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1. Introduction

The fractional calculus has emerged as a nonlocal theory described with operators of a fractional
nature [1]. Fractional calculus was born as a natural generalization of the traditional calculus (Leibniz,
1695; Euler, 1730; Fourier, 1822; Abel, 1823 [1,2]); however, until recently, this mathematical theory
played an active role in disciplines such as physics and control theory [3]. In the last decade, several
applications have emerged due to the fractional nature of the phenomena. For instance, in physics,
fractional calculus has been applied to thermodynamics, materials, and waves [3,4]. In a fractional
optimal control, either the performance index or the differential equations governing the dynamics of
the system contains a term with a fractional derivative [5]. Recently, Agulilar and coauthors [6,7] and
Barro et al. [8] provided a new fractional operator. Fractional calculus is a terminology that refers to
the integration and differentiation of an arbitrary order [1,2,9]; in other words, the meaning of k-th
derivative d¥y/dx* and k-th iterated integral [ ... [ dx are extended by considering a fractional & € R,
parameter instead of integer k € N parameter. Following this trend, some authors introduced new
types of fractional derivatives and differences that allow the appearance of exponential function [10,11]
or the Mittag-Leffler function [12,13] in the kernel of the operators that makes it difficult to solve
certain complicated fractional systems in their frames. Nowadays, a variety of fractional integral
operators are under discussion, and many generalized fractional integral operators also take a part in
generalizing the theory of fractional calculus (see References [14-21]).

It is well known that convex functions are becoming increasingly important due to the variety
of their nature; many generalizations for convexity can be found in the literature [22-31], and many
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remarkable inequalities have been established via convexity. Among these, the Hermite-Hadmard
inequality [32,33] is one of the most important inequalities and can be stated as follows:
Let K C R be an interval and f : K — R be a convex function. Then, double inequality

holds for all 4,b € K with a # b. If f is concave on interval K, then both inequalities in Inequality (1)
hold in the reverse direction. Recently, many researchers have made extensions, generalizations,
refinements, variations and applications [34-39] for Hermite-Hadmard Inequality (1). On other hand,
the minimum of the differentiable convex functions can be characterized by variational inequalities.
These two aspects of convexity theory have far-reaching applications and have provided powerful
tools for studying difficult problems. In recent years, integral inequalities have been derived via
fractional analysis, which has emerged as another interesting technique.

To the best of our knowledge, a comprehensive investigation of exponentially convex functions
as Katugampola fractional integral in the present paper is new. The class of exponentially convex
functions was introduced by Antczak [40] and Dragomir [41]. Motivated by these facts, Awan et al. [42]
introduced and investigated another class of convex functions, namely, exponentially convex function,
which is significantly different from the class introduced by References [39—41]. The growth of research
on Big Data analysis and deep learning has recently increased interest in information theory involving
exponentially convex functions. The smoothness of exponentially convex functions is exploited for
statistical learning, sequential prediction, and stochastic optimization (see References [40,43,44] and
the references therein).

It is known [41] that a function f is exponentially convex if, and only if, f satisfies inequality

b
: (@) 1 of(b)
(/efunhfg 544%5547,

a

of(3) < . )

Inequality (2) is called the Hermite-Hadamard inequality and provides the upper and lower
estimates for the exponential integral.

In this paper, we introduce a new class of exponentially convex function, which is called the
exponentially s-convex function. We derive some new inequalities using Katugampola fractional
integral for exponentially s-convex functions. Some special cases are also discussed. We also give some
applications to the special means of real numbers.

2. Preliminaries

Now, we recall and introduce some definitions for various convex functions.
Definition 1. A set K C R is said to be convex, if
tx+(1—-ty e K, Vx,yeK,tel01].
Definition 2. A function f : K — R is said to be a convex function, if and only if,
flle+ (1 =y) <tf(x) + A -f(y), YxyeKtelo1],
function f is called concave if — f is convex.

We now consider a class of exponentially convex function, which are mainly due to [40,41].
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Definition 3 ([40,41]). A positive real-valued function f : K C R — (0, 00) is said to be exponentially
convex on K, if

oS BF=0y) < pof ) 1 (1 —1)efW),vx,y e K, te[0,1].

Exponentially convex functions are used to manipulate for statistical learning, sequential
prediction, and stochastic optimization (see References [40,43,44] and the references therein).

It is known that x € K is the minimum of the differentiable exponentially convex functions f if,
and only if, x € K satisfies

(f'(x)ef™,y—x) >0, Vyek. 3)

Inequalities of the type (3) are known as exponentially variational inequalities and appear to
be new. Using the idea and techniques of Noor [37], one can study some aspects of exponentially
variational inequalities, which is itself an interesting problem for further research. For formulation,
applications and other aspects of variational inequalities, see Noor [35-37].

