy.

Since the filtration domain Gz is a non-canonical domain of complex configuration, an efficient way
to solve initial-boundary value problems of this type is to make transition to new variables (ϕ, ψ)—the
points of geometrically simpler domain of complex flow potential, which is [5] for the considered
problem the rectangle Gω with sides ϕ0, Q (ϕ0 = κH where κ is the soil’s filtration coefficient and Q
is the full filtration rate). Then, the problem in Equations (7)–(9) can be formulated in the domain of
complex flow potential Gω in the form(

CDα
t + βCDγ

t

)
C(ϕ, ψ, t) = υ2(ϕ, ψ)

(
d∆C(ϕ, ψ, t)− ∂C

∂ϕ

)
, (10)

(0 < α, γ < 1)

C|ϕ=0 = C1,
∂C
∂ψ

∣∣∣∣
ψ=0,ψ=Q

= 0,
∂C
∂ϕ

∣∣∣∣
ϕ=ϕ0

= 0, (11)

C(ϕ, ψ, 0) = C0(ϕ, ψ) (12)

where

υ2 = υ2
x + υ2

y =

(
∂ϕ

∂x

)2
+

(
∂ϕ

∂y

)2
, ∆ =

∂2

∂ϕ2 +
∂2

∂ψ2 . (13)

Introducing the following variables and parameters:

ϕ′ =
ϕ

Q
, ψ′ =

ψ

Q
, t′ =

(
υ2

0
Q

) 1
α

t, C′ =
C
C1

, β′ = β

(
υ2

0
Q

) γ
α−1

, ϕ′0 =
ϕ0

Q
,

d′ =
d
Q

, υ′ =
υ

υ0
(14)

(υ0 is the characteristic parameter of velocity), we rewrite the problem in Equations (10)–(12) in the
form (the prime sign is further omitted to simplify the formulas)
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(
CDα

t + βCDγ
t

)
C(ϕ, ψ, t) = υ2(ϕ, ψ)

(
d
(

∂2C
∂ϕ2 +

∂2C
∂ψ2

)
− ∂C

∂ϕ

)
, (15)

(0 < α, γ < 1)

C|ϕ=0 = 1,
∂C
∂ψ

∣∣∣∣
ψ=0,ψ=1

= 0,
∂C
∂ϕ

∣∣∣∣
ϕ=ϕ0

= 0, (16)

C(ϕ, ψ, 0) = C0(ϕ, ψ). (17)

Therefore, the modeling of migration process dynamics using this fractional differential model
reduces to solving the initial-boundary value problem in Equations (15)–(17) in the domain Gω ×
(0,+∞) and the following transition from the domain Gω = {(ϕ, ψ) : 0 < ϕ < ϕ0, 0 < ψ < 1} to the
physical domain Gz according to the solution of the corresponding filtration problem presented in [5].
Within the framework of the simplified mathematical model based on Equation (6), the modeling
reduces to solving the initial-boundary value problem for the convective diffusion equation

∂C
∂t

= υ̃2(ϕ, ψ)

(
d
(

∂2C
∂ϕ2 +

∂2C
∂ψ2

)
− ∂C

∂ϕ

)
− ν (C− C0) (18)

where

υ̃2 =
υ2

α + βγ
, ν =

1− α + β(1− γ)

α + βγ
, C0 = C(ϕ, ψ, 0),

and the conditions in Equations (16)–(17) are met.

3. Closed-Form Solution of the Problem in the Case of Averaged Filtration Velocity

In the case when filtration velocity is averaged over the domain of complex flow potential
as υ̃2(ϕ, ψ) = υ2

M = const, we have instead of Equation (18) the following equation with
constant coefficients

∂C
∂t

= υ2
M

(
d∆C(ϕ, ψ, t)− ∂C

∂ϕ

)
− ν (C− C0) . (19)

Let us obtain a closed-form solution of the problem in Equations (19), (16), and (17).
Eliminating convective term from Equation (19) by the substitution

C(ϕ, ψ, t) = 1− exp
( ϕ

2d

)
w(ϕ, ψ, t)

we obtain for the determination of w the following initial-boundary value problem:

w
′
t(ϕ, ψ, t) = υ2

Md∆w(ϕ, ψ, t)−
(

ν +
υ2

M
4d

)
w + g(ϕ, ψ), (20)

w|ϕ=0 = 1, wψ

∣∣
ψ=0,ψ=1 = 0,

(
wϕ +

1
2d

w
)∣∣∣∣

ϕ=ϕ0

= 0, (21)

w(ϕ, ψ, 0) = f (ϕ, ψ) (22)

where f (ϕ, ψ) = (1− C0(ϕ, ψ)) exp
(
− ϕ

2d
)
, g(ϕ, ψ) = ν f (ϕ, ψ).

