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Abstract: In this paper, we investigate a new class of boundary value problems involving fractional
differential equations with mixed nonlinearities, and nonlocal multi-point and Riemann–Stieltjes
integral-multi-strip boundary conditions. Based on the standard tools of the fixed point theory,
we obtain some existence and uniqueness results for the problem at hand, which are well illustrated
with the aid of examples. Our results are not only in the given configuration but also yield several
new results as special cases. Some variants of the given problem are also discussed.
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1. Introduction

In this paper, we introduce and study a new boundary value problem of fractional
differential equations involving mixed nonlinearities, and nonlocal multi-point and Riemann-Stieltjes
integral-multi-strip boundary conditions. Precisely we consider the following problem:

cDp[cDqx(t) + f (t, x(t))] = g(t, x(t)), 0 < t < 1, 0 < p, q ≤ 1, (1)

x(0) =
m

∑
j=1

β jx(σj), bx(1) = a
∫ 1

0
x(s)dH(s) +

n

∑
i=1

αi

∫ ηi

ξi

x(s)ds, (2)

where cDr denotes the Caputo fractional derivative of order r (r = p, q), f and g are given continuous
functions, 0 < σj < ξi < ηi < 1, a, b ∈ R, αi, β j ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . , m and H(.) is
a function of bounded variation. One can note that the nonlinearities in (1) appear in the form:

g(t, x(t))− cDp f (t, x(t)),

provided that it is possible to write (1) as cDp+qx(t) +c Dp f (t, x(t)) = g(t, x(t)). Notice that (1) is the
neutral fractional differential equation.

Remark 1. Letting f (t, x(t)) = λx(t), where λ is a constant, (1) becomes the Langevin equation with two
fractional orders, which is a well known equation of mathematical physics and describes many interesting physical
situations like fluctuating phenomena, anomalous diffusion, etc. [1]. In the limit p, q→ 1−, the Equation (1)
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takes the form: D2x(t) + D f (t, x(t)) = g(t, x(t)), D = d/dt, which is an equation of motion with nonlinear
damping. Thus, (1) can be regarded as the fractional analogue of equation of motion. In case we fix p = α,
q = β, f (t, x(t)) = (RZ/L)x(t), f (t, x(t)) = (1/LC)[−x(t) + e(t)], (1) takes the form of a fractional-order
differential equation of the voltage function x(t), see Equation (4) in [2]. The nonlocal conditions involved in the
problem (1) appear in several applications of diffusion processes, computational fluid dynamics (CFD) studies of
blood flow problems, bacterial self-regularization models, for instance, see [3–5].

The topic of fractional order boundary value problems has been of great interest in recent years
and many researchers contributed to it by contributing a variety of results involving different kinds
of boundary conditions. The literature on this subject is now quite enriched and varies from the
existence theory to the methods of solution for these problems [6–21]. Fractional order differential
and integral operators are found to be of great utility in enhancing the mathematical modeling of
dynamical systems involving fractals and chaos. It has been mainly due to the nonlocal nature of these
operators, which accounts for hereditary characteristics of many materials and processes in contrast to
their integer-order counterparts. For application details of fractional differential equations, we refer
the reader to the works [22–28], while the theoretical aspects of fractional calculus can be found in the
texts [29–31].

In Section 2, we outline the basic concepts of fractional calculus and prove an auxiliary lemma.
Section 3 contains the main results for the problem (1) and (2) and illustrative examples for the obtained
results. In Section 4, we present some variants of the problem (1) and (2).

2. Preliminaries

Before presenting some auxiliary results, let us recall some preliminary concepts of fractional
calculus [30].

Definition 1. Let ζ be a locally integrable real-valued function on −∞ ≤ a < t < b ≤ +∞.
The Riemann–Liouville fractional integral Iα

a of order α ∈ R (α > 0) is defined as

Iα
a ζ (t) = (ζ ∗ Kα) (t) =

1
Γ (α)

t∫
a

(t− s)α−1 ζ (s)ds,

where Kα(t) = tα−1

Γ(α) , Γ denotes the Euler gamma function.

Definition 2. Let ζ, ζ(m) ∈ L1[a, b] for −∞ ≤ a < t < b ≤ +∞. The Riemann–Liouville fractional
derivative Dα

a of order α > 0 (m− 1 < α < m, m ∈ N) is defined as

Dα
a ζ (t) =

dm

dtm I1−α
a ζ (t) =

1
Γ (m− α)

dm

dtm

t∫
a

(t− s)m−1−α ζ (s)ds.

Definition 3. Let ζ ∈ Cm[a, b]. Then the Caputo fractional derivative cDα
a of order α ∈ R (m− 1 < α <

m, m ∈ N) is defined as

cDα
a ζ(t) = I1−α

a ζ(m) (t) =
1

Γ (m− α)

t∫
a

(t− s)m−1−α ζ(m) (s)ds.

Remark 2. The Caputo fractional derivative cDα
a of order α ∈ R (m− 1 < α < m, m ∈ N) can be expressed

in the following equivalent form

cDα
a ζ (t) = Dα

a

[
ζ (t)− ζ (a )− ζ ′ (a )

(t− a)
1!

− . . .− ζ(m−1) (a )
(t− a)m−1

(m− 1)!

]
.
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In the present work, we denote the Riemann-Liouville fractional integral Iα
a and the Caputo

fractional derivative cDα
a with a = 0 by Iα and cDα respectively.

Definition 4. A function x ∈ C2[0, 1] satisfying the problem (1) and (2) is called its solution on [0, 1].

Associated with the linear variant of problem (1) and (2), we consider the following lemma.