We now give some examples of exponentially convex functions, (see Reference [39]).

1. f(x) = cis exponentially convex on (R) for any ¢ > 0.
f(x) = e** is exponentially convex on (R) for any a € R.
3. f(x) = x~"is exponentially convex on (0, c0) for any & > 0.

We now introduce a new concept of exponentially s-convex functions.

Definition 4. Let s € [0,1]. A function f : K C R — R is said to be an exponential s-convex function in the
first sense, if

ef(tx+(1=0)y) < gsof(x) 4 (1-— t)sef(y), vVt e [0,1] x,y € K. 4)

Fort = %, we have

A X+ y) 1
e 2 S E [ef(x) _|._ ef(y)]’ x’y (= K (5)
Function f is called the exponentially Jensen-convex function.

We now recall a class of fractional integrals, which is mainly due to Katugampola [16].

Definition 5 ([16]). Let [a,b] C R be a finite interval. Then, the left- and right-hand-side Katugampola
fractional integrals of order « > 0, of function f € ]! (a,b) are defined by

1—a

PTE f(x) = ‘r)(“) /(xP — )L (1) dt

and

X

() = S [ e

a
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witha < x < band p > 0, where J! (a,b) (c € R, 1 < p < o0) is the space of those complex valued Lebesgue
measurable functions f on [a, b] for which || f|| 1P (ap) < 00 Where the norm is defined by

1Al = (/buff(tw‘?)‘l’ <o

forl < p < oo, ¢ € Rand for the case p = oo,

| flljee = ess supa<i<plt*f(t)],

where ess sup stands for essential supremum.
If p =1, then, Definition 5 reduces to a Riemann—Liouville fractional integral.

Definition 6 ([19]). Let a > OQwithn —1 <a <n, n € N,and 1 < x < b. The left- and right-hand-side
Riemann—Liouville fractional integrals of order w of function f are given by

I8 f(x) = r(l) / (x — O LF (1)t

and

1 b
. lX 1
Ji f T T /t x) &

where T' () is the gamma function.
If p = 0, then, Definition 5 reduces to a Hadamard fractional integral.

Definition 7 ([20]). Let « > Owithn —1 <a <n, n € N,and 1 < x < b. The left- and right-hand-side
Hadamard fractional integrals of order o of function f are given by

HF() = 1 / (n(X )1 IO g

t t
and
b
H () = ey [ an L

Theorem 1 ([15]). Let « > 0and p > 0. Then, for x > a,
1. limf_ I8 =T]% f(x),

p—17a4 a
2. limh_ I8 = HE f(x).

We recall the special functions that are known as Gamma function and Beta function, respectively.

o)

I(x) = /—ftx—ldt

B(x,y) = /tX1 )Y ldt = M x,y > 0.
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For the appropriate and suitable choice of functions p, s, and &, one can obtain several new
and known class of fractional convex functions as special cases. This shows that the concept of an
exponentially s-convex function is quite general and unifying.

From now onward, we take I = [a, b], unless otherwise specified.

3. Main Results

In this section, we derive the Hermite-Hadamard-type inequalities for exponentially
s-convex functions.

Theorem 2. Let o > 0and p > 0. Let f : T = [a°,b°] C R4 — R be a positive function with 0 < a < b and
ef € L[a®,bP). If f is an exponential convex function on [a®, b°], then

%eﬂ“";b") M[p 12 of@) 1o 2 of00))
P ©)

1
< Z faf) o Lf(bP)
<3 a+s+B(v¢,s+1)}[e + e/ )],

where B(x, y) denotes the beta as special function.

Proof. Let f be an exponentially s-convex function. Then, from Inequality (5),

AR ef ) +f(y°)
e 2

S Vx,y el

Taking x = tPaf + (1 — t#)b and y = t°b° + (1 — t°)a’, in the above inequality, we have
35 f(TFE) o« f(t0aP+(1-19)b°) 1 of (#PVP+(1—t)ar )

Multiplying both sides of the above inequality by **~!, a > 0, and then integrating with respect
to t over [0,1], we have

1 1
";Sef(“p;hp) /ttxp Upf (#7074 (1=)60) dt+/tap 1 (0 +(1—10)af)
oK
/ LN B~y g g Y
o - o
(oo —ar) (x)ap—bﬂdx+/ o) ¢ W) g

a—1
Y F(D() « af « bP
e m[plb_ef( )+p Iu+ef( )]

1
_ / 01 [ (P +H(—)6) 4 of (90 +(1-1)a) | gy
1
< /t"‘P_l ((tﬂ)sef(“”) + (1= t0)5ef ) 4 (10)5ef ) (1 — tP)seﬂ“”))dt

oo 1 (100 (1= () 470

IN
IRk O~ . ©

1
fa) 4 of (0F)
<a+s+/3(a,s+l))[e +e/V].