Application of the Fourier finite integral sine transform [25] with respect to the variable ϕ in
the form

w̄m(ψ, t) =
∫ ϕ0

0
w(ϕ, ψ, t) sin

(
ηm

ϕ0
ϕ

)
dϕ (23)
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where ηm > 0 are the roots of the equation ηctgη = − ϕ0
2d (m = 1, 2, ...) to the problem in

Equations (20)–(22) yields

dw̄m(ψ, t)
dt

= υ2
Md

∂2w̄m(ψ, t)
∂ψ2 − κmw̄m(ψ, t) + Φm(ψ), (24)

∂w̄m(ψ, t)
∂ψ

∣∣∣∣
ψ=0,ψ=1

= 0, (25)

w̄m(ψ, 0) = Fm(ψ)(m = 1, 2, ...) (26)

where

Fm(ψ) =
∫ ϕ0

0
f (ϕ, ψ) sin

(
µm

ϕ0
ϕ

)
dϕ, Φm(ψ) = νFm(ψ)(m = 1, 2, ...) (27)

κm = ν + υ2
M

(
1

4d
+ d

(
ηm

ϕ0

)2
)
(m = 1, 2, ...). (28)

The following application of the Fourier finite cosine transform in the form

˜̄wmn(t) =
∫ 1

0
w̄m(ψ, t) cos (nπψ) dψ(m = 1, 2, ..., n = 0, 1, 2, ...) (29)

to the obtained problem in Equations (24)–(26) yields the Cauchy problem

d ˜̄wmn(t)
dt

+ ρmn ˜̄wmn(t) = ωmn, (30)

˜̄wmn(0) = δmn(m = 1, 2, ..., n = 0, 1, 2, ...) (31)

where

ρmn = κm + d(nπν)2, δmn =
∫ ϕ0

0

∫ 1

0
f (ϕ, ψ) sin

(
µm

ϕ0
ϕ

)
cos (nπψ) dϕdψ, (32)

ωmn = νδmn(m = 1, 2, ..., n = 0, 1, 2, ...). (33)

The solution of the problem in Equations (30) and (31) has the form

˜̄wmn(t) =
(

δmn −
ωmn

ρmn

)
e−ρmnt +

ωmn

ρmn
(m = 1, 2, ..., n = 0, 1, 2, ...). (34)

Then, taking into consideration the formulas of the inversion [25] of Fourier transforms with
respect to geometric variables, we obtain the following closed-form solution of the initial-boundary
value problem:

C(ϕ, ψ, t) = 1− 4
ϕ0

exp
( ϕ

2d

) ∞

∑
m=1

η2
m +

ϕ2
0

4d2

η2
m +

ϕ2
0

4d2 +
ϕ0
2d

[
1
2

˜̄wm0(t)+

+
∞

∑
n=1

˜̄wmn(t) cos(nπψ)

]
sin
(

ηm

ϕ0
ϕ

)
(35)

where ˜̄wmn(t)(m = 1, 2, ..., n = 0, 1, 2, ...) is defined by Equation (34).
It is worth noting that if, e.g., the conditions

f ∈ C3
ϕ,ψ(Ḡω), f |ϕ=0,ϕ=ϕ0

= fϕ

∣∣
ϕ=0,ϕ=ϕ0

= fϕϕ

∣∣
ϕ=0,ϕ=ϕ0

= 0, fψ

∣∣
ψ=0,ψ=1 = 0, (36)

are met, from
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| ˜̄wmn(t)| ≤ C1

(
|δmn|+

∣∣∣∣ωmn

ρmn

∣∣∣∣) (C1 = const > 0, m = 1, 2, ..., n = 0, 1, 2, ...), (37)

we get

| ˜̄wmn(t)| ≤ C2
θnη3

m

(
C2 = const > 0, m = 1, 2, ..., n = 0, 1, 2, ..., θn =

[
1, n = 0;
n3, n = 1, 2, ...

)
. (38)

Hence, we conclude that the series in Equation (35) converge absolutely and uniformly in the
domain Ωε := Ḡω × (ε, T] (ε > 0).