Lemma 1. Let h, k ∈ C([0, 1],R), the unique solution of the linear fractional differential equation

cDp+qx(t) +c Dph(t)) = k(t), 0 < p, q ≤ 1, (3)

supplemented with the boundary conditions (2) is given by

x(t) = −
∫ t

0

(t− s)q−1

Γ(q)
h(s)ds +

∫ t

0

(t− s)q+p−1

Γ(q + p)
k(s)ds

−λ1(t)

[
b
∫ 1

0

(
(1− s)q−1

Γ(q)
h(s)− (1− s)q+p−1

Γ(q + p)
k(s)

)
ds

+a
∫ 1

0

(∫ s

0

(
(s− u)q+p−1

Γ(q + p)
k(u)− (s− u)q−1

Γ(q)
h(u)

)
du
)

dH(s) (4)

+
n

∑
i=1

αi

∫ ηi

ξi

(∫ s

0

(
(s− u)q+p−1

Γ(q + p)
k(u)− (s− u)q−1

Γ(q)
h(u)

)
du
)

ds

]

+λ2(t)
m

∑
j=1

β j

(∫ σj

0

(σj − s)q−1

Γ(q)
h(s)ds−

∫ σj

0

(σj − s)q+p−1

Γ(q + p)
k(s)ds

)
,

where

λ1(t) =
1
κ

(
ρ1 −

ρ2tq

Γ(q + 1)

)
, λ2(t) =

1
κ

(
ρ3 −

ρ4tq

Γ(q + 1)

)
,

ρ1 =
m

∑
j=1

β j
σ

q
j

Γ(q + 1)
, ρ2 =

m

∑
j=1

β j − 1,

ρ3 =
1

Γ(q + 1)

(
b− a

∫ 1

0
sqdH(s)−

n

∑
i=1

αi
(η

q+1
i − ξ

q+1
i )

q + 1

)
, (5)

ρ4 = b− a
∫ 1

0
dH(s)−

n

∑
i=1

αi(ηi − ξi),

κ = ρ2ρ3 − ρ1ρ4 6= 0. (6)

Proof. Applying the integral operator Ip on (3), and then Iq on the resulting equation together with
Lemma 2.22 in [29], we get

x(t) = −Iqh(t) + Iq+pk(t) + c0
tq

Γ(q + 1)
+ c1, (7)

where c0, c1 are arbitrary constants. Using the boundary condition (2) in (7), we obtain

m

∑
j=1

β j
σ

q
j

Γ(q + 1)
c0 +

( m

∑
j=1

β j − 1
)

c1 =
m

∑
j=1

β j Iqh(σj)−
m

∑
j=1

β j Iq+pk(σj), (8)
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1
Γ(q + 1)

(
b− a

∫ 1

0
sqdHs−

n

∑
i=1

αi
(η

q+1
i − ξ

q+1
i )

q + 1

)
c0 +

(
b− a

∫ 1

0
dHs−

n

∑
i=1

αi(ηi − ξi)
)

c1

= bIqh(1)− bIq+pk(1) + a
∫ 1

0

(
− Iqh(s) + Iq+pk(s)

)
dH(s)

+
n

∑
i=1

αi

∫ ηi

ξi

(
Iq+pk(s)− Iqh(s)

)
ds. (9)

For the sake of convenience, we use the notations (5) in (8) and (9) to find the following system
of equations {

ρ1c0 + ρ2c1 = ρ5,

ρ3c0 + ρ4c1 = ρ6,
(10)

where

ρ5 =
m

∑
j=1

β j Iqh(σj)−
m

∑
j=1

β j Iq+pk(σj),

ρ6 = bIqh(1)− bIq+pk(1) + a
∫ 1

0

(
−Iqh(s) + Iq+pk(s)

)
dH(s)

+
n

∑
i=1

αi

∫ ηi

ξi

(
Iq+pk(s)− Iqh(s)

)
ds.

Solving the system (10) for c0 and c1, we get

c0 = (ρ2ρ6 − ρ5ρ4)/κ, c1 = (ρ3ρ5 − ρ1ρ6)/κ,

where κ is given by (6). Substituting the values of c0, and c1 in (7) together with the notations (5), we get
the solution (4). By direct computation, one can obtain the converse of the lemma. This completes
the proof.

3. Existence and Uniqueness Results

In view of Lemma 1, we transform the problem (1) and (2) into a fixed point problem as x = Gx,
where the operator G : C([0, 1],R)→ C([0, 1],R) is defined by

Gx(t) = −
∫ t

0

(t− s)q−1

Γ(q)
f (s, x(s))ds +

∫ t

0

(t− s)q+p−1

Γ(q + p)
g(s, x(s))ds

−λ1(t)

[
b
∫ 1

0

(
(1− s)q−1

Γ(q)
f (s, x(s))− (1− s)q+p−1

Γ(q + p)
g(s, x(s))

)
ds

+a
∫ 1

0

∫ s

0

(
(s− u)q+p−1

Γ(q + p)
g(u, x(u))− (s− u)q−1

Γ(q)
f (u, x(u))

)
du dH(s) (11)

+
n

∑
i=1

αi

∫ ηi

ξi

∫ s

0

(
(s− u)q+p−1

Γ(q + p)
g(u, x(u))− (s− u)q−1

Γ(q)
f (u, x(u))

)
du ds

]

+λ2(t)
m

∑
j=1

β j

(∫ σj

0

(σj − s)q−1

Γ(q)
f (s, x(s))ds−

∫ σj

0

(σj − s)q+p−1

Γ(q + p)
g(s, x(s))ds

)
.