This completes the proof. [
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We now discuss some new special cases of Theorem 2.

Corollary 1. If p = 1, then, under the assumption of Theorem 2, we have

S A r [ [ a (14
25ef(15h) < (b(a))a i @ 4 g o)

+B(a,s+ 1)} /@ 4 /).

=1 a+s
Corollary 2. If p = a = 1, then, under the assumption of Theorem 2, we have

b

2%ef(5") < Ydx < {— +B(1,5+1)} /@ +f ).

Corollary 3 ([18,42]). If p = a = s = 1, then, under the assumption of Theorem 2, we have

b
/ef(x)dx S [ef(a) _|_ef(b)]

a

—a

In order to prove the following result, we need the following lemma:

Lemmal. Leta > 0and p > 0. Let f : T = [aP,b°] C Ry — R be a differentiable function on interior I° of I.
If (ef)' € L[a®, bP] is s-convex function, then

of (@) 4 of (bF) p"‘l“(oc +1)
2 2(b° — aP)

[FI¥, ef W) pppp of (@)
P ap) f
— M /[(1 — )" — (tp)a]tp—lef(tﬂﬂ”+(1—tf’)bf’)f’(tpa” + (1= t0)bP)dt.
0
Proof. Consider

1
bP —af) / [(1— t0)° ),X]tpflef(tpaf’jt(lftﬂ)bp)f/(tpap + (1 — t°)bP)dt
0

=L+ I

Now,

1
I = /(1 — Py 1pf (Al +(1=1)0F) " 400 o (1 — 19)bP)dt
0

1
14 al
_gp\a—T1o—=1f (" +(1—1tF)bP)
+aP—bP/(1 )P e dt
0

_ I« /b P =\ ey AT
~ o(bP —af)  bP —af b — af p(af —bP)
a

be _
B ef(b7) _pa 1r(“+1)plﬁ‘fef("p)

TP —an) (=)

(1 — t0)ef (" +(1—1)0) |1
p(af —bP)

X=a



Fractal Fract. 2019, 3, 24 7 of 16

Similarly,

1
L= /tP“.tpflef(””p+<1*“’)b")f'(tPaP + (1= t0)bP)dt
0

_ —ef(@) B p"‘_lf(tx+1)pla )
b @) @

x=b

Adding I; and I, we get

ef(aﬂ) +ef(bP) Par(“+1)
= — pre of(WP) L pqe f(af)
! 2 20 —ary | e LT,

which is the required result. [

Theorem 3. Let « > 0 and p > 0. Let f : I = [a°,b°] C R4 — R be a differentiable function on interior 1°
of I If | (ef)!| € L[af, b°] is s-convex function, then

ef @) 4 ef M) paT(a+1)
— prr of(0F) 4 pu of(af)
7 2060 — ab) [PIz, e +FPIy V)]

20 x+2s+1

+2A(a,b)B(a+s+2,s + 1)} ,

< W =) H L Ba+1,254 1)}{|ef<“p>f’(ap>| + 1/ f (b0) [}

where

Aa,b) = {[e/ ) f (b9)] + e/ f (af)]}. @)
Proof. Using Lemma 1 and the power mean inequality, we have

ef (@) 4 of (1F) _pT(a+1)
2 2(bP —ar)

1
< (P(bpz— a’)) { /tp<a+1)—1{ef(tﬂbﬂ+(1—tﬂ)aﬂ>)f’(tpbp +(1—10)ar)}
0

[plg+ef(b"> +PI ef 4]

_ {ef(t”ﬂ“(lffﬂ)b”))f’(tpap +(1— tf’)bp)}}dt

1
< (P(b*’z— a’)) { /tp<a+1)—1’ef(thP+(1—tP)a"))f/(thP +(1—#)a)|
0

— |ef(t”u*’+(1ft”>b”>>f’(tpap +(1- tP)bp)|}dt

1
S st (@op1e)]+ - P (017 0] + 1 - )
0

<

f’<aP>|) + ((tp)slef(””l (1 2SO (@) + (1 — tﬂ>5|f’<bp>\) Hdt

1
= L);“p) {/ tP(“+1>*1{tQPS{‘ef(”p)f/(aP” + ef®) £ (5°)[}

0
+ (1= 122 { e/ f (@) + (#9)° (1 = #2)%]ef ) £ (b))