4. Algorithm for Numerical Solution of the Initial-Boundary Value Problem in the Case of a
Variable Filtration Velocity

In the case when υ̃2(ϕ, ψ) 6= const, the approximated solution of the initial-boundary
value problem

∂C
∂t

= υ̃2(ϕ, ψ)

(
d
(

∂2C
∂ϕ2 +

∂2C
∂ψ2

)
− ∂C

∂ϕ

)
− ν (C− C0) , (ϕ, ψ, t) ∈ Gω × (0,+∞) (39)

C|ϕ=0 = 1,
∂C
∂ψ

∣∣∣∣
ψ=0,ψ=1

= 0,
∂C
∂ϕ

∣∣∣∣
ϕ=ϕ0

= 0, (40)

C(ϕ, ψ, 0) = C0(ϕ, ψ) (41)

can be found on the base of finite-difference approach as follows.
Introducing the grid domain

ωh = {(ϕi, ψk, tj) : ϕi = ih1(i = 0, m + 1), ψk = (k− 0, 5)h2(k = 0, n + 1),
tj = jτ(j = 0, N + 1)} (42)

where h1, h2, τ are the grid steps with respect to the geometric variables ϕ, ψ and the time t,
correspondingly, we associate with Equation (39) the following analog of the locally one-dimensional [26]
finite-difference scheme of A.A. Samarskii:

1
2

C̄t = υ̃2(dC̄ϕ̄ϕ − C̄0
ϕ
)− ν

2
(C− C0), (43)

1
2

Ĉt = υ̃2dĈψ̄ψ −
ν

2
(C− C0) (44)

where Ĉ = Cj+1, C̄ = Cj+ 1
2 , C = Cj, tj+ 1

2
= tj +

τ
2 , C̄t =

C̄−C
τ/2 , Ĉt =

Ĉ−C̄
τ/2 , C0

ϕ
, Cϕ̄ϕ, Cψ̄ψ are central and

second finite-difference derivatives with respect to ϕ and ψ, correspondingly.
Unwinding in Equation (43) the finite-difference operators taking introduced notations into

consideration and collecting similar terms, we obtain on the half-integer time step tj+ 1
2

the following
equations’ system:

AikCj+ 1
2

i+1,k − BikCj+ 1
2

ik + SikCj+ 1
2

i−1,k = Φj
ik(i = 1, m; k = 1, n; j = 0, N) (45)

where

Aik =
υ̃2

ik
h1

(
d
h1
− 0, 5

)
, Sik =

υ̃2
ik

h1

(
d
h1

+ 0, 5
)

, Bik =
1
τ
+ Aik + Sik, (46)

Φj
ik =

(
ν

2
− 1

τ

)
Cj

ik −
ν

2
C0ik . (47)
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On the integer time step tj+1 from Equation (44) we get

PikCj+1
i,k+1 −QikCj+1

ik + PikCj+1
i,k−1 = Ωj

ik(i = 1, m; k = 1, n;j = 0, N) (48)

where

Pik =
υ̃2

ikd
h2

2
, Qik =

1
τ
+ 2Pik, (49)

Ωj
ik =

ν

2
Cj

ik −
1
τ

C
j+1/2
ik − ν

2
C0ik . (50)

Let us note that the difference equations of the systems in Equations (45) and (48) are
three-diagonal and, using the difference analogs of the boundary conditions in Equations (40) and (41),
are effectively solved by the Thomas algorithm [26,27]. The stability of the Thomas algorithm for
Equations (45) and (48) follows from the fact of diagonal prevalence in the coefficient matrices of these
linear algebraic equations systems.

The brief description of the main stages of the simulation algorithm for solving the
considered initial-boundary value problem based on the finite-difference technique using the locally
one-dimensional scheme is as follows.

At the first stage, based on the analytical dependencies from Lavryk et al. [5], the elements of
the array of velocity field values that correspond to the considered filtration scheme are calculated.
Having a filtration velocity field, at the second stage, the systems of algebraic Equations (45) and (48)
are solved and, as a result, the arrays of concentration field values in the domain of complex flow
potential are obtained. The final stage of the algorithm consists in the transition from the domain
of complex flow potential Gω to the physical domain Gz based on the characteristic flow function
z = f (ω).

5. The Results Of Simulations

Numerical modeling of the dynamics of the considered migration process using the original
MIM model and the proposed simplified mathematical model, as well as a comparative analysis of
simulation results according to both of these models, were performed with respect to dimensionless
variables determined by the relations in Equation (14) under the condition C0(ϕ, ψ) ≡ 0.

Some obtained results for κ = 0.57 m/day, H = 0.45 m, Q = 6 m2/day, d = 0.1 m2/day,
C1 = ϕ0 = 1, τ = 0.0005, and n = m = 30 are depicted in Figures 1–3.