Note that C([0, 1],R) denotes the Banach space of all continuous functions x : [0, 1]→ R endowed
with the norm defined by ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}.
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For the sake of computational convenience, we set

Λ =
1

Γ(q + 1)
+

1
Γ(q + p + 1)

+ λ1

[
|b|

Γ(q + 1)
+

|b|
Γ(q + p + 1)

+|a|
∫ 1

0

(
sq

Γ(q + 1)
+

sq+p

Γ(q + p + 1)

)
dH(s)

+
n−2

∑
i=1
|αi|

(
(η

q+1
i − ξ

q+1
i )

Γ(q + 2)
+

(η
q+p+1
i − ξ

q+p+1
i )

Γ(q + p + 2)

)]

+λ2

m

∑
j=1
|β j|

 σ
q
j

Γ(q + 1)
+

σ
q+p
j

Γ(q + p + 1)

 , (12)

and

Λ1 = Λ− 1
Γ(q + 1)

− 1
Γ(q + p + 1)

, (13)

where

λ1 = max
t∈[0,1]

|λ1(t)| =
1
|κ|

( |ρ2|
Γ(q + 1)

+ |ρ1|
)

, λ2 = max
t∈[0,1]

|λ2(t)| =
1
|κ|

( |ρ4|
Γ(q + 1)

+ |ρ3|
)

.

Now we present the existence and uniqueness results in the subsequent subsections.

3.1. Existence Result Via Leray–Schauder Nonlineear Alternative

Lemma 2. (Nonlinear alternative for single valued maps [32]) Let E be a Banach space, C a closed, convex subset
of E, U an open subset of C and 0 ∈ U. Suppose that F : U → C is a continuous, compact (that is, F(U) is
a relatively compact subset of C) map. Then either

(i) F has a fixed point in U, or (ii) there is a u ∈ ∂U(the boundary of U in C) and ε ∈ (0, 1) with
u = εF(u).

Theorem 1. Let f , g : [0, 1]×R→ R be continuous functions. Assume that:

(A1) There exist functions p1, p2 ∈ C([0, 1],R+), with p = max{p1, p2} and nondecreasing functions
ψ1, ψ2 : R+ → R+, ψ = max{ψ1, ψ2} such that | f (t, x)| ≤ p1ψ1(‖x‖) and |g(t, x)| ≤ p2ψ2(‖x‖),
for all (t, x) ∈ [0, 1]×R.

(A2) There exists a constant M > 0 such that

M
‖p‖ψ(M)Λ

> 1.

Then the boundary value problem (1) and (2) has at least one solution on [0, 1].

Proof. Let us first show that the operator G : C([0, 1],R)→ C([0, 1],R) defined by (11) maps bounded
sets into bounded sets in C([0, 1],R). For a positive number r, let Br = {x ∈ C([0, 1],R) : ‖x‖ ≤ r} be
a bounded set in C([0, 1],R). Then, in view of the assumption (A1), we have

|(Gx)(t)| ≤ ‖p1‖ψ1(‖x‖) sup
t∈[0,1]

{ ∫ t

0

(t− s)q−1

Γ(q)
ds + |λ1(t)|

[
|b|
∫ 1

0

(1− s)q−1

Γ(q)
ds

+|a|
∫ 1

0

(∫ s

0

(s− u)q−1

Γ(q)
du
)

dH(s) +
n

∑
i=1
|αi|

∫ ηi

ξi

( ∫ s

0

(s− u)q−1

Γ(q)
du
)

ds

]
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+|λ2(t)|
m

∑
j=1
|β j|

∫ σj

0

(σj − s)q−1

Γ(q)
ds

}

+‖p2‖ψ2(‖x‖) sup
t∈[0,1]

{ ∫ t

0

(t− s)q+p−1

Γ(q + p)
ds + |λ1(t)|

[
|b|
∫ 1

0

(1− s)q+p−1

Γ(q + p)
ds

+|a|
∫ 1

0

(∫ s

0

(s− u)q+p−1

Γ(q + p)
du
)

dH(s) +
n

∑
i=1
|αi|

∫ ηi

ξi

( (s− u)q+p−1

Γ(q + p)

)
du
)

ds

]

+|λ2(t)|
m

∑
j=1
|β j|

∫ σj

0

(σj − s)q+p−1

Γ(q + p)
ds

}

≤ ‖p1‖ψ1(‖x‖) sup
t∈[0,1]

{
tq

Γ(q + 1)
+ |λ1(t)|

[
|b|

Γ(q + 1)
+ |a|

∫ 1

0

sq

Γ(q + 1)
dH(s)

+
n

∑
i=1
|αi|
(η

q+1
i − ξ

q+1
i

Γ(q + 2)

)]
+ |λ2(t)|

m

∑
j=1
|β j|

σ
q
j

Γ(q + 1)

}

+‖p2‖ψ2(‖x‖) sup
t∈[0,1]

{
tq+p

Γ(q + p + 1)
+ |λ1(t)|

[
b

Γ(q + p + 1)

+|a|
∫ 1

0

sq+p

Γ(q + p + 1)
dH(s) +

n

∑
i=1
|αi|
(η

q+p+1
i − ξ

q+p+1
i

Γ(q + p + 2)

)]

+|λ2(t)|
m

∑
j=1
|β j|

σ
q+p
j

Γ(q + p + 1)

}

≤ ‖p‖ψ(‖r‖)
{

1
Γ(q + 1)

+
1

Γ(q + p + 1)
+ λ1

[
|b|
(

1
Γ(q + 1)

+
1

Γ(q + p + 1)

)
+|a|

∫ 1

0

(
sq+p

Γ(q + p + 1)
+

sq

Γ(q + 1)

)
dH(s)

+
n

∑
i=1
|αi|
(η

q+1
i − ξ

q+1
i

Γ(q + 2)
+

η
q+p+1
i − ξ

q+p+1
i

Γ(q + p + 2)

)]

+λ2

m

∑
j=1
|β j|
( σ

q
j

Γ(q + 1)
+

σ
q+p
j

Γ(q + p + 1)

)}
.

Consequently, using the notation (12), we have

‖Gx‖ ≤ ‖p‖ψ(‖r‖)Λ.