2(15007 )]+ 170 @)1}
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1 1
0 — gf
_ (b - a ){{|ef(af’)f (ﬂp)‘ + ‘eﬂbp)f (bp)|}[/ p(a+2s+1)— 1dt+/tp(a+1 (17ta)25dt
0

1
+2A(a,b) / golatst)=1(1 _ t"‘)sdt}
0

_ (bpz_pap) Ha+215+1 +B(a+1/25+1)}{|ef(aﬁ’)f’(ap)| + 1O F 0]y

+2A(a,b)B(a +s+2,5+ 1)} ,
which is the required result. O
Corollary 4. If p = 1, then, under the assumption of Theorem 3, we have a new result:

ef (@) 1 of (b) ~al(a+1)
2 2(b—a)

< (b;“) {{a+215+1 +IB%(zx+1,25+1)}{|€f(a>f/(ﬂ)| +1efOf (0)]}

Ua+ b) 4 ]?,ef(a)]

+2A(a,b)B(a+s+2,s+1)}.

Corollary 5. If p = s = 1, then, under the assumption of Theorem 3, we have a new result:

ef(2) 1 f (b) ~al(a+1)
2 2(b—a)

: (b;a) {{zx}r?, HB3(”‘“/3)}{fff(“)f'(a)l +1ef®F (b)]}

U b) 4 f?,ef(”)]

+2A(a,b)B(a+3,2) }
Corollary 6. If p = s = a = 1, then, under the assumption of Theorem 3, we have a new result:

b
a b
ef()+ef()_ 1 /ef(x)dx
2 2(b—a)

a

< (b— ){ {|ef(’1)f( )|+|ef(b)f’(b)|}+A(u,b)}.

Theorem 4. Let & > Oand p > 0. Let f : 1 = [a?,b°] C Ry — R be a differentiable function on interior 1°
of I If |(ef)!|7 € L[a®, bP] is s-convex function for some g > 1, then

/) + /) pAT(a +1)
2 2(bP —af)

- 2

P, ef (V) 4 ans f(a")]

1-1 , /
(p(le—l—l)> H{B(oc+1,25+1){|ef(ﬂp)f (@) |9 4 | ®)f ()0}

+{B(a+s+1,s+1) +IB%(zx+2,s—l—1)}A1(a,b)},

where

Ay (a,b) = {|efE)F @0 4 |ofl@)f ()1}, ®)
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Proof. Using Lemma 1 and the power mean inequality, we have

ef(”p) + gf(bp) B p"‘r(a + 1)
2 200° —ab)

1
= 'p(bpz—ap) /{(1 — o) — (tp)a}tpflef(ﬂ’ﬂ‘#(lft*’)h”)f’(tpap + (1 —t°)bP)

0

= 'p(bp2_ap)</1{(1 — ) — (tp)a}tpldt>1‘17
0

1%, ef () oL ef ()]

1 1

X(/Wﬂtﬂ“amﬂﬁ*kﬂ”““—“WVwa+<lww%wm)q
0

1 1_1 1
<[PEZE (T @ygetar) ([l ey e
() ) (]
(0717174 (1= 10| ] [(10)7 £ (a)]7 + (1 = 19)° £(09)]7] )

_ p(b" —a?)

1-1 1
1 q d
FEf@)1a [ (1 — ¢0)x sty
2 ( 1 ) {'e /
pla+1) /

1 1
+1ef @) 09 / (1— )2 -1gs 4 ¢ / (1— 0ycrspl+D 14y
0

0
1

1
+ [ @pren a7 @ 4 |ef<uﬂ>f’<hﬂ>|q}}”’
0

1
a1\ Fa)f @)17 | |of 00)f (9)q
=" e B(a+1,25 +1){e |7+ e 17}

q
+{B(a+s+1,5+1) +B(a+2,s+l)}A1(a,b)} ,
which is the required result. O

Corollary 7. If g = 1, then, under the assumption of Theorem 4, we have a new result:

ef (@) 4 of () o7 (4 1)
_ pqa of(0F) L ppa of(af)
2 20 —ap) | laee Ol e

< (—a) ;ap) {IB%(zx +1,25+ 1){|ef(“p)f,(”p)\ + |€f(bp)f,(bp)|}

+{B(a+s+1,5+1) +B(a+2,s+1)}A1(a,b)}.
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Corollary 8. If p = 1, then, under the assumption of Theorem 4, we have a new result:

ef(”) _|_ef( ) ar(uc+1)[
2 25 —ay et

1
(b—a)( 1 \'1 F@)f (@)q o [ fO)F (B)}q
< 5 @D IB%(zx—l—l,Zs—i—l){\e |7+ |e | }

_|_ ]Zi ef(”)}

Y {Blats+1s+1) +B(a+2,s+1)}A1(a,b)}q.