Figure 1. Concentrationfield along the streamline ψ = 0.5 in the fixed moment of time t = 4.2 h in
the case of MIM (curves 1,4), simplified (curves 2,5) and classical (curves 3,6) mathematical models
(1,2, α = γ = 0.92, β = 0.1; 3, α = γ = 1, β = 0.1; 4,5, α = 0.84, γ = 0.96, β = 0.8; and 6, α = γ = 1,
β = 0.8).
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Figure 1 shows the curves of concentration field distribution along the streamline ψ = 0.5 at a
fixed time t = 4.2 h that, according to Equation (14), corresponds to the values t′ = 0.03 for α = 1,
t′ = 0.212 for α = 0.84, and t′ = 0.0256 for α = 0.92. For the simulations, the results of which are
shown in Figure 1, we used such values of fractional derivative exponents that yield accurate enough
approximation of the initial model by the simplified one. Figure 2 shows the curves of the relative
L2-error E(α,γ)

RE = ‖C−CS‖
‖C‖ between the solutions according to the initial MIM model and the simplified

model (here, C is the concentration that corresponds to the MIM model, CS is the concentration
that corresponds to the simplified model, and ‖·‖ is the norm in L2) depending on the value of the
parameter γ for various fixed values of the parameter α. Similar curves for the E(α,γ)

RE subject to the
values of the parameter α for the fixed values of γ are presented in Figure 3.

Figure 2. Curvesof the relative L2-error E(α,γ)
RE subject to the value of the parameter γ for: (1) α = 0.8;

(2) α = 0.85; (3) α = 0.9; (4) α = 0.95; (5) α = 1.0; and (1–5) β = 0.8, t = 0.01.

Figure 3. Curvesof the relative L2-error E(α,γ)
RE subject to the value of the parameter α for: (1) γ = 0.8;

(2) γ = 0.85; (3) γ = 0.9; (4) γ = 0.95; (5) γ = 1.0; and (1–5) β = 0.8, t = 0.01.
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Analysis of the numerical experiments’ results allows us to draw the following conclusions about
the characteristics of the dynamics of soluble substances’ concentration field under the conditions of
vertical steady-state groundwater filtration with a free surface:

1. The results of simulation using the simplified mathematical model are in good qualitative
agreement with the corresponding results obtained using the original fractional-differential MIM
model (Figure 1).

2. Simulation accuracy when the simplified model is used in comparison with the original MIM
model is in many cases (e.g., when performing evaluative calculations in engineering practice)
satisfactory. This can be illustrated by the following example: the inequality E(α,γ)

RE < 0.3 in the
conducted numerical experiments was met when (α, γ) ∈ [0.85, 1]× [0.88, 1], and the inequality
E(α,γ)

RE < 0.2 was met when (α, γ) ∈ [0.94, 1]× [0.97, 1] (Figures 2 and 3). Moreover, the relative
L2-error between the solutions according to the original MIM model and the simplified model
quickly decrease as the values of the derivatives’ orders α, γ approach to 1: α, γ ↑ 1⇒ E(α,γ)

RE ↓
E(1,1)

RE = 0. The dependency between the values of the relative L2-error and the obtained values
of α, γ can be empirically represented (with a maximum absolute error of 0.07) as

E(α,γ)
RE =

 1
γ

γ2


T  −0, 14 1, 71 −1, 64

1, 64 −2, 63 1, 97
−1, 56 1, 70 −1, 02


 1

α

α2

 .

3. Computational complexity of the calculations using the original MIM model linearly depends on
the number of time steps, while, for the simplified mathematical model, the time spent to obtain
a solution on one step does not change during the simulation. Thus, the use of the simplified
model linearly accelerates the modeling process.

The obtained data indicate that in some cases the simplified mathematical model of the
geomigration process can be effectively used for carrying out evaluative calculations in engineering
practice while developing constructive solutions in the field of designing environmentally hazardous
engineering objects.

6. Conclusions

The use of a fractional-differential mathematical model of an anomalous geomigration process
under the conditions of filtration taking into account the MIM approach in engineering practice
presents certain severe difficulties associated with the complexity of simulation process. One of the
effective approaches to simplify and accelerate the process of evaluative engineering calculations
in this case is an approach based on the simplification of the original mathematical model and the
transition to a simpler model based on the classical convective diffusion equation. We constructed such
a simplified model and within its framework formulated the two-dimensional initial-boundary value
problem of convective diffusion of soluble substances under the conditions of vertical steady-state
groundwater filtration with a free surface from a reservoir into a coastal drain. In the case of averaged
filtration velocity, an analytical solution of this problem is obtained. In the general case of a variable
filtration velocity, an algorithm has been developed for obtaining its numerical solution. The results of
simulations based on this algorithm indicate that the results of concentration fields modeling within the
framework of the simplified mathematical model are in qualitative agreement with the corresponding
results obtained using the original MIM model. The constructed model can be effectively used in
carrying out evaluative computations in engineering practice for simplification and acceleration of
simulation process.
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