Next we show that G maps bounded sets into equicontinuous sets of C([0, 1],R). Let τ1, τ2 ∈ [0, 1]
with τ1 < τ2 and x ∈ Br, where Br is a bounded set of C([0, 1],R). Then we obtain

|Gx(τ2)− Gx(τ1)|

≤
∣∣∣ ∫ τ1

0

(τ1 − s)q−1 − (τ2 − s)q−1

Γ(q)
| f (s, x(s))|ds

∣∣∣
+
∣∣∣ ∫ τ2

τ1

(τ2 − s)q−1

Γ(q)
| f (s, x(s))|ds

∣∣∣+ ∣∣∣ ∫ τ2

τ1

(τ2 − s)q+p−1

Γ(q + p)
|g(s, x(s))|ds

∣∣∣
+
∣∣∣ ∫ τ1

0

(τ2 − s)q+p−1 − (τ1 − s)q+p−1

Γ(q + p)
|g(s, x(s))|ds

∣∣∣
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+
∣∣λ1(τ2)− λ1(τ1)

∣∣[|b| ∫ 1

0

(
(1− s)q−1

Γ(q)
| f (s, x(s))|+ (1− s)q+p−1

Γ(q + p)
|g(s, x(s))|

)
ds

+|a|
∫ 1

0

(∫ s

0

(
(s− u)q+p−1

Γ(q + p)
|g(u, x(u))|+ (s− u)q−1

Γ(q)
| f (u, x(u))|

)
du
)

dH(s)

+
n

∑
i=1
|αi|

∫ ηi

ξi

( ∫ s

0

( (s− u)q−1

Γ(q)
| f (u, x(u))|+ (s− u)q+p−1

Γ(q + p)
|g(u, x(u))|

)
du
)

ds

]

+
∣∣λ2(τ2)− λ2(τ1)

∣∣ m

∑
j=1
|β j|

∫ σj

0

( (σj − s)q−1

Γ(q)
| f (s, x(s))|

)
+

(σj − s)q+p−1

Γ(q + p)
|g(s, x(s))|

)
ds

≤ ‖p‖ψ(‖x‖)
{
|τq

1 − τ
q
2 |+ 2(τ2 − τ1)

q

Γ(q + 1)
+
|τq+p

1 − τ
q+p
2 |+ 2(τ2 − τ1)

q+p

Γ(q + p + 1)

+
∣∣∣ρ2(τ

q
2 − τ

q
1 )

κΓ(q + 1)

∣∣∣[|b|( 1
Γ(q + 1)

+
1

Γ(q + p + 1)

)
+ |a|

∫ 1

0

(
sq+p

Γ(q + p + 1)
+

sq

Γ(q + 1)

)
dH(s)

+
n

∑
i=1
|αi|
(η

q+1
i − ξ

q+1
i

Γ(q + 2)
+

η
q+p+1
i − ξ

q+p+1
i

Γ(q + p + 2)

)]

+
∣∣∣ρ4(τ

q
2 − τ

q
1 )

κΓ(q + 1)

∣∣∣ m

∑
j=1
|β j|
( σ

q
j

Γ(q)
+

σ
q+p
j

Γ(q + p + 1)

)}
.

Obviously the right hand side of the above inequality tends to zero independently of x ∈ Br as
τ2 − τ1 → 0. As G satisfies the above assumptions, therefore it follows by the Arzelá–Ascoli theorem
that G : C([0, 1],R)→ C([0, 1],R) is completely continuous.

The conclusion of the Leray–Schauder nonlinear alternative (Lemma 2) will apply once we
establish the boundedness of the set of all solutions to equations x = εGx, for ε ∈ (0, 1). Let x be
a solution of (1) and (2). Then, following the computation used in proving the boundedness of G,
we get

|x(t)| ≤ ‖p‖ψ(‖x‖)
{

1
Γ(q + 1)

+
1

Γ(q + p + 1)
+ λ1

[
|b|
(

1
Γ(q + 1)

+
1

Γ(q + p + 1)

)
+|a|

∫ 1

0

(
sq+p

Γ(q + p + 1)
+

sq

Γ(q + 1)

)
dH(s)

+
n

∑
i=1
|αi|
(η

q+1
i − ξ

q+1
i

Γ(q + 2)
+

η
q+p+1
i − ξ

q+p+1
i

Γ(q + p + 2)

)]

+λ2

m

∑
j=1
|β j|
( σ

q
j

Γ(q + 1)
+

σ
q+p
j

Γ(q + p + 1)

)}
,

which, on taking the norm for t ∈ [0, 1] and using (12), takes the form

‖x‖
‖p‖ψ(‖x‖)Λ ≤ 1.

By the condition (A2), we can find a positive number M such that ‖x‖ 6= M. Let us define a set
Y = {x ∈ C([0, 1],R) : ‖x‖ < M} and note that the operator G : Y → C([0, 1],R) is continuous
and completely continuous. From the choice of Y, there is no x ∈ ∂Y such that x = εG(x) for some
ε ∈ (0, 1). In consequence, we deduce by the nonlinear alternative of Leray–Schauder type (Lemma 2)
that the operator G has a fixed point x ∈ Y which is a solution of the problem (1) and (2). The proof
is completed.
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3.2. Existence Result via Krasnoselskii’s Fixed Point Theorem

Lemma 3. (Krasnoselskii’s fixed point theorem [33]). Let X be a bounded, closed, convex, and nonempty subset
of a Banach space Y . Let ϕ1, ϕ2 be the operators mapping X into Y , such that (i) ϕ1x1 + ϕ2x2 ∈ X whenever
x1, x2 ∈ X ; (ii) ϕ1 is compact and continuous; (iii) ϕ2 is a contraction mapping. Then there exists x3 ∈ X
such that x3 = ϕ1x3 + ϕ2x3.