Corollary 9. If p = s = 1, then, under the assumption of Theorem 4, we have a new result:

/@ 4o/ al(a+1)
2 200 —a)

1-4 / /
< p . ((in) {B(a+2,3){lef(“)f (a) 7+ e/ £ (017}

g, e/ ® + T e/ 1]

1

+2B(a + 2,2)A1(a,b)}q.

Corollary 10. If p = s = a = 1, then, under the assumption of Theorem 4, we have a new result:

b

(@ 4 /) 1 (b—a)f 1 i
— f(x) S @ F ()]0 4 [f O F (b))
2 2(bfa)/e dx| < y2-1 {30{|e (@) + e b)|7} + Alab)} .

Theorem 5. Let « > 0 and p > 0. Let f : I = [a°,b°] C Ry — R be a differentiable function on interior 1°
of I If |(ef)!|7 € L[aP, bP] is s-convex function for some q > 1, then

ef(uf’) +ef(bP) p“r(&-f—l)

2 o) It o) 0 o)

0 —
< b

1 1
faP (a) | -
{| (a |{B(a+125+p)+“+25+1

}—i—{IB%(uc—i—Zs—i—l,:))

+{B(2s+1La+~ )}|ef”” (b )|q+{IB%(zx+s+1s+:))

B+ ads+ )}A1(a b)}q

where Aq(a, b) is given in (8).
Proof. Using Lemma 1 and the power mean inequality, we have

ef(”p) + ef(bp) B p"‘r(a + 1)

) 20— L P

ot —at) ([ o\
< 2</tp1df)
0

1
0 _ P /
< 'p“’ I G Ll LT R O]
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1

1
(/ (1= t0)% — (19)} [of (PP +(1=10)00) ¢ (tpap+(1—tp)bp)|‘7dt>q

Il
i)
—~
‘%
Ml
)
=
/\
O\H

1 1
= =N 1w e [ (1 0y
0

1
1O @)1 (1= #0425 4 (1= 02 t] 4 {Je ) f ()]
0

1

1
+ [/ (a)17) / (1= 4 (1 e |

b — 1 1
= FER) £ (aP) |
{| (a)\{IB%(a+lZs+p)+a+zs+1

}—i—{IB%(oc—i—Zs—i—l,;)

1
+{B(2s+1,a+ p)}\ef ) £ (b°) |7 + {B(a +s+1,5 + E)

+B(s+1,a+s+ )}Al(a b)}q.

This completes the proof. [
Corollary 11. If g = 1, then, under the assumption of Theorem 5, we have a new result:

/@) /) pAT(a+1)
2 2(b° — aP)
< bP —a

I, ef¥) Lop of (@)

0 ' 1 1
f(a?) P - -
{|e f(a)I{B(w+1f2S+p)+a+2s+1

}+{B(w+25+1,:})

+{B(2s+1,a+ )}|ef ) (b)) + {B(a+5s+1, s—i-;)—HB%(s—i-l a+s+ )}Al(a b)}

Corollary 12. If p = 1, then, under the assumption of Theorem 5, we have a new result:

e/ +e/) T(a+1)
2 2(b—a)
b—a

2 ef O 4 of @]

{|ef(”)f/(a)q{IB%(uc—i—l,Zs—i—l)—i— 4 {B(a+25+1,1)

a+2s+1

+{B2s+1L,a+ 1} O F (0)9 4+ {B(a +s+1,5+1) +B(s+1,rx+s+1)}A1(a,b)}q.

Corollary 13. If p = s = 1, then, under the assumption of Theorem 5, we have a new result:

gf(”)+gf(b) Ta+1 " " a
2 ZEb—a)) U, 4 Ji e/

{|ef (a)|‘7{]B%( +1,3)+%_}_3}+{IB%(0¢+3,1)

b—

1

+ (B, +1}e!O F (8)]7 + {Bla+2,2) + B2, +2)} Ay (a, b)}".