Theorem 2. Let f , g : [0, 1]×R→ R be continuous functions satisfying the conditions:

(A3) | f (t, x)− f (t, y)| ≤ L1|x− y|, and |g(t, x)− g(t, y)| ≤ L2|x− y| for all t ∈ [0, 1], L > 0, x, y ∈ R,
with L < 1/Λ1, where Λ1 is given by (13), and L = max{L1, L2}.

(A4) | f (t, x)| ≤ µ1(t), |g(t, x)| ≤ µ2(t), for all (t, x) ∈ [0, 1] × R, µ1, µ2 ∈ C([0, 1],R+) and µ =

max{µ1, µ2}.

Then the boundary value problem (1) and (2) has at least one solution on [0, 1].

Proof. By the assumption (A4) and (12), we fix r ≥ Λ‖µ‖ and consider the closed ball Br = {x ∈ C :
‖x‖ ≤ r}. Next we define operators G1 and G2 on Br as follows

(G1x)(t) = −
∫ t

0

(t− s)q−1

Γ(q)
f (s, x(s))ds +

∫ t

0

(t− s)q+p−1

Γ(q + p)
g(s, x(s))ds, t ∈ [0, 1],

(G2x)(t) = −λ1(t)

[
b
∫ 1

0

(
(1− s)q−1

Γ(q)
f (s, x(s))− (1− s)q+p−1

Γ(q + p)
g(s, x(s))

)
ds

+a
∫ 1

0

∫ s

0

(
(s− u)q+p−1

Γ(q + p)
g(u, x(u))− (s− u)q−1

Γ(q)
f (u, x(u))

)
du dH(s)

+
n

∑
i=1

αi

∫ ηi

ξi

∫ s

0

(
(s− u)q+p−1

Γ(q + p)
g(u, x(u))− (s− u)q−1

Γ(q)
f (u, x(u))

)
du ds

]

+λ2(t)
m

∑
j=1

β j

( ∫ σj

0

(σj − s)q−1

Γ(q)
f (s, x(s))ds

−
∫ σj

0

(σj − s)q+p−1

Γ(q + p)
g(s, x(s))ds

)
, t ∈ [0, 1].

For x, y ∈ Br, we find that

‖G1x + G2y‖ = sup
t∈[0,1]

|G1x + G2y|

≤ ‖µ‖
{

1
Γ(q + 1)

+
1

Γ(q + p + 1)
+ λ1

[
|b|

Γ(q + 1)
+

|b|
Γ(q + p + 1)

+|a|
∫ 1

0

(
sq

Γ(q + 1)
+

sq+p

Γ(q + p + 1)

)
dH(s)

+
n−2

∑
i=1
|αi|

(
(η

q+1
i − ξ

q+1
i )

Γ(q + 2)
+

(η
q+p+1
i − ξ

q+p+1
i )

Γ(q + p + 2)

)]

+λ2

m

∑
j=1
|β j|

 σ
q
j

Γ(q + 1)
+

σ
q+p
j

Γ(q + p + 1)

}
= ‖µ‖Λ ≤ r.
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This shows that G1x + G2y ∈ Br. Next we establish that G2 is a contraction mapping. For x, y ∈
C([0, 1],R) and for each t ∈ [0, 1], we obtain

‖G2x− G2y‖ ≤ sup
t∈[0,1]

{
|λ1(t)|

[
|b|
∫ 1

0

(1− s)q−1

Γ(q)
| f (s, x(s))− f (s, y(s))|ds

+|b|
∫ 1

0

(1− s)q+p−1

Γ(q + p)
|g(s, x(s))− g(s, y(s))|ds

+|a|
∫ 1

0

(∫ s

0

(s− u)q+p−1

Γ(q + p)
|g(u, x(u))− g(u, y(u))|du

)
dH(s)

+|a|
∫ 1

0

(∫ s

0

(s− u)q−1

Γ(q)
| f (u, x(u))− f (u, y(u))|du

)
dH(s)

+
n

∑
i=1
|αi|

∫ ηi

ξi

( ∫ s

0

( (s− u)q+p−1

Γ(q + p)
|g(u, x(u))− g(u, y(u))|

+
(s− u)q−1

Γ(q)
| f (u, x(u))− f (u, y(u))|

)
du
)

ds
]

+|λ2(t)|
m

∑
j=1
|β j|
( ∫ σj

0

(σj − s)q−1

Γ(q)
| f (s, x(s))− f (s, y(s))|ds

+
∫ σj

0

(σj − s)q+p−1

Γ(q + p)
|g(s, x(s))− g(s, y(s))|

)
ds

}

≤ L

{
λ1

[ |b|
Γ(q + 1)

+
|b|

Γ(q + p + 1)

+|a|
∫ 1

0

(
sq+p

Γ(q + p + 1)
+

sq

Γ(q + 1)

)
dH(s)

+
n

∑
i=1
|αi|
(η

q+p+1
i − ξ

q+p+1
i

Γ(q + p + 2)
+

η
q+1
i − ξ

q+1
i

Γ(q + 2)

)]

+λ2

m

∑
j=1
|β j|
( σ

q
j

Γ(q + 1)
+

σ
q+p
j

Γ(q + p + 1)

)}
‖x− y‖

≤ LΛ1‖x− y‖,

which is a contraction mapping by assumption LΛ1 < 1 (Λ1 is given by (13)).
Continuity of f , g implies that the operator G1 is continuous. Also, G1 is uniformly bounded on

Br as

‖G1x‖ ≤ sup
t∈[0,1]

{ ∫ t

0

(t− s)q−1

Γ(q)
| f (s, x(s))|ds +

∫ t

0

(t− s)q+p−1

Γ(q + p)
|g(s, x(s))|ds

}

≤ ‖µ‖
(

1
Γ(q + 1)

+
1

Γ(q + p + 1)

)
.