[(1— ) — ()51 {(10)° /@) £ (a#)[7 4 (1 — 9]/ @) £ (1) mdt)

110f16

1



Fractal Fract. 2019, 3, 24

Corollary 14. If & = p = s = 1, then, under the assumption of Theorem 5, we have a new result:

b
b
ef(ﬂ) _|_ef( ) B 1 /gf(x)dx
2 2(b+a)

a

b—af(5 / 5 ' 1 q
f(a) q f(b) q4 =

12 0of 16

Theorem 6. Let « > 0and p > 0. Let f : 1 = [a°,b°] C Ry — R be a differentiable function on interior 1°

of I. If (ef)' € L[aP,bP] is s-convex function, then

1
P— P !
a [/lp By lef tPaP)+(1—t”)b”f (tPaf) + (1 —t°)bP) |,
0

where

Proof. It suffices to note that

1
2

I= /tP—lef(”’“")Jf(l—f”)b"f'(tPaP) + (1 —t)bP)dt
0

©)
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o~ 1S (a) (A=t ¢ (400 4 (1 — tP)bP)dt}

1
/
0
1

+{ /tP Lef () + (=100 ¢ (4040 4 (1 —tp)bp)dt}
%
1

_ [ 2of (X)) _ f(ar) _ ef(bﬂ)]

p(af —bP)
1
L—— / [(1— t0)8] 1ol (Pa)+ (=)0 ¢ (100 1 (1 — 40)pP)dt
0
1
_ ef(*") / (1 — t0)a—1pa—1of (FPaf)+(1=1)0F) gy
p(aP—bP bP—aP J
— ef(bp) + & x.ﬂ — aP)(X—l xp_l ef(xp)dx
o(arl — bP) (bP — aP) bP — gf aP — pP
a
_ ef (1) P* 1T (& + 1)p1a of (@)
P =57 (@ —
L= ef(a°) pa—lr(p( + 1)plu¢ of (0°)
p(af —bf) = (bP —af)rtl ac®
it follows that
a—1
PN €2 S T(a+1) I of ) 4 Ppy of(@)).

(&~ ) (a7 = byt
Thus, by multiplying both sides by £ ( ), we have Conclusion 9. O
Remark 1.

(i) If p =1, then under the assumption of Theorem 6, we have a new result:

m[l§+ef(b) LOIEE S

(b;a){

1

/lP(t)ef(t”*(l*f)b)f'(ta + (1 —t)b)dt|,
0

where

-1, tels,

(ii) If p = « =1, then, under the assumption of Theorem 6, we have a new result:

<

1 a+b
fX) gy — of (%57)
2(b—a)/e hemen?

1
— [/1p £)ef(ta+(=00 ¢ (1g 4 (1 — £)b)dt |,
0

13 of 16
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where

4. Applications to Special Means

14 of 16

Consider the following special means (see Pearce and Pecaric [45]) for arbitrary real numbers

a,b,a # b as follows.

1. The arithmetic mean:
a+b

2

A(a,b) =
2. The generalized log mean:

bn+1 _ an+1 1
n

L@ ) = [ =)

; a,beR, neZ\{-1,0}, a, b#0.

Proposition 1. Leta,b € R, a <b, 0 ¢ [a,b]land n € Z, |n| > 2, then

Al B — %Lﬁ(a,b)

1| (b —a)

<
- 3

{%IHZ'HI +A(@" L0 + | (ab)" Y A(a, b))
Proof. By taking f(x) = Inx" in Corollary 6, we obtain the desired result. [

Proposition 2. Leta,b € R, a < b, 0 ¢ [a,b]and n € Z, |n| > 2. Then, for g > 1, we have

A(a", b") — %Lﬁ(a, b)

< [n|(b—a) 1

e (@, b)),

|a2n71|q+|b2n71|q+

(ab)9(n=1)
—5 A

T
q
Proof. By taking f(x) = Inx" in Corollary 10, we get the desired result. [

Proposition 3. Leta,b € R, a < b, 0 ¢ [a,b]and n € Z, |n| > 2. Then, for g > 1, we have

A(a", b") — %Lﬁ(a,b)

|| (b —a)

d (ab)a(n=1) A

< {%A(Q(anl)q,b(%l)q) i (a7, b7)} 1.

Proof. By taking f(x) = Inx" in Corollary 14, we obtain the desired result. [

5. Conclusions

In this article, some Hermite-Hadamard type inequalities for exponentially s-convex functions in
a generalized fractional form were obtained. Some special cases were discussed. Some new results
related to exponentially s-convex functions via Riemann-Liouville fractional integrals and via classical
integrals were obtained. Applications to special means were considered. The idea may stimulate

further research in this dynamic field.



Fractal Fract. 2019, 3, 24 15 of 16

Author Contributions: All authors worked jointly and contributed equally.

Funding: This research received no external funding.

Acknowledgments: The authors are pleased to thank the Rector, COMSATS University Islamabad, Islamabad,
Pakistan, for providing an excellent research and academic environment. The authors are grateful to the referees
for their valuable and constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientifc Publishing Co.: Singapore, 2014.

2. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientifc Publishing Co.: Singapore, 2000.