Now we prove the compactness of the operator G1. In view of (A3), we define

sup
(t,x)∈[0,1]×Br

| f (t, x)| = f , sup
(t,x)∈[0,1]×Br

|g(t, x)| = g.

Consequently, for 0 ≤ t2 < t1 ≤ 1, we have

|G1x(t1)− G1x(t2)|
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≤ f
Γ(q + 1)

[|tq
2 − tq

1|+ 2(t1 − t2)
q] +

g
Γ(q + p + 1)

[|tq+p
2 − tq+p

1 |+ 2(t1 − t2)
q+p]→ 0,

as t1 − t2 → 0, independent of x. Thus, G1 is relatively compact on Br. Hence, by the Arzelá–Ascoli
theorem, G1 is compact on Br. Thus the hypotheses of Lemma 3 are satisfied. Hence we deduce by the
conclusion of Lemma 3 that the problem (1) and (2) has at least one solution on [0, 1].

3.3. Existence and Uniqueness Result

Theorem 3. Assume that f , g : [0, 1]×R → R are continuous functions satisfying the assumption (A3).
Then the problem (1) and (2) has a unique solution on [0, 1] if LΛ < 1, where Λ is given by (12).

Proof. Define M = max{M1, M2}, where M1 and M2 are positive numbers such that

supt∈[0,1] | f (t, 0)| = M1 and supt∈[0,1] |g(t, 0)| = M2. Fixing r ≥ MΛ
1− LΛ

, we consider Br =

{x ∈ C : ‖x‖ ≤ r}. Then, in view of the assumption (A3), we have

| f (t, x)| = | f (t, x)− f (t, 0) + f (t, 0)| ≤ | f (t, x)− f (t, 0)|+ | f (t, 0)| ≤ L1‖x‖+ M1 ≤ L1r + M1.

Similarly one can obtain that |g(t, x)| ≤ L2r + M2. In the first step, we show that GBr ⊂ Br.
For any x ∈ Br, we have

‖Gx‖ = sup
t∈[0,1]

|Gx(t)|

≤ (Lr + M)

{
1

Γ(q + 1)
+

1
Γ(q + p + 1)

+ λ1

[
|b|

Γ(q + 1)
+

|b|
Γ(q + p + 1)

+|a|
∫ 1

0

(
sq

Γ(q + 1)
+

sq+p

Γ(q + p + 1)

)
dH(s)

+
n

∑
i=1
|αi|

(
(η

q+1
i − ξ

q+1
i )

Γ(q + 2)
+

(η
q+p+1
i − ξ

q+p+1
i )

Γ(q + p + 2)

)]

+λ2

m

∑
j=1
|β j|

 σ
q
j

Γ(q + 1)
+

σ
q+p
j

Γ(q + p + 1)

}
= (Lr + M)Λ ≤ r,

which implies that GBr ⊂ Br. Next, for x, y ∈ C([0, 1],R) and for each t ∈ [0, 1], we obtain

‖Gx− Gy‖ ≤ sup
t∈[0,1]

{ ∫ t

0

(t− s)q−1

Γ(q)
| f (s, x(s))− f (s, y(s))|ds

+
∫ t

0

(t− s)q+p−1

Γ(q + p)
|g(s, x(s))− g(s, y(s))|ds

+|λ1(t)|
[
|b|
∫ 1

0

( (1− s)q−1

Γ(q)
| f (s, x(s))− f (s, y(s))|

+
(1− s)q+p−1

Γ(q + p)
|g(s, x(s))− g(s, y(s))|

)
ds

+|a|
∫ 1

0

( ∫ s

0

(s− u)q+p−1

Γ(q + p)
|g(u, x(u))− g(u, y(u))|

+
(s− u)q−1

Γ(q)
| f (u, x(u))− f (u, y(u))|du

)
dH(s)
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+
n

∑
i=1
|αi|

∫ ηi

ξi

( ∫ s

0

( (s− u)q+p−1

Γ(q + p)
|g(u, x(u))− g(u, y(u))|

+
(s− u)q−1

Γ(q)
| f (u, x(u))− f (u, y(u))|

)
du
)

ds

]

+|λ2(t)|
m

∑
j=1
|β j|
( ∫ σj

0

(σj − s)q+p−1

Γ(q + p)
|g(s, x(s))− g(s, y(s))|

+
(σj − s)q−1

Γ(q)
| f (s, x(s))− f (s, y(s))|ds

)}
≤ LΛ‖x− y‖.

From the above inequality together with the given condition LΛ < 1 (Λ is given by (12)), it follows
that the operator G is a contraction by means of the contraction mapping principle (Banach fixed point
theorem). Therefore, there exists a unique solution for the problem (1) and (2) on [0, 1].

Remark 3. In Theorem 2, we proved the existence of solutions for the problem (1) and (2) under the assumption
that LΛ1 < 1 ((A3)) by applying Krasnoselskii’s fixed point theorem, which is a hybrid fixed point theorem
combining two well known theorems (algebraic (Banach) and one topological (Schauder)). It gives a fixed point
for the sum of two operators; one of them is a contraction while the other one is completely continuous. It is well
known that the application of Krasnoselskii fixed point theorem only provides an existence result as only a part of
the associated operator is shown to be a contraction. In other words, the entire operator is not a contraction.
Indeed, Theorem 3 is an existence–uniqueness result obtained by applying Banach contraction mapping principle
under the condition LΛ < 1. Moreover, LΛ < 1 implies that LΛ1 < 1, where Λ = Λ1 +

1
Γ(q+1) +

1
Γ(q+p+1) .

This means that an increase of 1
Γ(q+1) +

1
Γ(q+p+1) to the value of Λ1 will lead to the condition LΛ < 1, ensuring

the uniqueness of solutions. This provides the relationship between the contractive conditions imposed in
Theorems 2 and 3. On the other hand, interchanging the roles of the operators G1 and G2 in the proof of
Theorem 2, the difference of the values of Λ and Λ1 is

Λ−Λ1 =
1

Γ(q + 1)
+

1
Γ(q + p + 1)

.

Thus, Theorem 2 provides a precise estimate to extend the contractive condition required for the existence of
solutions to the one needed to ensure the uniqueness of solutions in Theorem 3 for the problem at hand.

Example 1. Consider the following boundary value problem:

cD1/2(cD1/2x(t) + f (t, x(t))) = g(t, x(t)), t ∈ [0, 1],

x(0) =
3

∑
j=1

β jx(σj), x(1) =
∫ 1

0
x(s)dH(s) +

3

∑
i=1

αi

∫ ηi

ξi

x(s)ds, (14)

where p = q = 1/2, a = 1, b = 1, H(s) = s, σ1 = 1/32, σ2 = 1/26, σ3 = 1/16, ξ1 = 1/7, ξ2 = 3/7, ξ3 =

5/7, η1 = 2/7, η2 = 4/7, η3 = 6/7, α1 = 1/12, α2 = 1/6, α3 = 1/4, β1 = 1/15, β2 = 1/10, β3 = 1/5,
and f (t, x) and g(t, x) will be a fixed later. Using the give values, we find that Λ ≈ 16.905854 and Λ1 ≈
14.777475 (Λ and Λ1 are respectively given by (12) and (13)).

In order to illustrate Theorem 1, we take

f (t, x) =
2e−t

36π
tan−1 x +

1
t2 + 36

, g(t, x) =
e−2t

√
289 + t2

(
|x|

2(1 + |x|) + sin x +
1
2

)
. (15)

Clearly | f (t, x)| ≤ [e−t/36 + 1/(t2 + 36)], |g(t, x)| ≤ e−2t(1 + ‖x‖)/
√

289 + t2 with p1(t) = e−t/36 +

1/(t2 + 36) (‖p1‖ = 1/18), ψ1(‖x‖) = 1, p2(t) = e−2t/
√

289 + t2 (‖p2‖ = 1/17), ψ2(‖x‖) = 1 + ‖x‖,
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p = max{1/18, 1/17} = 1/17 and ψ = max{1, 1 + ‖x‖} = 1 + ‖x‖. From the assumption (A2), we find
that M > 179.570603. As all the conditions of Theorem 1 are satisfied, there exists at least one solution on [0, 1]
for the problem (14) with f (t, x) and g(t, x) given by (15).

Next we explain Theorem 2 by choosing the following functions in the problem (14):

f (t, x) =
1

20
sin x + e−t cos t, g(t, x) =

1
19

( |x|
1 + |x|

)
+ 6t. (16)

Notice that L1 = 1/20, L2 = 1/19 as

| f (t, x)− f (t, y)| ≤ 1
20
|x− y|, |g(t, x)− g(t, y)| ≤ 1

19
|x− y|.

Moreover

| f (t, x)| ≤ 1
20
| sin x|+ e−t| cos t| ≤ 1

20
+ e−t cos t = µ1(t), |g(t, x)| ≤ 1

19
+ 6t = µ2(t).

Obviously ‖µ1‖ = 21/20, ‖µ2‖ = 115/19, L = max{1/20, 1/19} = 1/19, µ = max{21/20,
115/19} = 115/19, LΛ1 ≈ 0.777762 < 1 and LΛ ≈ 0.889782 < 1. Clearly all the assumptions of Theorem 2
are satisfied. Hence, by the conclusions of Theorem 2, we deduce that there exists at least one solution for the
problem (14) on [0, 1] with f (t, x(t)) and g(t, x(t)) given by (16).

Finally one can notice that the problem (14) with f (t, x(t)) and g(t, x(t)) given by (16) has a unique
solution on [0, 1] as the hypothesis of Theorem 3 holds true.

Remark 4. Several new results for the fractional differential equation with mixed nonlinearities (1) subject to
different boundary conditions follow as special cases by fixing the parameters in (2). For example, our results
correspond to (i) Dirichlet boundary conditions if we take β j = 0, ∀j = 1, . . . , m, a = 0, b 6= 0, αi = 0, ∀i =
1, . . . , n; (ii) multi-point Riemann-Stieltjes integral boundary conditions if we take αi = 0, ∀i = 1, . . . , n;
(iii) multi-point and multi-strip conditions if we take a = 0; etc.

4. Analogue Problems

In this section, we discuss variants of the problem (1) and (2). As a first problem we consider

cDp+qx(t) +c Dp f (t, x(t))) = g(t, x(t)), 0 < t < 1, 0 < p, q ≤ 1,

x(0) =
m

∑
j=1

β jx(σj), a
∫ 1

0
x(s)ds−

n

∑
i=1

αi

∫ ηi

ξi

x(s)ds = δ, (17)

0 < σj < ξi < ηi < 1, i = 1, 2, . . . , n, a, δ ∈ R.
As argued for the problem (1) and (2), we can transform the problem (17) into a fixed point

problem with associated operatorW : C([0, 1],R)→ C([0, 1],R) defined by

(Wx)(t) = −
∫ t

0

(t− s)q−1

Γ(q)
f (s, x(s))ds +

∫ t

0

(t− s)q+p−1

Γ(q + p)
g(s, x(s))ds

−ω1(t)

[
a
∫ 1

0

(∫ s

0

(s− u)q−1

Γ(q)
f (u, x(u))du

)
ds

−a
∫ 1

0

(∫ s

0

(s− u)q+p−1

Γ(q + p)
g(u, x(u))du

)
ds

−
n

∑
i=1

αi

∫ ηi

ξi

( ∫ s

0

( (s− u)q−1

Γ(q)
f (u, x(u))− (s− u)q+p−1

Γ(q + p)
g(u, x(u))