3. Magin, R.; Ortigueira, M.D.; Podlubny, I.; Trujillo, J. On the fractional signals and systems. Signal Process.
2011, 91, 350-371. [CrossRef]

4. Loverro, A. Fractional Calculus: History, Definitions and Applications for the Engineer; University of Notre Dame:
Notre Dame, IN, USA, 2004.

5. Baleanu, D.; Tenreiro, J.; Luo, A. Fractional Dynamics and Control; Springer: Berlin, Germany, 2012.

6. Aguilar, JFEG.; Atangaa, A. New insight in fractional differentiation: Power, exponential decay and
Mittag—Leffler laws and applications. Eur. Phys. J. Plus 2017, 132, 13. [CrossRef]

7. Atangna, A.; Aguilar, ].F.G. Hyperchaotic beghaviour obtained via a nonlocal operator with exponential
decay and Mittag—Leffler laws. Chaos Solitons Fractals 2017, 102, 285-294. [CrossRef]

8. Barro, B.C.; Hernandes, M.A.T; Aguilar, ].F.G. On the solution of fractional-time wave equation with memory
effect involving operators with regular kernel. Chaos Solitons Fractals 2018, 115, 283-299. [CrossRef]

9.  Dugowson, S. Les Différentielles Métaphysiques: Histoire et Philosophie de la Généralisation de 1'Ordre de
la Dérivation. Ph.D. Thesis, Université Paris, Paris, France, 1994.

10. Kumar, D.; Singh, J.; Baleanu, D.; Rathore, S. Analysis of fractional model of Ambartsumian equation.
Eur. Phys. ]. Plus 2018, 133, 259. [CrossRef]

11.  Kumar, D.; Tehior, F; Singh, J.; Baleanu, D. An efficient computational technique for fractel vehicular traffic
flow. Entropy 2018, 20, 259. [CrossRef]

12.  Singh, J.; Kumar, D.; Baleanu, D. On the analysis of fractional diabetes model with exponential law.
Adv. Differ. Equ. 2018, 2018, 231. [CrossRef]

13.  Singh, J.; Kumar, D.; Baleanu, D. New aspects of fractional Biswas-Milovic model with Mittag—Leffler law.
Math. Model. Nat. Phenom. 2019, 14, 303. [CrossRef]

14. ]Jleli, M.O.; Regan, D.; Samet, B. On Hermite-Hadamard type inequalities via generalized fractional integrals.
Turk. J. Math. 2016, 40, 1221-1230. [CrossRef]

15. Katugampola, U.N. New approch to generalized fractional derivatives. Bull. Math. Anal. Appl. 2014, 6,
662-669.

16. Katugampola, U.N. New approch to generalized fractional integral. Appl. Math. Comput. 2011, 218, 860-865.

17.  Katugampola, U.N. Mellin transforms of generalized fractional integrals and derivatives. Appl. Math. Comput.
2015, 257, 566-580. [CrossRef]

18. Kilbas, A.; Srivastava, H.M.; Trujillo, ].J. On Theory and Applications of Fractional Differential Equations; Elsevier:
Amsterdam, The Netherlands, 2006.

19. Podlubny, I. Fractional Differential Equations: Mathematics in Science and Engineering; Academic Press:
San Diego, CA, USA, 1999.

20. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives, Theory and Applications;
Gordon and Breach Science Publisher: Amesterdam, The Netherlands, 1993.

21. Liu, J.-B.; Pan, X.F. Asymptotic Laplacian-energy-like invariant of lattices. Appl. Math. Comput. 2015, 253,
205-214. [CrossRef]

22.  Adil, M,; Khurshid, Y; Du, T.S.; Chu, Y.M. On generalizations of Hermite-Hadamard type inequalities via
conformable fractional integrals. J. Funct. Spaces 2018, 2018, 5357463. [CrossRef]

23.  Chen, F. On extension of the Hermite-Hadamard inequality for harmonically convex functions via fractioanl
integrals. Appl. Math. Comput. 2015, 268, 121-128.

24. Iscan,I; Wu, S. On Hermite-Hadamard type inequalities for harmonically convex functions via fractional

integrals. Appl. Math. Comput. 2014, 238, 237-244.


http://dx.doi.org/10.1016/j.sigpro.2010.08.003
http://dx.doi.org/10.1140/epjp/i2017-11293-3
http://dx.doi.org/10.1016/j.chaos.2017.03.022
http://dx.doi.org/10.1016/j.chaos.2018.09.002
http://dx.doi.org/10.1140/epjp/i2018-12081-3
http://dx.doi.org/10.3390/e20040259
http://dx.doi.org/10.1186/s13662-018-1680-1
http://dx.doi.org/10.1051/mmnp/2018068
http://dx.doi.org/10.3906/mat-1507-79
http://dx.doi.org/10.1016/j.amc.2014.12.067
http://dx.doi.org/10.1016/j.amc.2014.12.035
http://dx.doi.org/10.1155/2018/5357463

Fractal Fract. 2019, 3, 24 16 of 16

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44.