)
du
)

ds + δ

]
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+ω2(t)
m

∑
j=1

β j

( ∫ σj

0

(σj − s)q−1

Γ(q)
f (s, x(s))ds−

∫ σj

0

(σj − s)q+p−1

Γ(q + p)
g(s, x(s))ds

)
,

where

ω1(t) =
1

κ̂Γ(q + 1)

( m

∑
j=1

β jσ
q
j −

m

∑
j=1

(β j − 1)tq
)

,

ω2(t) =
1

κ̂Γ(q + 2)

((
a−

n

∑
i=1

αi(η
q+1
i − ξ

q+1
i )

)
− (q + 1)(a−

n

∑
i=1

αi(ηi − ξi))tq
)

,

and

κ̂ =
1

Γ(q + 2)

[( m

∑
j=1

β j − 1
)(

a−
n

∑
i=1

αi(η
q+1
i − ξ

q+1
i )

)
−(q + 1)

m

∑
j=1

β jσ
q
j

(
a−

n

∑
i=1

αi(ηi − ξi)
)]
6= 0.

In relation to the problem (17), we define

Λ̂ =
1

Γ(q + 1)
+

1
Γ(q + p + 1)

+ ω̂1

[ |a|
Γ(q + 2)

+
|a|

Γ(q + p + 2)

+
n−2

∑
i=1
|αi|
( (ηq+1

i − ξ
q+1
i )

Γ(q + 2)
+

(η
q+p+1
i − ξ

q+p+1
i )

Γ(q + p + 2)

)
+ |δ|

]

+ω̂2

m

∑
j=1
|β j|
( σ

q
j

Γ(q + 1)
+

σ
q+p
j

Γ(q + p + 1)

)
,

Λ̂1 = Λ̂− 1
Γ(q + 1)

− 1
Γ(q + p + 1)

,

where

ω̂1 = max
t∈[0,1]

|ω1(t)| =
1
|κ̂|

[∣∣∣ m

∑
j=1

β j − 1
∣∣∣+ ∣∣∣ m

∑
j=1

β j
σ

q
j

Γ(q + 1)

∣∣∣],
ω̂2 = max

t∈[0,1]
|ω2(t)| =

1
|κ̂|

[∣∣∣a− n

∑
i=1

αi(ηi − ξi)
∣∣∣+ ∣∣∣ 1

Γ(q + 2)

(
a−

n

∑
i=1

αi(η
q+1
i − ξ

q+1
i )

)∣∣∣].
The existence and uniqueness results for the problem (17), analogue to the ones for the problem (1)

and (2) obtained in Section 3, can be obtained in a similar manner.
As a second variant of the problem (1) and (2), we consider

cDp+qx(t) +c Dp f (t, x(t))) = g(t, x(t)), 0 < t < 1, 0 < p, q ≤ 1,

x(0) =
p

∑
j=1

β jx(σj), x(1) =
n−2

∑
i=1

αi

∫ ηi

ξi

x(s)ds, 0 < σj < ξi < ηi < 1. (18)
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In relation to the problem (18), the fixed point operator V : C([0, 1],R)→ C([0, 1],R) is defined by

(Vx)(t) = −
∫ t

0
(t−s)q−1

Γ(q) f (s, x(s))ds +
∫ t

0
(t−s)q+p−1

Γ(q+p) g(s, x(s))ds

−ν1(t)

[ ∫ 1
0

(1−s)q−1

Γ(q) f (s, x(s))ds−
∫ 1

0
(1−s)q+p−1

Γ(q+p) g(s, x(s))ds

−∑n
i=1 αi

∫ ηi
ξi

( ∫ s
0

(
(s−u)q−1

Γ(q) f (u, x(u))− (s−u)q+p−1

Γ(q+p) g(u, x(u))
)

du
)

ds

]

+ν2(t)

[
∑m

j=1 β j

( ∫ σj
0

(σj−s)q−1

Γ(q) f (s, x(s))ds−
∫ σj

0
(σj−s)q+p−1

Γ(q+p) g(s, x(s))ds
)]

,

(19)

where

ν1(t) =
1

ΩΓ(q + 1)

[ m

∑
j=1

β jσ
q
j −

m

∑
j=1

(β j − 1)tq
]
,

ν2(t) =
1

ΩΓ(q + 2)

[(
q + 1−

n

∑
i=1

αi(η
q+1
i − ξ

q+1
i )

)
− (q + 1)(1−

n

∑
i=1

αi(ηi − ξi))tq
]
,

Ω =
1

Γ(q + 2)

[( m

∑
j=1

β j − 1
)(

q + 1−
n

∑
i=1

αi(η
q+1
i − ξ

q+1
i )

)
−(q + 1)

m

∑
j=1

β jσ
q
j

(
1−

n

∑
i=1

αi(ηi − ξi)
)]
6= 0.

Moreover, we set

$ =
1

Γ(q + 1)
+

1
Γ(q + p + 1)

+ ν1

( 1
Γ(q + 1)

+
1

Γ(q + p + 1)

+
n−2

∑
i=1
|αi|
( (ηq+1

i − ξ
q+1
i )

Γ(q + 2)
+

(η
q+p+1
i − ξ

q+p+1
i )

Γ(q + p + 2)

))

+ν2

m

∑
j=1
|β j|
( σ

q
j

Γ(q + 1)
+

σ
q+p
j

Γ(q + p + 1)

)
, νi = max

t∈[0,1]
|νi(t)|, i = 1, 2,

$ = $− 1
Γ(q + 1)

− 1
Γ(q + p + 1)

.

As in Section 3, we can obtain the existence and uniqueness results for the problem (18) with the
aid of the operator V and the parameters-dependent quantities $ and $ (defined above).
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