45.

Rashid, S.; Noor, M.A.; Noor, K.I. New estimates for exponentially convex functions via conformable
fractional operator. Fractal Fract. 2019, 3, 19. [CrossRef]

Rashid, S.; Noor, M.A.; Noor, K.I. Fractional exponentially m-convex functions and inequalities. Inf. |.
Anal. Appl. 2019, 17.

Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Basak, N. On Hermite-Hadamard inequalities for fractional integrals and
related fractional inequalities. Math. Comput. Model. 2013, 57, 2403-2407. [CrossRef]

Set, E.; Sarikaya, M.Z.; Ozdemir, M.E; Yildrim, H. The Hermite-Hadamard’s inequality for some convex
functions via fractional integrals and related results. ]. Appl. Math. Stat. Inform. 2014, 10, 69-83. [CrossRef]
Noor, M.A ; Cristescu, G.; Awan, M.U. On generalied fractional Hermite-Hadamard inequalities for twice
differentiable s-convex functions. Filomat 2015, 29, 807-815. [CrossRef]

Noor, M.A.; Noor, K.I.; Awan, M.U. On fractional Hermite-Hadamard inequalities for convex functions and
applications. Thilisi J. Math. 2015, 8, 103-113. [CrossRef]

Noor, M.A.; Awan, M.U. On some integral inequalities for two kinds of convexities via fractional integrals.
Trans. |. Math. Mech. 2013, 5, 129-136.

Hadamard, J. Etude sur les propriétés des fonctions entieres et en particulier d’une fonction considérée par
Riemann. J. Math. Pures Appl. 1893, 58, 171-215.

Hermite, C. Sur deux limites d"une integrale definie. Mathesis 1883, 3, 82.

Niculescu, C.P; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2018.
Noor, M.A. General variational inequalities. Appl. Math. Lett. 1988, 1, 119-121. [CrossRef]

Noor, M.A. Some new approximation schemes for general variational inequalities. ]. Math. Anal. Appl. 2000,
251, 217-229. [CrossRef]

Noor, M.A. Some developments in general variational inequalities. Appl. Math. Comput. 2004, 152, 199-277.
Varosanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303-311. [CrossRef]

Pecaric, J.; Jaksetic, ]. On exponential convexity, Euler-Radau expansions and Stolarsky means. Rad HAZU
2013, 515, 81-94.

Antczak, T. On (p, r)-invex sets and functions. J. Math. Anal. Appl. 2001, 263, 355-379. [CrossRef]
Dragomir, S.S.; Gomm, I. Some Hermite-Hadamard type inequalities for functions whose exponentials are
convex. Stud. Univ. Babes-Bolyai Math. 2015, 60, 527-534.

Awan, M.U.; Noor, M.A; Noor, K.I. Hermite-Hadamard inequalities for exponentiaaly convex functions.
Appl. Math. Inform. Sci. 2018, 12, 405-409. [CrossRef]

Alirezaei, G.; Mathar, R. On exponentially concave functions and their impact in information theory. J. Inf.
Theory Appl. 2018, 9, 265-274.

Pal, S.; Wong, T.K.L. On exponentially concave functions and a new information geometry. Ann. Probab.
2018, 46, 1070-1113. [CrossRef]

Pearce, C.E.M.; Pecaric, ].E. On inqualities for differentiable mappings with application to special means and
quadrature formula. Appl. Math. Lett. 2000, 13, 15-55. [CrossRef]

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/fractalfract3020019
http://dx.doi.org/10.1016/j.mcm.2011.12.048
http://dx.doi.org/10.2478/jamsi-2014-0014
http://dx.doi.org/10.2298/FIL1504807N
http://dx.doi.org/10.1515/tmj-2015-0014
http://dx.doi.org/10.1016/0893-9659(88)90054-7
http://dx.doi.org/10.1006/jmaa.2000.7042
http://dx.doi.org/10.1016/j.jmaa.2006.02.086
http://dx.doi.org/10.1006/jmaa.2001.7574
http://dx.doi.org/10.18576/amis/120215
http://dx.doi.org/10.1214/17-AOP1201
http://dx.doi.org/10.1016/S0893-9659(99)00164-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Main Results
	Applications to Special Means
	Conclusions
	References

